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Calculus on graphs

Let X be the set of n vertices and W a n × n symmetric matrix with
non-negative components. Let d(x) =

∑
y∈X wxy be the degree of x .

Let `2(X ) denote the space of ‘square summable functions’
u : X → R with respect to the inner product

(u, v)`2(X ) =
∑
x∈X

u(x)v(x).

vector field is a function V : X 2 → R satisfying V (x , y) = −V (y , x).
The inner product between vector fields V1,V2 is

(V1,V2)`2(X 2) =
1

2

∑
x ,y∈X

wxyV1(x , y)V2(x , y).
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Calculus on graphs

The gradient of a function u ∈ `2(X ) is

∇u(x , y) = u(y)− u(x)

The divergence of a vector field is

divV (x) =
∑
y∈X

wxyV (x , y).

Then we have the divergence formula

(∇u,V )`2(X 2) = −(u, divV )`2(X )
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Proof of the divergence formula

(∇u,V )`2(X 2) =
1

2

∑
x ,y∈X

wxy (u(y)− u(x))V (x , y)

=
1

2

∑
x ,y∈X

wxyu(y)V (x , y)− 1

2

∑
x ,y∈X

Wxyu(x)V (x , y)

=
1

2

∑
x ,y∈X

wxyu(x)V (y , x)− 1

2

∑
x ,y∈X

Wxyu(x)V (x , y)

= −
∑

x ,y∈X
wxyu(x)V (x , y) = −(u, divV )`2(X )
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Graph Laplacian

We define the graph Laplacian L by

Lu(x) = div(∇u) =
∑
y∈X

wxy (u(y)− u(x)).

Note the connection to the mean value property by

Lu(x) =
∑
y∈X

wxy (u(y)− u(x)) =
∑
y∈X

wxyu(y)− d(x)u(x).

By the divergence formula we see that L is self-adjoint

(Lu, v)`2(X ) = −(∇u,∇v)`2(X 2) = (u,Lv)`2(X )

and that it is connected to the graph Dirichlet energy

(−Lu, u)`2(X ) = (∇u,∇u)`2(X 2) =: E(u) ≥ 0.
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The maximum principle

Lemma 1

Let u ∈ `2(X ) satisfying Lu(x) ≥ 0 for all x ∈ X \ Γ. If the graph (X ,W )
is connected to Γ, then

max
x∈X

u(x) = max
x∈X∩Γ

u(x).

If maximum occurs at x0, mean value property implies

u(x0) ≤ 1

d(x0)

∑
y∈X

wx0yu(y) ≤ 1

d(x0)

∑
y∈X

wx0yu(x0) = u(x0).

Thus if wx0y > 0 then
u(x0) = u(y).

By connectedness, we can find a connected ‘path’ reaching the
boundary.

Sangmin Park (CNA Working Group, CMU) Graph Laplacians and their continuum limit October 6, 2020 7 / 30



Lemma 2

Let u ∈ `2(X ) such that Lu(x) > 0 for all x ∈ X \ Γ. Then

max
x∈X

u(x) = max
x∈X∩Γ

u(x).

Suppose x0 ∈ X such that u(x0) = maxx∈X u(x).

Then u(x0) ≥ u(y) for each y ∈ X thus

Lu(x0) =
∑
y∈X

wxy (u(y)− u(x0)) ≤ 0

which means x0 ∈ Γ.
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Setting: Random geometric graphs

U ⊂ Rd is an open connected bounded domain

ρ : U → [0,∞) a continuous probability density function, satisfying

α ≤ ρ(x) ≤ α−1

for some α > 0.

X1, · · · ,Xn a sequence of i .i .d r.v distributed according to ρ.

X = {X1, · · · ,Xn} the set of vertices

η : [0,∞)→ [0,∞) smooth and nonincreasing, supported on [0,1].

ηε(t) = 1
εd
η( t

η ).

ση =
∫
Rd |z1|2η(|z |) dz could be interpreted as surface tension
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Setting: Random geometric graphs

The weight is given by wxy = ηε(|x − y |).
The inner product between functions is given by

(u, v)`2(X ) =
1

n

∑
x∈X

u(x)v(x)

The inner product between vector fields is given by

(V ,W )`2(X 2) =
1

σηn2

∑
x ,y∈X

ηε(|x − y |)V (x , y)W (x , y).

