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Functional gradient flow
©000

Minimizing Movement

— x.|? —
(ka € arg mXin F(x)+ ’X2d);k|> = (XkHthk = —VF(ka))

The minimizing movement approximates the gradient flow.
x'= —VF(x)

Gradient flow provide the steepest direction in the space.

Direction=Angle=Inner product ‘
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Functional gradient flow
0000

Theorem (AC curve in W,)

Let (pt)ecfo,1) be an absolutely continuous curve in Wy(S2). Then
for a.e. t € [0,1], there exists a vector field v; € L (R9) such that

otp+ V- (pv) =0,

IVellp(oe) = [0l (t)-

For p = 2 we can bring Hilbert structure on the tangent manifold.
Riemannian structure
The tangent pair (s, u) is defined s = —V - (pu)

go(s1,%) == (u1, u2), == [uwuxdp .
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Functional gradient flow
00®0

Pr+1 € argmin F(p) +

W22(p7 pk)
2dt

F(p) — Flp) |, WE(p, pi)

+

4 (Flo = P+ H2024)

~
~

=(V

Gradient of F

gradF(pi) = V- (pvf;(p))

dt 2dt2

1
g(gradF (pi), dep) + 5 |0cp”

§F 1, s
5, 0o+ 5IME

and ‘6”) =-V-(pv) ‘
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Functional gradient flow
ocooe

Thus we aim to get vector field from the minimization problem

. _OF L2
m\/ln(V(Sfp(P% V) + EHVHp

So variation on v let us to conclude

oF
Vmin = _V%(p)

(0tp, Vmin) and (gradF(p),V%(p)) implies that

|0ep = —gradF ()]
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Motivation of SVGD
o

KL divergence

dp dp
KL = [ ——log(==)d
(ollv) == [ 5L 1085 )av
We initialize the particles with some simple distribution p, and
update them via the map T(x) = x + €p(x), where € is a small

step size
Functional optimization

d
——KL(T - .t <1
srgmax { - SRUTM o st ol <1

— S KL(Tpl[V)|e=0 = Ep[V log v(x) "¢(x) + V - ¢(x)] =: E,[S, 9]
where S, is called the Stein operator. Note that E,[S,¢] =0
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Motivation of SVGD
°

The Stein discepancy

D = E,[S, 1. <1
(pllv) = max{Ep[S,0] st o]l < 1}
If we let H = H¢ where Hg is a RKHS for a p.d. k(x, x") then
¢;,u(') o ExnplSy ® k(x, )],

where S, ® k(x,-) := Vlogv(x)k(x,-) + Vk(x, ).
Let v = % = e~V yields

N

N

i i € Z i Z i j

J S Xn - N( vk(XmXJ + k X XJ VV(XIJ'I))
Jj=1 Jj=1

00 =+ (e) [ KxToel) + eIV
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Geometric structure
000000

The kernel k is integrally strictly positive definite if for all finite
nonzero signed Borel measure p, [ [ k(x,y)dp(x)dp(y) > 0.

Let (Hk, (-, -)) be the RKHS associated with the kernel k so that

f(x) = (f, k(X))
Define the linear operator Ty, : L2(p) — Hy via

T = [ k(- y)o(y)dp(y), ¢ € L*(p).
For p € Px(RY), Tk p is compact, self-adjoint and p.s.d..

Pr(RY) = {p € P(RY) : p admits a smooth Lebesgue density,
suppp =R, [oq k(x, x)dp(x) < oo}
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Functional gradient flow Motivation of SVGD Geometric structure

[¢] ®00000

Definition (Tangent plane)

For p € Px(RY), we define the tangent space
' (d - o ooy e
T,M = { & € D'(R?) : there exists v € Ty ,VCX(RY)
such that £ + V- (pv) = 0 in the sense of distributions}

and the Riemannian metric g, : T,M x T,M — R by
gp(fv X) = <U, V>H<z7

where £+ V - (pu) =0and x + V- (pv) =0
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Geometric structure
0®0000

Lemma

® (T,M,g,) is a Hilbert space.

—Hk
@ For all ¢ € T,M there exists a unique v € Ty ,V C(R9)" ¢

such that £ +V - (pv) = 0 in the sense of distributions.
—Hk
Also (Tk,pvcgo(Rd) d7 <'a >HZ) R (TpM7gp)'

Definition (L? functional derivative)

d OF
HleoF (o o) = [ ()00

for ¢ € C°(RY) with [ ¢dx = 0.

On the Geometry of SVGD Won E Hong



Geometric structure
00000

Lemma (Stein gradient)

—Hk
Assume that Ty ,V'52(p) € Tk ,V C(R9) ™. Then the
Riemannian gradient associated to T,M, g,) is given by

(erad F)(p) = —V - (pnvpv(f;i;@)) |

Proof J
8p (gradpf7 atﬂt’tzo) = E‘F(Nt)‘tzo

for all sufficiently regular curves (1i¢)¢c(—c,c) C M with po = p and
Otpit|t=0 € T,M. Then we can find the corresponding vector fields
(Wt)te(—e,e) satisfying Orp +V - (uw) = 0.
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Geometric structure
000800

OF oF
(RHS) = / o] = / V5 (1:)(0). wodp

= /vg(“t)(p)’<anW0>Hgdp

0OF
= ( Tk,pvg(/’)a WO)H;;’

Since wy € HZ arbitrary. Thus

OF
8p (gradpf7 8flu’t’t:0) = <Tk,pv%(p)7 W0>'H<z

in other words, (grad ,F, Tk,pv%(p)) = (&, u) such that
E+V-(pu)=0.0
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Geometric structure
000000

Corollary

The gradient flow dynamics of the KL-divergence with respect to
the Stein geometry is given by the Stein PDE.

