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Two objectives
deterministic particle based approximation
for Fokker Planck and related EE
methods that are robust art
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Reproducing kernel Hilbert spaces Rk Hs

Let HI be a Hilbert space of functions from
Se Rd to IR

Def H is an RKHS if fxer the
evaluation at X is a continuous function
on H that is G H IR definedby

dxf 1 3 fix
is a continuous functional
Consequence By Riesz RepresentationTheorem
there exists of c H such that
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The mapping from R to H X s d is called
the feature map
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A bit more precisely For 6 probability measure
Cpr af biz consider
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So f t Sfdf is a linear functional
Therefore F Eg GH
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then

Hghf f KIND dpindpa

theorem Moore Aranszajn
If K exc IR is symmetric positive
definite then Tlo span KC y yes is

an inner product space with
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where f Li Kai g Pj Kc Yj
let Il be a completion of Flo Then
Tl is an RKHS
Th is the set of pointwise limits ofFu in Ro
Notes by Sejdinovic and Gretton
Bob mentioned Paulsen Raghupathi An Intro to the
Theory of RKHS available online via CMVLibrary
ExamplesofRKt
KIX I yet 7 y Gaussian

Tl L 2 f i f measure If 1 03

y f z g f 2471 fixigcyldxdy

Yl compact manifold of dimension d
Hs fractional Sobolev space
If s dz Hsc call and H is RKHS

Spectral representation i hi Yi Laplacian eigenval
and eigenfunctions orthonormal in Elm
fEHS f EE ai Yi
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let us compute the kernel
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SteinvariationalDescentfor
RelativeEntropye
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if f E V

G is a c Wrt Lebesgue measure

flowWasserstein gradient flow dIFf o

yon a manifold grad E is a minimizer

of xD Ecu
R v Iz ga v diff Ecu

For Wass Tangent vector 2tg divcgv
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Stein variational descent
consider a different metric for velocity

Rcn I HUI t J v Dg GPU DX
minimizing gives V W
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By above intro we have that V

is the mean embedding for measure
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Gradient flow
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So by penalizing the Velocity in higher norm
we get a smoother velocity

ParticlemethodL
Consider Siu 2 Ii
wass and relative entropy do not make sense



But Vstein does
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Lu Lu Nolen study well posedness and
asymptotic for SVD I if K T J

Solutions of SVDpr are weak Sol of SUD

In T2 they show stability for SVD
using a coupling technique This implies
discrete to continuum convergence



Alternative functional Carrillo Craig Patacchini
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CCP show that as N x particle
approximations converge using Saudrer Serfaty
framework


