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General themes

We look at two papers, arXiv:2006.02509v1 and arXiv:2005.09669v2,
published simultaneously in Neurips this year, by Sinho Chewi et al.
What is in the two papers? (non-exhaustive, especially not for
arXiv:2005.09669v2)

I measuring the rate of convergence of a KL gradient �ow according
to χ2 divergence allows for exponential convergence under weaker
assumptions

I dually, a χ2 gradient �ow converges exponentially quickly, according
to KL, under rather general assumptions

I Stein Variational Gradient Flow (as seen in Wony's talk) can be
viewed as a χ2 gradient �ow in the �kernelized Benamou-Brenier�
sense

I this might suggest some interesting numerical procedures, selection
of favorable kernels, etc

But there are also some results one might expect to see that are
conspicuously absent.



Review of KL and χ2 divergences

Let µ, π ∈ P(Rd). Recall the KL divergence from µ to π, with µ� π:

KL(µ | π) :=

∫
Rd

dµ

dπ
log

dµ

dπ
dπ.

Whereas, the χ2 divergence from µ to π, with µ� π is de�ned by

χ2(µ | π) := varπ
dµ

dπ
=

∫
Rd

(
dµ

dπ

)2

dπ − 1.

A standard fact is that KL(µ | π) ≤ χ2(µ | π). (See Tsybakov
nonparametric statistics book) Both are examples of Cziszar divergences
aka internal energies, namely functionals of the form

Fπ(µ) =

∫
f

(
dµ

dπ

)
dπ.



Review of some Wasserstein gradient �ow facts

Recall also the Benamou-Brenier formulation of the 2-Wasserstein
distance:

W 2

2
(µ, ν) = inf

(ρ,ν)

{∫
Rd
‖vt‖2L2(ρt)dt : ρ0 = µ, ρ1 = ν, ∂tρt + div(ρv) = 0

}
If F : P2(Rd)→ R is some �reasonable� functional, then this presentation
of W2 allows us to write down the gradient of F , namely,

gradW2
F (ρ) = −div

(
ρ∇δF

δρ

)
so that the gradient �ow of F satis�es ∂tρt = div

(
ρ∇ δF

δρ

)
. Of classical

interest is the case where F (ρ) = KL(ρ | π) where π = e−V dVol ; in this
case the gradient �ow equation is the Fokker-Planck equation
∂tρt = div(ρ∇V ) + ∆ρ.



Review of some Wasserstein gradient �ow facts

If F : P2(Rd)→ R is some �reasonable� functional, and µt is the
Wasserstein gradient �ow of F , then we have the �entropy production�
formula

d

dt
F (µt) = −

∫
Rd
|∇ δF

δµt
|2dµt .

For instance, when F is an internal energy of the form
∫
Rd f

(
dµt
dπ

)
dµt ,

we have that δF
δµt

= f ′(dµt
dπ ). For KL(· | π), this means that along a KL

gradient �ow, we have that

d

dt
KL(µt | π) = −

∫
|∇ log

dµt
dπ
|2dµt = −4

∫
|∇
√

dµt
dπ
|2dπ.

Similarly for χ2(· | π), we have that

d

dt
χ2(µt | π) = −

∫
|∇dµt

dπ
|2dµt .



Review of some functional inequalities
Let π ∈ P2(Rd). We say π satis�es a:

I Poincaré inequality provides that for all test functions f ,

varπ[f ] := ‖f − Eπ[f ]‖2L2(π) ≤ CP‖∇f ‖2L2(π)
I log-Sobolev inequality provided that for all test functions f ,∫

Rd
f 2 ln(f 2)dπ−

(∫
Rd

f 2dπ

)
ln

(∫
Rd

f 2dπ

)
≤ 2CLS

∫
Rd
|∇f |2dπ.

If we put f 2 = dµ
dπ , the latter reduces to

KL(µ | π) ≤ 2CLS

∫
Rd
|∇
√

dµ

dπ
|2dπ.

Since
∫
Rd |∇

√
dµ
dπ |

2dπ = 1

4

∫
|∇ log dµ

dπ |
2dµ, this actually means that

∂tKL(µt | π) ≤ −(CLS/2)KL(µt | π)

Which, by Gronwall's inequality, implies

KL(µt | π) ≤ e−2t/CLSKL(µ0 | π).



KL gradient �ow according to χ2 divergence

Now, we compute formally as follows. (Throughout, µ and π are a.c.
with respect to the Lebesgue measure on Rd . Let µ(x) denote the
density of µ wrt Lebesgue and similarly for π(x). )
Given that (µt)t≥0 is the W2 gradient �ow of KL(· | π), we have that

∂µt(x) = div(µt(x)∇ ln dµt
dπ ). So,

1

2
∂tχ

2(µt | π) =
1

2

∫
Rd
∂t

(
µt(x)

π(x)

)2

π(x)dx =

∫
Rd

µt(x)

π(x)
∂tµtdx

=

∫
Rd

µt(x)

π(x)
div

(
µt∇ ln

dµt
dπ

)
dx = −

∫
Rd

〈
∇µt(x)

π(x)
, µt(x)∇ ln

µt(x)

π(x)

〉
dx

= −
∫
|∇dµt

dπ
|2dπ

where we have used the fact that ∇ ln µt(x)
π(x) =

(
µt(x)
π(x)

)−1
∇µt(x)

π(x) .