The gradient ∇n,εu and divergence divn,ε V are

∇n,εu =
1

ε
(u(y)− u(x)), divn,ε V =

2

σηnε

∑
y∈X

ηε(|x − y |)V (x , y).
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Unnormalized graph Laplacian

Definition 3 (Unnormalized graph Laplacian)

The unnormalized graph Laplacian is

Ln,εu(x) =
2

σηnε2

∑
y∈X

ηε(|x − y |)(u(y)− u(x)).

Its corresponding nonlocal operator is

Lεu(x) =
2

σηε2

∫
U
ηε(|x − y |)(u(y)− u(x))ρ(y) dy

and the corresponding local operator is

∆ρu = ρ−1 div(ρ2∇u) = ρ∆u + 2∇ρ · ∇u.
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Symmetric normalized graph Laplacian

Definition 4 (Symmetric normalized graph Laplacian)

Let D be the diagonal matrix with entries Dii = d(xi ). We define the
symmetric normalized graph Laplacian by

N = D−
1
2Ln,εD−

1
2 .

Its continuum (local) counterpart is the operator

u 7→ 1

ρ
3
2

div

(
ρ2∇

(
u
√
ρ

))
.

This follows from the unnormalized case as

Nu(x) = 1√
d(x)
Ln,ε

(
u√
d(x)

)
[3] and as ε→ 0

Ed(x) =

∫
U
ηε(|x − y |)ρ(y) dy → ρ(x)

∫
η(|z |) dz .
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Basic concentration inequalities

Theorem 5 (Bernstein’s Inequality)

Let X1, · · · ,Xn be a sequence of i .i .d . real valued r.v. with
E[X1] = µ <∞, and σ2 = Var(Xi ) <∞. Suppose |X − µ| ≤ b almost
surely. Letting Sn = 1

n

∑n
i=1 Xi , we have for each t > 0

P(Sn − µ ≥ t) ≤ exp

(
− nt2

2(σ2 + 1
3bt)

)

Under the same assumptions, Hoeffding’s inequality states

P(Sn − µ ≥ t) ≤ exp

(
− nt2

2b2

)
For Graph Laplacians, the variance is usually small, so Bernstein’s
inequality is preferred
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Consistency: discrete to nonlocal

Lemma 6 (Discrete to nonlocal)

Let u : U → R be Lipschitz continuous, and ε > 0. Then for any
0 < λ ≤ ε−1

max
x∈X
|Ln,εu(x)− Lεu(x)| ≤ CLip(u)λ

with probability at least 1− C exp(−cnεd+2λ2 + log(n)).

Recall

Ln,εu(x) =
2

σηnε2

∑
y∈X

ηε(|x − y |)(u(y)− u(x))

and

Lεu(x) =
2

σηε2

∫
U
ηε(|x − y |)(u(y)− u(x))ρ(y) dy .
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Consistency: discrete to nonlocal

The proof is a direct application of Bernstein’s inequality. We first
compute our µ, b, σ2

Fix x ∈ U and let Yi = ηε(|Xi − x |)(u(Xi )− u(x)) such that

Ln,εu(x) =
2

σηε2

1

n

n∑
i=1

Yi .

Then our µ = E[Yi ] is∫
U
ηε(|y − x |)(u(y)− u(x))ρ(y)dy
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Consistency: discrete to nonlocal

Our b is

|Yi | = ηε(|Xi − x |)|u(Xi )− u(x)| ≤ ε−d‖η‖∞Lip(u)ε = Cε1−dLip(u)

Finally our σ2 satisfies

Var(Yi ) ≤ E[Y 2
i ] =

∫
B(x ,ε)∩U

ηε(|x − y |)2(u(y)− u(x))2ρ(y) dy

≤ ‖ρ‖∞Lip(u)2ε2

∫
B(x ,ε)∩U

ε−2dη(ε−1|x − y |)2 dy

≤ C Lip(u)2ε2ε−d
∫
B(0,1)

