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ABSTRACT. We investigate the estimation of the perimeter of a set by a graph cut of a random
geometric graph. For Ω ⊂ D = (0, 1)d, with d ≥ 2, we are given n random i.i.d. points on
D whose membership in Ω is known. We consider the sample as a random geometric graph with
connection distance ε > 0. We estimate the perimeter of Ω (relative to D) by the, appropriately
rescaled, graph cut between the vertices in Ω and the vertices in D\Ω. We obtain bias and vari-
ance estimates on the error, which are optimal in scaling with respect to n and ε. We consider two
scaling regimes: the dense (when the average degree of the vertices goes to∞) and the sparse one
(when the degree goes to 0). In the dense regime there is a crossover in the nature of approximation
at dimension d = 5: we show that in low dimensions d = 2, 3, 4 one can obtain confidence inter-
vals for the approximation error, while in higher dimensions one can only obtain error estimates
for testing the hypothesis that the perimeter is less than a given number.

1. INTRODUCTION

This paper investigates the use of random-graph cuts to obtain empirical estimates of the
perimeter of a domain Ω ⊂ D := (0, 1)d for d ≥ 2. Let x1, . . . ,xn, . . . denote a sequence of
independent random points uniformly distributed on the unit cube D and let Vn := {x1, . . . ,xn}.

The problem of estimating the perimeter of Ω based on knowing which points of Vn belong
to Ω is a classical question, see [4, 8, 9, 17, 23, 24] for recent contributions, and see Subsection
1.2 below which contains a discussion about related work. Here we consider an estimator of the
perimeter that is based on a geometric graph constructed from the point cloud Vn. More precisely,
we select εn > 0, and connect two points in the cloud if they are within distance εn of each other;
then we consider an appropriately scaled ‘cut’ determined by the number of edges in the graph
that connect points in Ω with points that belong to Ωc. This type of estimator is natural to consider,
since graph cuts arise as a discretization of the perimeter in many applications such as clustering
[3, 7, 14, 15, 18, 25, 26, 27, 28].

While our choice of the estimator is based on its relevance to statistics and machine learning
tasks, one of its important features is that it has a small bias. Indeed, the expectation of our
estimator provides a second order approximation (in terms of the natural parameter εn) of the true
perimeter of Ω under some regularity conditions on the boundary of the set (see (7) below); this
turns out to be a sharp estimate for the bias. We also obtain precise estimates for the variance
of the estimator; for these estimates to hold, we do not need any regularity assumptions on the
boundary of the set Ω except that it has finite perimeter in the most general sense. Furthermore,
we show that our estimator converges a.s. for remarkably sparse graphs (and indeed in settings
which are sparser than for previously considered estimators). The a.s. convergence holds with no
regularity assumptions on Ω (other than the fact that it has finite perimeter in the most general
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sense). Finally, assuming some smoothness on the boundary of Ω, we are able to establish (in the
dense graph regime 1

n1/d � ε� 1) the asymptotic distribution of the error. These estimates lead
to asymptotic confidence intervals and bounds on the type I and type II errors for hypothesis tests
associated to the perimeter of a set.

1.1. Set-up and main results. Let us now be more precise about the setting we consider in this
paper. We consider random geometric graphs with vertex set Vn and radius εn > 0. That is,
graphs where xi and xj are connected by an edge if ||xi − xj || ≤ εn. The graph cut between
A ⊆ Vn and Ac is given by

Cutεn(A,Ac) :=
∑
xi∈A

∑
xj∈V \A

1{‖xi−xj‖≤εn}.

We define the graph perimeter as a rescaling of the graph cut: For any Ω ⊆ D

(1) GPern,εn(Ω) :=
2

n(n− 1)εd+1
n

Cut(Vn ∩ Ω, Vn ∩ Ωc).

See Figure 1 for an illustration of this construction. The scaling is chosen so that GPern,εn(Ω)
becomes a consistent estimator for the true (continuum) perimeter.

Ω Ωc

FIGURE 1. Edges of the cut between Ω and Ωc are represented by bold lines,
while other edges are dashed lines. Total number of vertices is n = 200 and
connectivity radius ε = 0.13.

One of our interests lies in determining how well does GPern,εn(Ω) estimate the relative
perimeter of Ω in D. We first investigate for which scaling of εn on n does the convergence
hold almost surely as n→∞. In other words, we want to understand the relation between edge-
sparsity of random geometric graphs and point-wise convergence of the graph perimeter to the
continuum perimeter in the almost sure sense. We consider this question for a very broad family
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of sets Ω ⊂ D, which are only assumed to have finite relative perimeter in D in the general sense
of [2]. That is, we define the relative perimeter of Ω with respect to D to be

(2) Per(Ω) = sup

{∫
Ω

div(v) dx : (∀x ∈ D) ‖v(x)‖ ≤ 1, v ∈ C∞c (D,Rd)
}
.

If Ω has a smooth relative boundary then Per(Ω) is nothing but the surface area of ∂Ω ∩ D.
We remark that the notion of the perimeter we use is more general than the notion of Hausdorff
measure of the boundary, Hd−1(∂Ω ∩ D), and than the Minkowski content, which are the ones
more typically used in the statistics literature [4, 8, 9]. In particular, as we see below, we work
with consistent nonparametric estimators in the most general setting available.

As we recall below in (17 –19), it is known that when εn → 0 as n → ∞ then the bias of the
estimator vanishes in the limit:

(3) E(GPern,εn(Ω))→ σd Per(Ω) as n→∞.
The scaling factor σd satisfies

(4) σd :=

∫
||z||≤1

|z1| dz =
2sd−2

(d+ 1)(d− 1)
,

where z1 denotes the first component of the vector z ∈ Rd and sd−2 is the area of the (d − 2)-
dimensional unit sphere (the boundary of the unit ball in Rd−1). We refer to the normalizing
quantity σd as the surface tension.

We obtain the following estimates on the deviation of the graph perimeter GPern,εn(Ω) from
its mean. Let

(5) f(n) :=


1√
nεn

if 1
n1/d ≤ εn

1

nε
(d+1)/2
n

if 1
n2/(d+1) ≤ εn ≤ 1

n1/d .

Theorem 1.1. Let p ≥ 1 and and let Ω ⊆ D be a set with finite perimeter. Assume εn → 0 as
n→∞. Then,

(6) E(|GPern,εn(Ω)− E(GPern,εn(Ω))|p) ≤ C (f(n))p

where C is a constant that depends only on p and the true perimeter Per(Ω) of Ω. In particular,

if n−
2

(d+1) � εn � 1, then

GPern,εn(Ω)→ σd Per(Ω), almost surely as n→∞.

The last part of the previous theorem follows from (3), the moment estimates (6), Markov’s
inequality, and Borel-Cantelli Lemma which imply that

GPern,εn(Ω)− E (GPern,εn(Ω))→ 0 a.s.