Orp = —grad, F

Furthermore, for solutions (p¢)¢>0 to the Stein PDE it holds that

d
EKL(PH |m) < 0.
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Functional gradient flow Motivation of SVGD Geometric structure Second order calculus Convergence criteria

O0000e

Definition (Stein distance)

For p,v € M we define the Stein distance

1 2k
d?(u,v) /0 ||vt||§{idt, Ve € Ty, V C2(RY) d}

= inf {
(o:v)EA(p,V)

1
= i?)f {/ 8o (Oept, Orpr)dt = po = p, p1 = V} c
0

The following hold:
@ T he Stein distance dy is an extended metric on M.

® If k is continuous and bounded, then there exists a constant
C > 0 such that, Wa(u,v) < Cd(u,v), for pu,v € M.
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Second order calculus
00000

Proposition (Geodesic equations)

Let (pe, v )o<t<1 be a critical point the Stein distance. Then

Oep+ V- (pTk,, VW) =0
OV + VW - Ty, VW =0,

for some function W : [0,1] x R — R, and v = Ty ,VV
comparison with the decoupled equation W?
Otp+ V- (pVV¥) =0
&w+%wwﬁzm

The stein geometry explains the mean-field limit of an interacting
particle system.
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Second order calculus
©0000

Proof Let's substitute v; = Ty ,, V®; with &, € C(RY),
t € [0,1], to obtain

1
2 _ 2 _ _ _
() = inf. { /O | T VIR gdt - Bep+ ¥ - (pTi, VW) =0, }
in the sense of distribution. So (p, ®) satisfies

1
—/ /8thp— (VV, Tk,ptv¢t,>pdt+/w1dy— /Wodu =0
0

(c)

for all test functions V.
Constraint functional

if (p, ®) solves the condition, !

E(p.®) = sup {(c) = {0
v o0

otherwise.

by the linearity in V.



Second order calculus
0000

Therfore

1, _ 1! ’
- = inf = T, VO ®
5 (ks v) (2%)53‘3{2/0 1Tk VPel30dt + E(p, )}

Note the convexity in ® and concativity (in fact, linearity) in V.
Thus by exchanging inf and sup to obtain

1 1
~d2(u,v) = inf sup —/ /8tllldpdt+/\|!1d1/—/\llod,u
2 (p,®) w 0o Ja Q Q

(1t
+ Igf {2/ | Tk,ptvfbtllig —(VV, Tk,ptv¢t>L2(p)dt}}
0
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Second order calculus
00@00

g1t
Igf {2/0 || Tk,ptvq)tniz - <Tk,Ptth7 Tk,ptv¢t,>szt}

1t )
:_2/0 | Tiop V03

So let & = V¥, formally

g;(;” Tk,pth||$_[z>(X) - V\U(x) ’ (Tkvpvw)(x)v
5(3: ( 1Tk, Ve HHE’)(X) (P Ti, VV)(x).

g
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Second order calculus
00000

Lemma (Computing the Hessian)

Let (pt, Wt)te(—e,c) be a Stein geodesic and po = p, Vo = W. Then

d2
FKL(pt] |V)|t=0 = Hess,(V, V),

where

d
Hess)(.9) = - [ [ 900 )aslol - 209(2)doy)dp(2)

ij=1
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Second order calculus
0oo0e

Lemma

where

d
il :2) =55, [ 0 (e k(x.3)) eV Pdp(x)0, k(y. 2
=1

~ [ 900 (k1)) Dok, 2

- / 0, (eV(X>aX,(e—V(X)k(x, y)))k(x,z)dp(x).
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Functional gradient flow SVGD Geometric Second order Convergence criteria

Theorem (Informal)

Assume that there exists X\ > 0 such that

2

SKLodm > [ [ V0) Ky 2) V() dny)dn(a),

Hess,(V, V) > Ag,(v, v),
for all (p)ec(—c,e) (p, V) satisfying the geodesic equation. Then
KL(pelim) < e KL (pol )

along solutions p; of the Stein equation.
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Functional gradient flow otivation of SVGD G c structure order calculus Convergence criteria

@00

or
OKLlpellm) = [ [ Ty ky, 2)9(Z)dr(y)dn(z) = swnlpel),

Istein Is called ‘Stein-Fisher information’.
Assuming a ‘Stein-log-Sobolev inequality’

1
KL(ptlIm) < 5 Istein(pel)

the exponential decay estimate also would follow.
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Convergence criteria
0®0

® The exponential convergence to equilibrium does not hold if k
is too regular i.e. k € CLH1(RY x RY) then the inequality only
hold for A =0

® ‘Measuring Sample Quality with Kernels' (Gorham, Lester
Mackey 20') deduced that if k € C1'! the Kernelized Stein
Discrepancy does not imply weak convergence of measure.
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Convergence criteria
ooe

Thank you!
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