η(|z |)2 dz ≤ C Lip(u)2ε2−d

Thus bt ≤ Cσ2 when t ≤ C Lip(u)ε
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Consistency: discrete to nonlocal

By Bernstein’s inequality, if bt ≤ Cσ2

P

(
|1
n

n∑
i=1

Yi − E[Y1]| ≥ t

)
= P

(∣∣∣∣∣ 2

σηε2

1

n

n∑
i=1

Yi −
2E[Y1]

σηε2

∣∣∣∣∣ ≥ 2t

σηε2

)
≤ 2 exp

(
−c Lip(u)−2nεd−2t2

)
Choose t =

ση
2 Lip(u)ε2λ for λ ≤ ε−1

Finally, condition on Xi = x then the union bound gives

P
(

max
x∈X
|Ln,εu(x)− Lεu(x)| ≥ C Lip(u)λ

)
≤ 2 exp(−cnεd+2λ2+log n)

The above bound is meaningful when εd+2 � n−1
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Consistency: nonlocal to local

Lemma 7 (Consistency: nonlocal to local)

Let ρ ∈ C 2(U). Then there exists C > 0 such that for all u ∈ C 3(U) and
x ∈ U with dist(x , ∂U) ≥ ε we have

|Lεu(x)−∆ρu(x)| ≤ C‖u‖C3(U)ε.

Extension of the consistency up to the boundary can be found in
Calder, Slepcěv, and Thorpe’20.[2]
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Consistency: nonlocal to local

B(x , ε) ∩ U = B(x , ε) as dist(x , ∂U) ≥ ε. Changing variable to
z = x−y

ε gives

Lεu(x) =
2

σηε2

∫
B(0,1)

η(|z |)(u(x + zε)− u(x))ρ(x + zε) dz

Let β := ‖u‖C3(U). Taylor expanding, we have

u(x + zε)− u(x) = ∇u(x) · zε+
ε2

2
zT∇2u(x)z + O(βε3)

ρ(x + zε) = ρ(x) +∇ρ(x) + O(ε2)

Plugging in, we have

Lεu(x) =
2

ση

∫
B(0,1)

η(|z |)
(
ρ(x)∇u(x) · zε−1 +

1

2
ρ(x)zT∇2u(x)z

+(∇u(x) · z)(∇ρ(x) · z) dz) + O(βε).
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Consistency: nonlocal to local

z 7→ η(|z |)ρ(x)∇u(x) · zε−1 is odd, so its integral vanishes. Hence

Lεu(x) =
2

ση

∫
B(0,1)

η(|z |)
(

1

2
ρ(x)zT∇2u(x)z

+ (∇u(x) · z)(∇ρ(x) · z) dz) + O(βε) =: I + J + O(βε)

By symmetry,
∫
B(0,1) η(|z |)zizj dz = 0 for i 6= j . Thus

I =
1

ση
ρ(x)

d∑
i ,j=1

uxixj (x)

∫
B(0,1)

η(|z |)zizj dz

=
1

ση
ρ(x)

d∑
i=1

uxixi (x)

∫
B(0,1)

η(|z |)z2
i dz = ρ(x)∆u(x).
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Consistency: nonlocal to local

Similarly

J =
2

ση
ρ(x)

d∑
i=1

uxi (x)ρxi (x)

∫
B(0,1)

η(|z |)z2
i dz = 2∇ρ(x) · ∇u(x).

Finally, by product rule

Lεu(x) = ρ(x)∆u(x) + 2∇ρ(x) · ∇u(x) + O(βε)

= ρ−1 div(ρ2(x)∇u(x)) + O(ε‖u‖C3(U))

Theorem 8 (Consistency of graph Laplacian)

Let u ∈ C 3(U), ρ ∈ C 2(U). Then there exists C > 0 such that

max
x∈X
|Ln,εu(x)−∆ρu(x)| ≤ C (λ+ ε)‖u‖C3(U)

with probability at least 1− C exp(−cnεd+2λ2 + log(n)).
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Continuum limit of the solution to (DBP)