Remark 1.2. We note that the a.s. convergence holds for rather sparse graphs (see Figure 2).
Namely the typical degree of a node is ωdnεd, where ωd is the volume of the unit ball in d

dimensions. When n−
2

(d+1) � εn � n−
1
d the a.s. convergence holds, while the average degree

of a vertex converges to zero. The convergence is still possible because the expected number of
edges crossing ∂Ω is still a quantity converging to infinity.
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(a) n = 400 and ε = 0.045 (b) n = 1000 and ε = 0.027

FIGURE 2. Here we illustrate the “sparse” regime when 1/n1/d � ε �
(1/n)2/d+1 when the average degree goes to zero. Nevertheless since the num-
ber of edges in the cut still increases as n does the convergence of the cut to the
perimeter still holds.

Remark 1.3. Given that we show the almost-sure consistency of our estimators for any arbitrary
(but fixed) set for which the perimeter is finite, our construction provides a universal strongly
convergent estimator which was the desired property listed as an open problem in [8] (for the
estimator they considered).

We turn to estimating the bias of the empirical approximation: |E(GPern,εn(Ω))−σd Per(Ω)|.
We first characterize the mean of the graph perimeter, E(GPern,εn(Ω)), as the non-local perime-
ter Perεn(Ω) of Ω, which we introduce in (16); the non-local nature of the functional essentially
has to do with the fact that it involves averages of finite differences as opposed to a local approach
where one considers derivatives. We then proceed to estimate |Perεn(Ω)− σd Per(Ω)| explicitly.
It proves straightforward to check that |Perεn(Ω)− σd Per(Ω)| = O (εn) for general subsets
Ω ⊆ D with smooth relative boundary. However, we show that the error is actually quadratic in
εn

(7) |E(GPern,εn(Ω))− σd Per(Ω)| = |Perεn(Ω)− σd Per(Ω)| = O(ε2
n)

under the extra condition that dist(Ω, ∂D) > 0. This is the content of the next lemma, whose
proof may be found in Appendix A.

Lemma 1.4. Let Ω be a set with smooth boundary, such that dist(Ω, ∂D) > 0. Let ε > 0 and let
Perε(Ω) be defined by (16). Then

(8) Perε(Ω) = σd Per(Ω) +O(ε2).

Remark 1.5. The assumption dist(Ω, ∂D) > 0 in the above Lemma is needed in order to obtain
bias of order ε2. If Ω touches the boundary ∂D the error of order ε2 is not expected, as can be seen
for example by considering the rectangle Ω := {x = (x1, . . . , xd) ∈ D : x1 ≤ 1/2}, for which
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the error is of order ε; in this situation the error is completely due to the region where ∂Ω meets
∂D transversally. Thus, in general, for Ω ⊆ D with smooth relative boundary, the bias is of order
ε. On the other hand, the smoothness of the boundary of Ω is only needed in the previous lemma
to guarantee that curvature and its derivatives are well defined. Finally, the constant involved in
the term O(ε2) depends on the reach of the set Ω and the intrinsic curvature of ∂Ω together with
its derivatives; this can be seen from our computations in Appendix A.

Combining the bias and variance of estimates allows us to obtain the rates of convergence for
the error |GPern,εn(Ω)− σd Per(Ω)|. In particular we estimate the ‘standard deviation’

std(n) := E
(
(GPern,εn(Ω)− σd Per(Ω))2

)1/2
,

which we may quantify precisely by using the variance-bias decomposition

std2(n) = Var(GPern,εn(Ω)) + (E(GPern,εn(Ω))− σd Per(Ω))2 .

Using the special case p = 2 of Theorem 1.1 to estimate the variance and using Lemma 1.4 to
estimate the bias we obtain the following.

Theorem 1.6. Let Ω ⊂ D be an open set with smooth boundary. Assume n−
2

d+1 � εn � 1 and
consider f(n) defined via (5). The error of approximating σd Per(Ω) by GPern,εn(Ω) satisfies

std(n) = O(f(n) + εn).

If we furthermore assume that Ω does not touch the boundary of D, that is dist(Ω, ∂D) > 0, then
a better estimate holds:

std(n) = O(f(n) + ε2
n).

A simple calculation using (5) allows one to choose a scaling of εn on n so that the error of
the approximation is as small as possible. In particular, for a set Ω which touches the boundary
(dist(Ω, ∂D) = 0) the optimal scaling of εn is

εn ∼

{
n−1/3 if d ≤ 3

n−2/(d+3) if d ≥ 3
giving std(n) =

{
n−1/3 if d ≤ 3

n−2/(d+3) if d ≥ 3.

We note that for d < 3 the optimal εn is achieved in the regime n−1/d . εn � 1, while if d > 3
it is in the sparse regime.

If we consider sets Ω with smooth boundary but such that dist(Ω, ∂D) > 0, then the optimal
scaling of εn on n is as follows

εn ∼

{
n−2/5 if d ≤ 5

n−4/(d+5) if d ≥ 5
giving std(n) =

{
n−1/5 if d ≤ 5

n−2/(d+5) if d ≥ 5.

Again we note that the optimal εn is in the sparse regime if d > 5.
This has implications to how well is the perimeter estimated by graph cuts in the graphs con-

sidered in most machine learning applications. Namely if d ≥ 5 and the graph has average degree
bounded from below, that is when n−1/d . εn � 1, then, since the bias bound is sharp, most of
the error is due to the bias term.

We now consider obtaining confidence intervals for the value of the true perimeter Per(Ω)
based on the estimator 1

σd
GPern,εn(Ω). We focus on the dense regime (See Figures 3 and 4),

1
n1/d � εn � 1, and first obtain the asymptotic distribution of GPern,εn(Ω)− E(GPern,εn(Ω)).
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(a) n = 100, ε = 0.17 (b) n = 300 and ε = 0.12

FIGURE 3. Here we illustrate the “very dense” regime, 1� ε� (ln(n)/n)1/d,
when the graphs are connected with high probability.

Since the term E (GPern,εn(Ω)) = Perεn(Ω) depends on the set Ω itself, which is unknown
(we only assume we have an oracle access to it), we need the bias to be negligible compared to the
standard deviation of our estimator in order to construct confidence intervals for Per(Ω). From
(6) the standard deviation of GPern,εn(Ω) scales as 1√

nεn
while by (7) the bias scales as ε2

n; these
estimates lead to restrictions on the dimensions for which the bias is negligible with respect to the
standard deviation. Namely this is possible for d = 2, 3, and 4.

Theorem 1.7. Let Ω ⊆ D be an open set with smooth boundary such that dist(Ω, ∂D) > 0. Let
εn be such that

1

n1/d
� εn � 1

Then, √
nεn

4Cd Per(Ω)
(GPern,εn(Ω)− Perεn(Ω))

w−→ N(0, 1),

where Cd is given by

(9) Cd := 2

∫ 1

0

∣∣∣Bd(0, 1) ∩
{
x = (x1, . . . , xd) ∈ Rd : xd ≥ t

}∣∣∣2 dt.