KL gradient �ow according to χ2 divergence

Now, if π satis�es a Poincaré inequality, we have that

CP
∫
|∇dµt

dπ |
2dπ ≥ varπ

(
dµt
dπ

)
. But varπ

(
dµt
dπ

)
is none other than

χ2(µt | π), so we actually have

1

2
∂tχ

2(µt | π) ≤ − 1

CP
χ2(µt | π).

Therefore, Gronwall's inequality implies that

χ2(µt | π) ≤ e−2t/CPχ2(µ0 | π).

In other words, if we measure how close µt is to equilibrium using χ2

rather than KL, we only need π to satisfy a Poincaré inequality rather
than a log-Sobolev inequality.



χ2 gradient �ow according to KL divergence
What happens if we switch things around? Well, the preceding
calculation looks very similar, but gradient vectors of KL and χ2 trade
places. Indeed,

1

2
∂tKL(µt | π) =

1

2

∫
Rd
∂t

(
µt(x)

π(x)
ln
µt(x)

π(x)

)
π(x)dx =

∫
Rd
∇ ln

µt(x)

π(x)
∂tµtdx

=

∫
Rd

µt(x)

π(x)
div

(
µt∇

dµt
dπ

)
dx = −

∫
Rd

〈
∇ ln

µt(x)

π(x)
, µt(x)∇µt(x)

π(x)

〉
dx

= −
∫
|∇dµt

dπ
|2dπ.

Consequently,

1

2
∂tKL(µt | π) = −

∫
|∇dµt

dπ
|2dπ. ≤ − 1

CP
χ2(µt | π) ≤ − 1

CP
KL(µt | π)

So here also, Gronwall implies that KL(µt | π) ≤ e−2/CPKL(µ0, π).
(This type of dualization works in great generality, as observed by
Matthes-McCann-Savaré.)



A χ2 Lojasiewicz inequality

Suppose that π satis�es a Poincaré inequality with constant CP > 0.
Then ∀µ� π,

χ2(µ | π)3/2 ≤ 9CP
4

∫
|∇dµ

dπ
|2dµ.

Proof.

First note that∫
|∇dµ

dπ
|2dµ =

∫
|∇dµ

dπ
|2 dµ
dπ

dπ =
4

9

∫
|∇
(
dµ

dπ

)3/2

|2dπ

(by Poincaré) ≥ 4

9CP
varπ

((
dµ

dπ

)3/2
)
.



A χ2 Lojasiewicz inequality
(cont'd)

Proof.

It then su�ces to argue that χ2(µ | π)3/2 ≤ varπ

((
dµ
dπ

)3/2)
. This is

essentially just Jensen's inequality. Explicitly:

χ2(µ | π) = varπ

(
dµ

dπ

)
≤ Eπ


dµ

dπ
− Eπ

[(
dµ

dπ

)3/2
]2/32


(x2/3 is Hölder cts) ≤ Eπ

∣∣∣∣∣
(
dµ

dπ

)3/2

− Eπ

[(
dµ

dπ

)3/2
]∣∣∣∣∣

4/3


(Jensen) ≤ Eπ

∣∣∣∣∣
(
dµ

dπ

)3/2

− Eπ

[(
dµ

dπ

)3/2
]∣∣∣∣∣

2
2/3

=

(
varπ

((
dµ

dπ

)3/2
))2/3

.



Convergence of χ2 gradient �ow
Suppose that π satis�es a Poincaré inequality with constant CP . Let
χ2(µ0 | π) <∞ and let (µt)t≥0 be the χ2 Wasserstein gradient �ow
starting from µ0. Then,

χ2(µt | π) ≤ χ2(µ0 | π) ∧
(
9CP
8t

)2

.

Proof.

�Entropy production� implies that ∂tχ
2(µt | π) = −4

∫
|∇dµt

dπ |
2dµt .

With the Lojasiewicz inequality, this implies

∂tχ
2(µt | π) ≤ − 16

9CP
χ2(µt | π)3/2.

This implies that

χ2(µt | π) ≤ χ2(µ0 | π)[
1 + 8t

√
χ2(µ0 | π)/(9CP)

]2 .
The claim follows.



Convergence of χ2 gradient �ow (cont'd)

Much like in the case of the KL divergence, if we further assume that π
satis�es a log-Sobolev inequality (or furthermore is log-concave) then in
fact we have exponential rather than 1/t2 rate of convergence. More
precisely,

χ2(µt | π) ≤
(
χ2(µ0 | π) ∧ 2

)
e−t/9CLS t ≥ 7CLS .

(This is Theorem 3 in �SVGD as a kernelized Wasserstein...�). Proof is
just slightly too involved for this talk.