Let g : U → R be some Lipschitz function. We define the discrete
boundary value problem

(DBP) {
Ln,εu(x) = 0 if x ∈ X \ ∂εU

u(x) = g(x) if x ∈ X ∩ ∂εU
(1)

(CBP) {
∆ρu(x) = 0 if x ∈ U

u(x) = g(x) if x ∈ ∂U
(2)
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Continuum limit of solutions to (DBP)

Theorem 9 (Continuum limit of solutions to (DBP))

Let ε ∈ (0, 1). Suppose un,ε ∈ `2(X ), u ∈ C 3(U) are solutions to (DBP)
and (CBP) respectively. Then for any λ ∈ (0, 1]

max
x∈X
|un,ε(x)− u(x)| ≤ C‖u‖C3(U)(λ+ ε) (3)

with probability at least 1− C exp(−cnεd+2λ2 + log(n)).
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Continuum limit of solutions to (DBP)

Let φ ∈ C 3(U) be the solution to{
−∆ρφ = 1 in U

φ = 0 on ∂U
(4)

φ ≥ 0, as at its minimum ∆ρφ(x) = ρ−1 div(ρ2∇φ(x)) ≥ 0.

Goal is to show that |un,ε(x)− u(x)| ≤ Kφ(x) for

K = 3C1‖u‖C3(U)(λ+ ε)
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Continuum limit of the solution to (DBP)

Recall from the consistency results, that there exists some C1 such that

max
x∈X\∂εU|

|Ln,εφ(x) + 1| ≤ C1(λ+ ε) (5)

and
max

x∈X\∂εU
|Ln,εu(x)| ≤ C1‖u‖C3(U)(λ+ ε) (6)

Trivial case: if C1(λ+ ε) ≥ 1
2 then by the maximum principle

|un,ε(x)− u(x)| ≤ 2‖g‖∞ ≤ 4C1(λ+ ε)‖u‖C3(U)
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Continuum limit of the solution to (DBP)

Main case: suppose C1(λ+ ε) ≤ 1
2 . Then Ln,εφ ≤ −1

2 .

Let w = u − un,ε − Kφ. Then on X \ ∂εU

Ln,εw(x) = Ln,εu(x)− Ln,εun,ε(x)− KLn,εφ(x)

≥ K

2
− C1‖u‖C3(U)(λ+ ε) > 0

if
K = 3C1‖u‖C3(U)(λ+ ε).

Observe that for x ∈ X ∩ ∂εU

|un,ε(x)− u(x)| ≤ Lip(g)ε ≤ ‖u‖C3(U)ε

So, on the boundary w ≤ −Kφ+ ‖u‖C3(U)ε ≤ ‖u‖C3(U)ε
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Continuum limit of the solution to (DBP)

The maximum principle applied to w we have w(x) ≤ ‖u‖C3(U)ε on
X . Thus ∃C > 0 such that

u(x)− un,ε(x) ≤ ‖u‖C3(U)ε+ Kφ(x)

= ‖u‖C3(U)ε+ 2C1‖φ‖∞‖u‖C3(U)(λ+ ε)

=: C‖u‖C3(U)(λ+ ε)

The same argument could be applied to w = un,ε − u − Kφ to get

un,ε(x)− u(x) ≤ C‖u‖C3(U)(λ+ ε)
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Connection to the graph Dirichlet energy

Theorem 10

Let E(u) = (∇u,∇u)`2(X 2) and A = {u ∈ `2(X ) : u(x) = g(x) on Γ}.
Suppose u ∈ A satisfies

E(u) = min
w∈A
E(w).

Then u solves (DBP).

Let u ∈ A and v ∈ `2(X ) such that v = 0 on Γ. Then

0 =
d

dt

∣∣∣∣
t=0

E(u + tv) =
d

dt

∣∣∣∣
t=0

(−L(u + tv), u + tv)`2(X )

=
d

dt

∣∣∣∣
t=0

(
(−Lu, u) + t(−Lu, v) + t(u, 0Lv) + t2(−Lv , v)

)
= (−Lu, v) + (u,−Lv) = 2(−Lu, v).
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Conclusion

Thank you!
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