If in addition the dimension d is either 2, 3 or 4 and if

(10)
1

n1/d
� εn �

1

n1/5

then,

(11)
√

nεn
4Cd Per(Ω)

(GPern,εn(Ω)− σd Per(Ω))
w−→ N(0, 1).
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(a) n = 100 and ε = 0.12 (b) n = 400 and ε = 0.07

FIGURE 4. Here we illustrate an intermediate, ”dense”, regime (ln(n)/n)1/d �
ε � (1/n)1/d. The average degree still increases, but the graphs are discon-
nected with high probability.

Naturally, the previous theorem implies that one can obtain confidence intervals for the value
of Per(Ω) when the dimension d is 2, 3 or 4. Let us fix α ∈ (0, 0.5) and let Zα be the 1 − α
quantile of the standard normal distribution. That is, Zα is such that

P (N(0, 1) ≤ Zα) = 1− α.
Then provided that

1

n1/d
� εn �

1

n1/5
,

it follows that with probability converging to 1− α, Per(Ω) ∈ (a−n , a
+
n ), where

a±n :=
1

σd
(GPern,εn(Ω)±

√
4Cd Per(Ω)

nεn
Zα/2).

For d ≥ 5, the confidence intervals can not be obtained unless one has some extra quantitative
information on the smoothness of ∂Ω (like curvature bounds). Nevertheless since it is known that
the nonlocal perimeter Perεn(Ω) = E(GPern,εn(Ω)) is less than σd Per(Ω) (see (30)), one can
construct reliable test for the hypothesis that Per(Ω) is less than a certain number ρ without using
any quantitative estimates on the smoothness of ∂Ω. Namely consider the hypothesis testing of

(12) H0 : Per(Ω) ≤ ρ, vs HA : Per(Ω) > ρ,

based on our estimator GPern,εn(Ω). We consider the statistic:

(13) ln :=

√
nεn

4Cdρ
(GPern,εn(Ω)− σdρ) .

The test consists on

(14) Accept H0 if ln ≤ Zα, reject otherwise.
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Proposition 1.8. Assume d ≥ 2 and 1
n1/d � εn � 1. Then, the type I error satisfies

PH0 (ln > Zα) . α,

where . simply means that the left hand side of the above expression is asymptotically below α.
The type II error satisfies

PHA
(ln ≤ Zα) = O

(
1
√
nεn

)
.

Remark 1.9 (Extensions). The estimates obtained in Theorem 1.1 and Theorem 1.6 are not ex-
clusive to the case where the points are uniformly distributed in the unit cube and to geometric
graphs. In fact, with slight modifications to the proofs of Theorem 1.1 and Theorem 1.6, we can
extend these results to more general situations. For example, if the data points are distributed
according to some smooth density p that is supported on a regular, bounded domain D ⊂ Rd
with p bounded below and above by positive constants, then the results still hold. In this case,
the limiting value of GPern,εn(Ω) is a weighted perimeter Per(Ω, p2) (see for example [10]).
Convergence is guaranteed for the same scaling for εn as in the uniform case. The fact that the
weight is p2 and not p (as may be a priori expected) ultimately comes from the fact that a graph
cut is a double sum.

Furthermore if instead of weights 1{‖xi−xj‖≤εn} in the definition of the graph cut, one con-
siders edge weights η(‖xi − xj‖/εn) where η is nonnegative, integrable and non-increasing, the
results still hold, provided we change the surface tension σd with a surface tension associated to
η defined as in [10].

Outline. In Subsection 1.3 we establish (3) and give an outline of the argument behind our
main results. We present the proof of Theorem 1.1 in Section 2, while in Subsection 2.1 we show
that the scaling is sharp (up to logarithmic corrections) in the sense that if n2εd+1

n → 0 then
GPern,εn(Ω) converges in probability to zero and hence does not converge almost surely to the
(rescaled) relative perimeter. In Section 3 we prove the results on the asymptotic distribution of
the error stated in Theorem 1.7. In Subsection 3.1 we study the type I and type II errors of the
hypothesis test of Proposition 1.8. Finally, Appendix A deals with the bias estimate from Lemma
1.4.

1.2. Discussion. Here we discuss the connections between our work and related works in the
literature. First we relate it to other estimators of perimeter based on a random sample. Then
we contrast the type of the convergence and the scaling regimes considered in this paper with the
ones needed for the convergence of graph-cut based machine learning algorithms for clustering
and related tasks.

The problem of estimating the perimeter of a set, Ω, based on knowing which points of a
random sample Vn belong to Ω, has been considered by a number of works. Cuevas, Fraiman,
and Rodrı́guez-Casaet [9], considered estimators of the Minkowksi content, which agrees with
perimeter for regular enough sets, but is a less general notion of the perimeter than the one we
consider, (2). Their estimator is based on counting the vertices near the boundary (relative to
a parameter εn), while we “count” edges of a graph. The error bound obtained was of order
O(n−1/2d). Pateiro-López and Rodrı́guez-Casal [24] consider a similar estimator and improve
the bounds toO((lnn/n)1/(d+1)) under qualitative regularity conditions (rolling ball conditions).
Cuevas, Fraiman, and Györfi [8], obtain the convergence of estimators similar to those of [9],
when εn � 1/n1/d and under weaker conditions on the regularity of Ω, although still not in the
full generality we consider in this paper.
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Armendáriz, Cuevas, and Fraiman [4] consider a similar set-up to that in [9, 24] but with
different sampling rates for Ω and Ωc: let n denote the number of sample points in Ω and k the
number of sample points in Ωc. Under mild assumptions on the regularity of ∂Ω, and under some
conditions on n and k which include 1 � εn,k � (1/n1/3) and k � (n/εn,k)

d/2 they obtain
the asymptotic distribution of the error, under the same scaling in n and ε that we consider in
Theorem 1.7. We notice that our estimator is different, and also that in [4] a very large number
of points k in Ωc is needed for the consistency to hold. This allows the authors to obtain the
asymptotic distribution of the total error in any dimension, while in our setting we only obtain it
in low dimensions. A further difference between their work and ours, is that we allow for a wider
range in ε, namely 1� εn � (1/n)2/(d+1).

Jiménez and Yukich [17] give a different use to the point cloud and instead of considering a
parameter ε to count points close to the boundary of the set or to define a geometric graph, they
consider a new estimator based on the Delaunay triangulation induced by the cloud. They obtain
results not only on estimating the perimeter of the set, but also integrals of functions over ∂Ω.

Kothari, Nayyeri, and O’Donnell [21] and Neeman [23] consider an estimator essentially based
on the following procedure: pick n random points uniformly distributed on D and to each point
associate a random direction for a ‘needle’ based at the point with length of order

√
εn; then

count how many of the needles touch the boundary of ∂Ω. Their main motivation is to consider
the perimeter estimation from the viewpoint of property testing as introduced in [19]. In that
setting, the idea is to produce an algorithm that requires a small number of samples (essentially
independent of the dimension d) in order to determine if a given set has a small perimeter or is
‘far away’ from a set that has small perimeter. The authors show completeness and soundness
of the test they design (the notion of completeness and soundness is as in [21, 19]). The price to
pay for the dimension independence of their statements is that of considering a different notion
of testing; this is one of the main differences with our work since we consider the perimeter
testing in the more classical framework of hypothesis testing (Proposition 1.8). We note that the
completeness of [21] is analogous to the type I error, but the soundness is fundamentally different
from estimating the type II error.