What about SVGD???

Let's actually get to the connection with Stein Variational Gradient
Descent.
Fix a kernel K : Rd × Rd → R. De�ne the induced operator K by

Kµ : L2(µ)→ L2(µ)

Kµf (x) :=

∫
Rd

K (x , y)f (y)dµ(y).

A �cheap� gloss on the continuum formulation of SVGD is that we simply
�kernelize the continuity equation� for a gradient �ow by inserting Kµ like
so:

∂tµt = div

µt Kµ︸︷︷︸
↑

∇ ln
dµt
dπ

 .

(See Duncan et al. Lemma 9)



SVGD as χ2 gradient �ow

Compute as follows:

Kµt∇ ln

(
dµt
dπ

)
(x) =

∫
K (x , y)∇ ln

(
dµt
dπ

)
dµt(y) =

∫
K (x , y)∇dµt

dπ
dπ

= Kπ∇
dµt
dπ

(x).

Consequently

∂tµt = div

(
µtKµt∇ ln

dµt
dπ

)
= div

(
µtKπ∇

dµt
dπ

)
.

Since 2∇ dµt
dπ corresponds to the Wasserstein gradient vector for the χ2

divergence, we conclude that SVGD is recast (up to a constant factor) as
a �kernelized Wasserstein gradient �ow� of the χ2 divergence, but with
constant kernel operator Kπ.



SVGD as χ2 gradient �ow cont'd

Cool! Where next?
Chewi et al. then point out that if we (daftly) pick Kπ = id , the
preceding analysis of (vanilla) Wasserstein GFs with χ2(· | π) applies.
Either this amounts to saying that χ2 gradient �ow is an underexploited
way to sample from π, or this is an instance of mathiness to impress the
Neurips reviewers (plausibly both).
However, they then sketch the following approach. In general, we have
the �entropy production� formula for the KL divergence along the χ2 GF:

∂tKL(µt | π) = −Eπ〈∇
dµt
dπ

,Kπ∇
dµt
dπ
〉.

If it were the case that Kπ had a spectral gap, this would immediately
imply an exponential rate of convergence in KL. However, they note that
Kπ does not have a spectral gap when e.g. K ∈ L2(π ⊗ π) with
π ∝ e−V , and so reject this strategy. (But is this another opening for
singular kernels SVGD??)



�Laplacian adjusted Wasserstein gradient descent�

Instead the authors go by another route. If we can select K carefully so
that Eπ〈∇dµt

dπ ,Kπ∇
dµt
dπ 〉 ≥ C · KL(µt | π), then we still have that

∂tKL(µt | π) ≤ −C · KL(µt | π)

and so Gronwall's inequality still allows for exponential rate of
convergence.
This turns out to be achievable with the clever choice of Kπ = L−1
(where L = −∆ + 〈∇V ,∇·〉). Indeed, since (this is the integration by
parts formula from Markov semigroup theory)

Eπ〈∇f ,∇g〉 = E[f Lg ]

we see that

Eπ〈∇
dµt
dπ

,∇L−1 dµt
dπ
〉 = Eπ

[
dµt
dπ
LL−1 dµt

dπ

]
= Eπ

[(
dµt
dπ

)2
]
.



�Laplacian adjusted Wasserstein gradient descent�
Thus, by choosing Kπ = L−1, we actually have that
Eπ〈∇dµt

dπ ,∇Kπ
dµt
dπ 〉 = χ2(µt | π). Thus,

∂tKL(µt | π) = −χ2(µt | π) ≤ −KL(µt | π)

as desired.
Can we implement this? Chewi et al. propose the following. Compute
that

Kπ∇
dµt
dπ

(x) =

∫
K (x , y)∇dµt

dπ
(y)dπ(y)

=

∫
∇1K (x , y)

dµt
dπ

(y)dπ(y) =

∫
∇1K (x , y)dµt(y)

Plug this into the GF equation ∂µt = div
(
µtKπ∇ dµt

dπ

)
; then, replace µt

with an empirical measure and the time derivative with a �nite di�erence,
for

X
[i ]
t+1
← X

[i ]
t −

h

N

N∑
j=1

∇1K (X
[i ]
t ,X

[j]
t ).



�Laplacian adjusted Wasserstein gradient descent�

It then remains only to extract a kernel function K (x , y) from the desired
kernel operator Kπ = L−1. For �nice� potential V , one can perform
spectral decomposition and �just� write down

K (x , y) =
∞∑
i=1

φi (x)φi (y)

λi

where (λi , φi ) is the ith eigenvalue-eigenfunction pair for L. Therefore, if
we get the spectral decomposition of L from an oracle (!) and handwave
on the discretization error for our numerical scheme, we have a gradient
descent procedure that converges exponentially in KL to π. Moreover,
the rate is independent of the spectral gap of V (!!) � this comes directly
from Gronwall and the fact that ∂tKL(µt | π) ≤ −KL(µt | π).
Obviously a number of implementation details are missing but there are
some compelling ideas here.