It is also worth mentioning the work of Belkin, Narayanan and Niyogi [5] where they consider
an algorithm that requires as few samples as possible in order to estimate the perimeter of a
convex body. Their results show that there is an algorithm that uses O(d4γ−2) samples to obtain
an estimator for the true perimeter of the convex set, with an error of approximation of γ; this
statement holds with high probability. We notice the polynomial dependence on dimension in
their estimates.

Let us now contrast the type of the convergence and the scaling regimes that we consider in this
paper with the ones needed for the convergence of graph-cut based machine learning algorithms
for clustering and related tasks.

Graph-cut based algorithms for tasks such as clustering have played an important role in ma-
chine learning [3, 7, 14, 15, 18, 25, 26, 27, 28]. Data clustering algorithms are called consistent
if as the sample size n → ∞ their outputs converge to a desired partitioning of the underlying
measure being sampled. It is of interest to understand under what scaling of εn on n does the
consistency hold. Here we showed that for a fixed set Ω the value of graph perimeter (and indeed
of the graph-cut-based objective functionals such as Cheeger, ratio, or normalized cuts) converges
to the perimeter of Ω; this result holds even for rather sparse graphs (Theorem 1.6). In particular,
partitioning such sparse graphs (as on Figure 2) does not provide almost any information about
the clusters present in the data. We conclude that the convergence of the graph perimeter of a fixed
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set towards the continuum perimeter does not provide the needed information on the asymptotic
properties of graph-cut based clustering algorithms. To obtain consistency of such algorithms one
needs a stronger notion of convergence of graph based functionals towards continuum function-
als. Recently the authors [10], and together with Laurent and Bresson [11] have developed the
appropriate notion of convergence (based on Γ-convergence from the calculus of variations), and
have applied it to consistency of Cheeger, ratio, sparsest, and normalized cut based point cloud
clustering. More specifically, in [11] it is shown that consistency holds if (log(n))1/d

n1/d � ε � 1
(for d ≥ 3), in that regime the graphs are connected with high probability as n→∞.

1.3. Outline of the argument. In order to understand the asymptotic behavior of the graph
perimeter, following [3] we first define a symmetric kernel φε : D ×D → (0,∞) by

φε(x, y) =
1{||x−y||≤ε}

εd+1
|1Ω(x)− 1Ω(y)|.

Using the kernel φεn , we can then write GPern,εn(Ω) as

(15) GPern,εn(Ω) =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

φεn(xi,xj),

which is a U-statistic in the terminology of [16]. In order to understand the mean of this U -
statistic, we define the non-local perimeter of the set Ω ⊆ D as the expression

(16) Perε(Ω) :=

∫
D

∫
D
φε(x, y) dxdy =

2

εd+1

∫
Ω

∫
D\Ω

1{‖x−y‖≤ε} dxdy.

A simple computation shows that Perεn(Ω) is the mean of GPern,εn(Ω), that is,

(17) E(GPern,εn(Ω)) = Perεn(Ω).

Additionally, Remark 4.3 in [10] establishes that the non-local perimeter Perεn(Ω) approaches a
constant multiple of the relative perimeter of Ω as the parameter εn goes to zero. More precisely,
if εn → 0 as n→∞ then

(18) Perεn(Ω)→ σd Per(Ω) as n→∞

for σd the surface tension (4). This convergence also follows from the estimates in Appendix A
in the special case that Ω has a smooth boundary. Combining (18) with (17) we conclude that if
εn converges to zero as n→∞ then

(19) E(GPern,εn(Ω))→ σd Per(Ω) as n→∞.

Since the graph perimeter GPern,εn(Ω) is a U -statistic of order two we can use the general theory
of U -statistics to obtain moment estimates for GPern,εn(Ω). Let us first note that Hoeffding’s
decomposition theorem for U -statistics of order two (see [20]) implies that GPern,εn(Ω) can be
written as:

(20) GPern,εn(Ω)− Perεn(Ω) = 2Un,1 + Un,2,

where Un,1 is a U-statistic of order one ( just a sum of centered independent random variables)
and Un,2 is a U-statistic of order two which is canonical or completely degenerate (see [20]). In
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order to define the variables Un,1 and Un,2, let us introduce the functions

φ̄ε(x) :=

∫
D
φε(x, z)dz, x ∈ D,

gn,1(x) := φ̄εn(x)− Perεn(Ω), x ∈ D,(21)

gn,2(x, y) := φεn(x, y)− φ̄εn(x)− φ̄εn(y) + Perεn(Ω), x, y ∈ D.

With the previous definitions, we can now define

Un,1 =
1

n

n∑
i=1

gn,1(xi),

Un,2 =
2

n(n− 1)

∑
1≤i<j≤n

gn,2(xi,xj).

(22)

We remark that
∫
D gn,1(z)dz = 0 and that

∫
D gn,2(x, z)dz = 0 for all x ∈ D. Because of

this, Un,1 and Un,2 are said to be canonical statistics of order one and two respectively (see [20]).
Now, Bernstein’s inequality [6] implies that

(23) E(|Un,1|p) ≤
Cp
np

max
(
Apn,1, B

p
n,1

)
,

where

(24) An,1 := ||gn,1||∞, Bn,1 :=
√
n||gn,1||2.

and Cp is a universal constant. See also [12] for a slight generalization of the previous result.
On the other hand some of the moment estimates in [12] for canonical U -statistics of order two

can be used to prove that

(25) E (|Un,2|p) ≤
Cp
n2p

max
(
Apn,2, B

p
n,2, C

p
n,2

)
,

where

(26) An,2 := ||gn,2||∞, Bn,2 := n||gn,2||2, (Cn,2)2 := n||
∫
D
g2
n,2(·, y) dy||∞.

and Cp is a universal constant. From the decomposition (20) it follows that for p ≥ 1

E (|GPern,εn(Ω)− Perεn(Ω)|p) ≤ Cp(E (|Un,1|p) + E (|Un,2|p)).

Thus in order to obtain the moment estimates for GPern,εn(Ω) in Theorem 1.1, we focus on
finding estimates for the quantities in (24) and (26).

Remark 1.10. The estimates onUn,1 andUn,2 exhibit a crossover in the nature when the parameter
εn transitions between the sparse ( 1

n2/(d+1) � εn � 1
n1/d ) and the dense regime ( 1

n1/d � εn �
1). From the theory of U -statistics the crossover in the nature of the bounds, is connected to the
different nature of the two components in the canonical decomposition for U -statistics. Under
the dense regime the biggest source of error comes from the term Un,1 while in the sparse regime
the biggest source of error comes from the term Un,2. The two variables Un,1 and Un,2 exhibit a
different nature. In fact, one can think that Un,1 is a global quantity as it is the sum of averages,
while Un,2 is simply the sum of pure interactions concentrating on the boundary of the set Ω. We
believe that there is a deeper geometric and analytic reason for the scaling of the error that appears
in the sparse regime ( 1

n2/(d+1) � εn � 1
n1/d ). Moreover, we believe that such understanding
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would allow us to complete the study of the asymptotic distribution in Theorem 1.7 for the sparse
regime. We expect such distribution to be of the Gaussian chaos type.

The bias estimates in Appendix A are obtained by a series of computations whose starting point
is writing Perε(Ω) in terms of an iterated integral, the outer one taken over the manifold ∂Ω and
the inner one taken along the normal line to ∂Ω at an arbitrary point x ∈ ∂Ω. Such computations
show that the first order term of Perεn(Ω) on εn vanishes.

Finally, Theorem 1.7 is obtained by using the canonical decomposition of U -statistics and by
noticing that in the dense regime 1

n1/d � εn � 1, the variable Un,2 is negligible in relation to
Un,1. We make use of the CLT for triangular arrays after computing the variances of the involved
variables.

2. PROOF OF THEOREM 1.1

We first compute the moments of Un,1 and so we start computing the quantities An,1 and Bn,1
from (24). Denote by Tε the ε-tube around ∂Ω, that is, consider the set

(27) Tε :=
{
x ∈ Rd : dist(x, ∂Ω) ≤ ε

}
.

We also consider the half tubes T−ε and T+
ε ,

(28) T−ε := {x ∈ Ω : dist(x, ∂Ω) ≤ ε} , T+
ε := {x ∈ Ωc : dist(x, ∂Ω) ≤ ε} .

With these definitions it is straightforward to check that

(29) φ̄εn(x) =


|Bd(x, εn) ∩ Ω|/εd+1

n if x ∈ T+
εn

|Bd(x, εn) ∩ Ωc|/εd+1
n if x ∈ T−εn

0 if x 6∈ Tεn .

Since |Bd(x, εn) ∩ Ω| and |Bd(x, εn) ∩ Ωc| are bounded by αdεdn, where αd is the volume of the
d-dimensional unit ball, we deduce that

An,1 = O

(
1

εn

)
.

In order to compute the quantity Bn,1 we use the following lemma, whose proof may be found
in Appendix B.

Lemma 2.1. Let p ≥ 1 and let Ω ⊆ D, be a set with finite perimeter. Then, for all ε > 0 we have∫
D
φ̄pε(x)dx ≤

αp−1
d σd
εp−1

Per(Ω).

In particular, taking p = 1 in the previous expression, we obtain

(30) Perε(Ω) ≤ σd Per(Ω).

Using the previous lemma with p = 2 we deduce that
∫
D φ̄

2
εn(x)dx = O

(
1
εn

)
, and since∫

D
g2
n,1(x)dx =

∫
D
φ̄2
εn(x)dx− (Perεn(Ω))2 ,
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we conclude that

Bn,1 = O

(√
n

εn

)
.

From the previous computations, we deduce that

E(|Un,1|p) ≤ C max

(
1

npεpn,
,

1

np/2ε
p/2
n

)
,

where C may depend on the set Ω and p. If 1
n2/(d+1) ≤ εn, so that in particular 1

nεn
is o(1), then

(31) E(|Un,1|p) ≤
C

np/2ε
p/2
n

.

Remark 2.2. Later on, in Lemma 3.1, we provide an explicit computation of
∫
D φ̄

2
εn(x)dx up to

order 1
εn

, which is useful when studying the asymptotic distribution of a rescaled version of Un,1.

Now we turn to the task of obtaining moment estimates for Un,2. We estimate the quantities
An,2, Bn,2 and Cn,2 from (26). Let us start by estimating An,2. Note that for any (x, y) ∈ D×D,
φ̄εn(x) and φ̄εn(y) are of order 1

εn
and that Perεn(Ω) is of order one. Thus, it is clear from the

definition of gn,2 in (21) that

An,2 = O

(
1

εd+1
n

)
.

On the other hand, using φ2
εn(x, y) = 1

εd+1
n

φεn(x, y), we obtain that for every x ∈ D,∫
D
g2
n,2(x, y)dy =

∫
D
φ2
εn(x, y)dy − φ̄2

εn(x) + 2θnφn(x)

− 2

∫
D
φεn(x, y)φ̄εn(y)dy +

∫
D
φ̄2
εn(y)dy − θ2

n

=
1

εd+1
n

φ̄εn(x)− φ̄2
εn(x) + 2θnφn(x)

− 2

∫
D
φεn(x, y)φ̄εn(y)dy +

∫
D
φ̄2
εn(y)dy − θ2

n,

(32)

where we are using θn := Perεn(Ω). From this, it follows that

Cn,2 = O

(√
n

εd+2
n

)
.

Finally, upon integration of (32) and direct computations, we obtain

||gn,2||22 =
θn

εd+1
n

− 2

∫
D
φ̄2
εn(y)dy + θ2

n,

which implies that

Bn,2 = O

(
n

ε
(d+1)/2
n

)
.

Thus, from (25) we deduce that

E(|Un,2|p) ≤ Kp max

(
1

n2pε
p(d+1)
n

,
1

npε
p(d+1)/2
n

,
1

n3p/2ε
p(d+2)/2
n

)
,
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where Kp depends on the set Ω. Hence, if 1
n2/(d+1) ≤ εn, we have

(33) E(|Un,2|p) ≤
Kp

npε
p(d+1)/2
n

.

Combining (31) and (33) and using the canonical decomposition (20), we obtain (6).

2.1. Sharpness of the Rate in Theorem 1.1. A very simple argument shows that the rates for
εn that guarantee the almost sure convergence of the graph perimeter to the actual perimeter in
Theorem 1.1 are optimal in terms of scaling, up to logarithmic corrections.

In fact, suppose n2εd+1
n = o(1) and let en denote the random variable that counts the number

of edges that cross in the interface between Ω and its complement. In other words, we define

en := εd+1
n

n∑
i=1

n∑
j=i+1

φεn(xi,xj).

As a consequence, if Ω has finite perimeter then we have

(34) GPerεn,n(Ω) =
2

n(n− 1)εd+1
n

en, E(en) =
n(n− 1)εd+1

n

2
Perεn(Ω).

Note that en takes integer values in the range {0, 1, . . . , N} for N = n(n− 1)/2, so that

E(en) =
N∑
k=1

kpnk pnk := P(en = k).

The fact that pn0 + · · ·+ pnN = 1 implies

E(en) =
N∑
k=1

kpnk ≥
N∑
k=1

pnk = (1− pn0 ).

In particular, from (34) and (18) we deduce that if n2εd+1
n → 0 and Ω has finite perimeter then

(1− pn0 ) ≤ E(en) = o(1).

On the other hand, note that for any given γ > 0 it is true that GPerεn,n(Ω) > γ implies that
en 6= 0. In turn

P (GPerεn(Ω) > γ) ≤ P (en 6= 0) = 1− pn0 = o(1).

We conclude that if n2εd+1
n → 0 then GPerεn,n(Ω) converges in probability to zero. There-

fore, if Ω has a non-zero, finite perimeter then GPerεn,n(Ω) does not converge to σd Per(Ω) in
probability (nor almost surely, either).

3. PROOF OF THEOREM 1.7

The proof of Theorem 1.7 relies on the following lemma, whose proof may be found in Ap-
pendix C.

Lemma 3.1. Asssume that εn → 0 as n → ∞, and that Ω ⊂ D is an open set with smooth
boundary so that dist(Ω, ∂D) > 0. Then

(35) Var(gn,1(X1)) =
Cd Per(Ω)

εn
+O(1),

where Cd is given by (9).
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Now we turn our attention to the proof of Theorem 1.7.

Proof of Theorem 1.7. Note that from (20), (21) and (22) we have√
nεn

4Cd Per(Ω)
(GPern,εn(Ω)− Perεn(Ω)) =

√
εn

nCd Per(Ω)

n∑
i=1

gn,1(xi)+

√
nεn

4Cd Per(Ω)
Un,2.

From the moment estimates (33), we deduce that

(36)
√

nεn
4Cd Per(Ω)

Un,2
P→ 0.

On the other hand, we note that from (35)

std(gn,1(x1))
√
εn√

Cd Per(Ω)
→ 1, as n→∞,

where std(gn,1(x1)) is the standard deviation of gn,1(x1). Lyupanov’s condition which is suffi-
cient to allow us to use the central limit theorem for triangular arrays is easily checked from (2.1).
We deduce that √

εn
nCd Per(Ω)

n∑
i=1

gn,1(Xi)
w−→ N(0, 1).

Combining with (36) and the Slutsky’s theorem, we obtain the desired result. Finally, to obtain
the last statement in the theorem, we note that from the bias estimates in Lemma 1.4,

√
nεn|Perεn(A)− ση Per(A)| = O(n1/2ε5/2

n )

Under the condition (10), we conclude that
√
nεn|Perεn(A) − ση Per(A)| → 0. This implies

(11). �

3.1. Application to Perimeter Testing. Here we prove Proposition 1.8. We assume that Ω ⊆ D
is an open set with smooth boundary such that Ω ⊂ D. Note that under the null hypothesis, if
ln > Zα, then,

(37) Zα < ln ≤
√

nεn
4Cd Per(Ω)

(GPern,εn(Ω)− Perεn(Ω)) ,

where we used that Perεn(Ω) < σd Per(Ω) by Lemma 2.1. Thus, using Theorem 1.7, we deduce
that asymptotically, the type I error of our test is

PH0 (ln > Zα) ≤ P
(√

nεn
4Cd Per(Ω)

(GPern,εn(Ω)− Perεn(Ω)) > Zα

)
≈ P (N(0, 1) > Zα) = α.

Where ≈ arrises because of the difference of the asymptotic distribution and its discrete approxi-
mation.

In order to compute the type II error of our test, suppose that Per(Ω) = ρ′ where ρ′ > ρ. In
that case,

PHA
(ln ≤ Zα) = PHA

(√
nεn

4Cdρ
(σdρ− Pern,εn(Ω)) ≥ −Zα

)
= PHA

(√
nεn

4Cdρ
(Perεn(Ω)− Pern,εn(Ω)) ≥ −Zα +

√
nεn

4Cdρ
(Perεn(Ω)− σdρ)

)
,

(38)
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Now recall that limn→∞ Perεn(Ω) = σd Per(Ω) = σdρ
′ > σdρ. In particular, we deduce that

lim
n→∞

√
nεn

4Cdρ
(Perεn(Ω)− σdρ) = +∞.

Thus, for large enough n,

−Zα +

√
nεn

4Cdρ
(Perεn(Ω)− σdρ) ≥ 1

2

√
nεn

4Cdρ
(σdρ

′ − σdρ).

Hence, for large enough n,

PHA
(ln ≤ Zα) ≤ PHA

(√
nεn

4Cdρ
(Perεn(Ω)− Pern,εn(Ω)) ≥ 1

2

√
nεn

4Cdρ
(σdρ

′ − σdρ).

)
Using the moment estimates from Theorem 1.1, and Markov’s inequality, we deduce that

PHA
(ln ≤ Zα) = O

(
1
√
nεn

)
.

That is, the type II error is of order 1√
nεn

.

APPENDIX A. PROOF OF LEMMA 1.4

Since Ω ⊂⊂ D and Ω has smooth boundary the relative perimeter of Ω with respect to D in
the generalized sense (2) simply corresponds to the usual perimeter of ∂Ω in the sense that

Per(Ω) =

∫
∂Ω

dHd−1 = Hd−1(∂Ω).

Additionally, for all ε ≤ δ := dist(Ω, ∂D) we have that

Perε(Ω) =
2

εd+1

∫
Ω
|Bd(x, ε) ∩ Ωc| dx,

whereBd(x, r) denotes the ball of radius r in Rd centered at x and Ωc denotes the complement of
Ω in all of space. Moreover, since ∂Ω is a compact smooth manifold, we can assume without the
loss of generality ( by taking ε small enough) that for every x ∈ Tε there is a unique point P (x)
in ∂Ω closest to x. Furthermore, we can assume that the map P is smooth. We may further write

Perε(Ω) =
2

εd+1

∫
T−
ε

|Bd(x, ε) ∩ Ωc| dx,

where T−ε is defined in (28). This reformulation makes it natural to write the previous integral as
an iterated integral; the outer integral is taken over the manifold ∂Ω and the inner integral is taken
along the normal line to ∂Ω at an arbitrary point x along the boundary.

To make this idea precise, we first let N(x) denote the outer unit normal to ∂Ω at x ∈ ∂Ω and
then consider the transformation (x, t) ∈ ∂Ω × (0, 1) 7→ x − tεN(x) for all ε sufficiently small.
The Jacobian of this transformation equals εdet(I + tεSx), where Sx denotes the shape operator
(or second fundamental form) of ∂Ω at x, see [13] for instance. For all ε sufficiently small, we
may therefore conclude that

1

ε

∫
T−
ε

|Bd(x, ε)∩Ωc| dx =

∫
∂Ω

(∫ 1

0
|Bd(x− tεN(x), ε) ∩ Ωc| det(I + tεSx) dt

)
dHd−1(x).
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As a consequence, we also have that

(39) Perε(Ω) =
2

εd

∫
∂Ω

(∫ 1

0
|Bd(x− tεN(x), ε) ∩ Ωc|det(I + tεSx) dt

)
dHd−1(x).

With the expression (39) in hand, we may now proceed to establish (8) by expanding Perε(Ω) in
terms of ε and appealing to some elementary computations that show that the first order term in ε
vanishes.

For a fixed x ∈ ∂Ω, we first wish to understand the behavior of the function

gx(ε) :=
1

εd

(∫ 1

0
|Bd(x− tεN(x), ε) ∩ Ωc|det(I + tεSx) dt

)
for ε in a neighborhood of zero. Without loss of generality, we may assume that x = 0, that
N(x) = ed and that around x the boundary ∂Ω coincides with the graph x̂ = (x1, . . . , xd−1) 7→
(x̂, f(x̂)) ∈ Rd of a smooth function f(x̂) that satisfies both f(0) = 0 and ∇f(0) = 0 simul-
taneously. By symmetry of the shape operator Sx, there exists an orthonormal basis for Rd−1

(where we identify Rd−1 with the hyperplane {(x̂, xd) : xd = 0}) consisting of eigenvectors of
the shape operator. We let v1, . . . , vd−1 denote the eigenvectors of Sx and κ1, . . . , κd−1 the corre-
sponding eigenvalues ( also known as principal curvatures). In particular, whenever ‖x̂‖ ≤ ε we
have that

(40) f(x̂) =
1

2

d−1∑
i=1

κi〈x̂, vi〉2 +O(ε3)

where curvatures κi = κi(x) and the O(ε3) error term can be uniformly bounded.
With these reductions in place, we first define u(ŷ) :=

√
ε2 − ‖ŷ‖2 and then let

h(ŷ, t; ε) :=


2u(ŷ) if f(ŷ) + εt < −u(ŷ)

u(ŷ)− εt− f(ŷ) if − u(ŷ) ≤ f(ŷ) + εt ≤ u(ŷ)

0 otherwise.

A direct calculation then shows that

|Bd(x− tεN(x), ε) ∩ Ωc| =
∫
Bd−1(0,ε)

h(ŷ, t; ε) dŷ,(41)

and an application of (40) shows that h(ŷ, t; ε) = 2
√
ε2 − ‖ŷ‖2 only if

‖ŷ‖2 = ε2 −O(ε4) and u(ŷ) = O(ε2).

It therefore follows that∫
Bd−1(0,ε)∩{f(ŷ)+εt<−u(ŷ)}

h(ŷ, t; ε) dŷ ≤ O(ε2)

∫
Bd−1(0,ε)∩{‖ŷ‖≥

√
ε2−O(ε4)}

dŷ = O(εd+3).

We then let Aεt denote the set Aεt := {ŷ ∈ Bd−1(0, ε) : −u(ŷ) ≤ f(ŷ) + εt ≤ u(ŷ)} and use the
previous estimate in (41) to uncover

(42) |Bd(x− tεN(x), ε) ∩ Ωc| =
∫
Bd−1(0,ε)∩Aε

t

(u(ŷ)− εt− f(ŷ)) dŷ +O(εd+3).

We may then note that

det(I + εtSx) = (1 + tεκ1) . . . (1 + tεκd−1) = 1 + tεHx +O(ε2),
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where Hx :=
∑d−1

i=1 κi represents the mean curvature. Using this fact in (42) then yields

gx(ε) =
1

εd

∫ 1

0

(∫
Bd−1(0,ε)∩Aε

t

u(ŷ)− εt− f(ŷ) dŷ

)
(1 + tεHx) dt+O(ε2).

Now let f ε(z) := 1
εf(εz) and define the corresponding subset Cεt of (0, 1)×Bd−1(0, 1) as

Cεt :=
{

(t, z) ∈ (0, 1)×Bd−1(0, 1) : −
√

1− ‖z‖2 ≤ f ε(z) + t ≤
√

1− ‖z‖2
}
,

then make the change of variables ŷ = εz to see that

gx(ε) =

∫
Cε

t

(√
1− ‖z‖2 − t− f ε(z)

)
(1 + tεHx) dzdt+O(ε2).

Recalling (40) shows that

(43) f ε(z) =
ε

2

d−1∑
i=1

κi〈z, vi〉2 +O(ε2),

which then allows us to obtain an expansion of gx(ε) in terms of ε according to the relation

gx(ε) =

∫
Cε

t

(√
1− ‖z‖2 − t

)
dtdz

+ ε

∫
Cε

t

(
tHx(

√
1− ‖z‖2 − t)− 1

2

d−1∑
i=1

κi〈z, vi〉2
)

dtdz +O(ε2).(44)

The bias estimate (8) then directly follows after computing each of these terms individually.
We begin by considering the first term in the expansion, i.e.

I :=

∫
Cε

t

(√
1− ‖z‖2 − t

)
dtdz.

Given ε > 0 and z ∈ Bd−1(0, 1) define c(z) := max{−
√

1− ‖z‖2 − f ε(z), 0} and C(z) :=

min{
√

1− ‖z‖2 − f ε(z), 1}, so that we may easily write

I =

∫
Bd−1(0,1)

(C(z)− c(z))
(√

1− ‖z‖2 − C(z) + c(z)

2

)
dz.

As the set where c(z) 6= 0 has measure at most O(ε2), we easily conclude that

I =

∫
Bd−1(0,1)

C(z)

(√
1− ‖z‖2 − C(z)

2

)
dz +O(ε2).

If C(z) = 1 then
√

1− ‖z‖2 − C(z)
2 = 1

2(1− ‖z‖2) +O(ε2) as well. In any case, it follows that

I =
1

2

∫
Bd−1(0,1)

(1− ‖z‖2) dz +O(ε2) =
σd
2

+O(ε2).(45)
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We now proceed to compute the second term in the expansion

II :=Hx

∫
Cε

t

(
t
√

1− ‖z‖2 − t2
)

dtdz

=Hx

∫
Bd−1(0,1)

C2(z)

(√
1− ‖z‖

2
− C(z)

3

)
dz +O(ε2)

and the third term in the expansion

III :=
1

2

d−1∑
i=1

κi

∫
Cε

t

〈z, vi〉2 dtdz =
1

2

d−1∑
i=1

κi

∫
Bd−1(0,1)

〈z, vi〉2C(z) dz +O(ε2)

in a similar fashion. We always have C(z) =
√

1− ‖z‖2 +O(ε), so that

II =
Hx

6

∫
Bd−1(0,1)

(1− ‖z‖2)3/2 dz +O(ε) =
Hxvol(Sd−2)

6

∫ 1

0
(1− r2)3/2rd−2 dr +O(ε)

(46)

The third term follows similarly by appealing to spherical coordinates, in that we have

III =
1

2

d−1∑
i=1

κi

∫
Bd−1(0,1)

√
1− ‖z‖2〈z, vi〉2 dz +O(ε)

=
Hxvol(Sd−2)

2(d− 1)

∫ 1

0

√
1− r2rd dr +O(ε) = II +O(ε)

thanks to an integration by parts in the final term. We therefore have that I = σd/2 + O(ε2) and
II− III = O(ε), so that gx(ε) = σd/2 +O(ε2) and

Perε(Ω) = 2

∫
∂Ω

gx(ε) dHd−1 = σd Per(Ω) +O(ε2)

as desired.
We may also show that when Ω is a fixed ball, say Ω = Bd(xc,

1
3) for xc ∈ Rd the center point

of D, that the absolute value of the difference between Perε(Ω) and σd Per(Ω) remains bounded
from below by cε2 for c > 0 some positive constant. The proof proceeds similarly to the proof of
the bias estimate above. In particular, this shows that the bound in Lemma 1.4 is optimal in terms
of scaling for general sets with smooth boundary.

APPENDIX B. PROOF OF LEMMA 2.1

The proof follows the same argument used in the proof of Theorem 4.1 in [10] or Theorem
6.2 in [1]. We assume that dist(Ω, ∂D) > 0. Such assumption implies that the perimeter of Ω
with respect to D, that is Per(Ω) defined in (2), is equal to the perimeter of Ω with respect to Rd.
We remark that a slight modification of the argument we present below proves the result in the
general case and hence we omit the details (see for example the proof of Theorem 4.1 in [10]).

First we prove that for any function u : Rd → [0, 1] with u ∈W 1,1(Rd) ∩C∞(Rd) and for all
ε > 0 we have

(47)
∫
Rd

(∫
Rd

1‖x−y‖≤ε

εd+1
|u(y)− u(x)|dy

)p
dx ≤

αp−1
d σd
εp−1

∫
Rd

‖∇u(x)‖dx,
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Inequality (47) follows from∫
Rd

(∫
Rd

1‖x−y‖≤ε

εd+1
|u(y)− u(x)|dy

)p
dx =

1

εp

∫
Rd

(∫
Bd(0,1)

|u(x+ εh)− u(x)|dh

)p
dx

≤
αp−1
d

εp

∫
Rd

∫
Bd(0,1)

|u(x+ εh)− u(x)|pdhdx

≤
αp−1
d

εp

∫
Rd

∫
Bd(0,1)

|u(x+ εh)− u(x)|dhdx

=
αp−1
d

εp−1

∫
Rd

∫
Bd(0,1)

∥∥∥∥∫ 1

0
∇u(x+ tεh) · hdt

∥∥∥∥dhdx

≤
αp−1
d

εp−1

∫
Rd

∫
Bd(0,1)

∫ 1

0
‖∇u(x+ tεh) · h‖dt dhdx

=
αp−1
d

εp−1

∫ 1

0

∫
Bd(0,1)

∫
Rd

‖∇u(x) · h‖dx dhdt

=
αp−1
d

εp−1

∫ 1

0

∫
Rd

‖∇u(x)‖
∫
Bd(0,1)

∥∥∥∥ ∇u(x)

‖∇u(x)‖
· h
∥∥∥∥dhdx dt

=
αp−1
d σd
εp−1

∫
Rd

‖∇u(x)‖dx

where in the first equation we used the change of variables h = x−y
ε , in the first inequality we

used Jensen’s inequality and in the second inequality the fact that u takes values in [0, 1].
Now, for any set Ω ⊆ D as in the statement, we can find a sequence of functions {uk}k∈N with

uk : Rd → [0, 1] , uk ∈W 1,1(Rd) ∩ C∞(Rd) and such that

(48) uk
L1(Rd)−→ 1Ω, lim

k→∞

∫
Rd

‖∇uk(x)‖dx = Per(Ω).

Such sequence can be obtained for example with the aid of standard mollifiers (see Theorem 13.9
in [22]). It follows from (47) and from (48) that∫

Rd

(∫
Rd

1‖x−y‖≤ε

εd+1
|1Ω(y)− 1Ω(x)|dy

)p
dx ≤

αp−1
d σd
εp−1

Per(Ω).

Finally, notice that∫
D
φ̄pε(x)dx =

∫
Rd

(∫
Rd

1‖x−y‖≤ε

εd+1
|1Ω(y)− 1Ω(x)|dy

)p
dx ≤

αp−1
d σd
εp−1

Per(Ω).

APPENDIX C. PROOF OF LEMMA 3.1

The proof is based on similar computations to the ones in Appendix A and thus we simply
highlight the main ideas. First of all note that

Var (gn,1(X1)) =

∫
D
φ̄2
εn(x)dx− (Perεn(Ω))2 .
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Since Perεn(Ω) = O(1), our task reduces to computing the integral in the above expression. It
follows from (29) that for all εn small enough (so that Tεn ⊆ D),∫

D
φ̄2
εn(x)dx =

1

ε
2(d+1)
n

∫
T−
εn

|Bd(x, εn) ∩ Ωc|2dx+
1

ε
2(d+1)
n

∫
T+
εn

|Bd(x, εn) ∩ Ω|2dx.

We compute the first of the integrals from the above expression. As in the proof of Lemma 1.4,
we write

1

ε
2(d+1)
n

∫
T−
εn

|Bd(x, εn) ∩ Ωc|2 dx

=
1

εn

∫
∂Ω

(
1

ε2d
n

∫ 1

0
|Bd(x− tεnN(x), εn) ∩ Ωc|2 det(I + tεnSx) dt

)
dHd−1(x).

For x ∈ ∂Ω we study the expression

hεn(x) :=

∫ 1

0

|Bd(x− tεnN(x), εn) ∩ Ωc|2

ε2d
n

det(I + tεnSx)dt.

Note that det(I + tεnSx) = (1 + tεnκ1) · · · (1 + tεnκd−1) = 1 + O(εn), where κ1, . . . , κd−1

are the principal curvatures (eigenvalues of the shape operator Sx). Hence,

hεn(x) =

∫ 1

0

|Bd(x− tεnN(x), εn) ∩ Ωc|2

ε2d
n

dt+O(εn).

Without loss of generality, we may assume that x = 0, that N(x) = ed and that around x the
boundary ∂Ω coincides with the graph x̂ = (x1, . . . , xd−1) 7→ (x̂, f(x̂)) ∈ Rd of a smooth
function f(x̂) that satisfies both f(0) = 0 and ∇f(0) = 0 simultaneously, and we denote by
v1, . . . , vd−1 the eigenvectors of Sx (just as in Appendix A). Then, f : Bd−1(0, εn)→ R, satisfies
f(x̂) =

∑d−1
i=1 κi 〈x̂, vi〉

2 +O(ε3
n).

Now for fixed t ∈ [0, 1] we define H1−t to be the hyperplane

H1−t := {x = (x̂, xd) : xd ≥ 1− t} ,
and we let

At := |Bd(0, 1) ∩H1−t|.
With these definitions we can write

|Bd(x− tεnN(x), εn) ∩ Ωc| = εdnAt +

d−1∑
i=1

κi

∫
Bd−1(0,εn

√
1−t)
〈x̂, vi〉2 dx̂+O(εd+2

n )

= εdnAt +

∑d−1
i=1 κi
d− 1

∫
Bd−1(0,εn

√
1−t)
‖x̂‖2dx̂+O(εd+2

n )

= εdnAt +O(εd+1
n ),

(49)

where the second equality holds due to symmetry, and where the last equality follows after com-
puting

∫
Bd−1(0,εn

√
1−t) ‖x̂‖

2dx̂ using polar coordinates. From the above, it follows that

|Bd(x− tεnN(x), εn) ∩ Ωc|2

ε2d
n

= A2
t +O(εn).

We conclude that

hεn(x) =

∫ 1

0
A2
tdt+O(εn).
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Therefore,

1

ε
2(d+1)
n

∫
T−
εn

|Bd(x, εn) ∩ Ωc|2 dx =
1

εn

∫ 1

0
A2
tdtPer(Ω) +O(1).

Analogously, we can obtain a similar expression for 1

ε
2(d+1)
n

∫
T+
εn
|Bd(x, εn) ∩ Ω|2 dx and from

this we deduce (35).
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