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Utility Maximization Trading Two Futures with Transaction Costs∗

Maxim Bichuch† and Steven Shreve‡

Abstract. An agent invests in two types of futures contracts, whose prices are possibly correlated arithmetic
Brownian motions, and invests in a money market account with a constant interest rate. The agent
pays a transaction cost for trading in futures proportional to the size of the trade. She also receives
utility from consumption. The agent maximizes expected infinite-horizon discounted utility from
consumption. We determine the first two terms in the asymptotic expansion of the value function
in the transaction cost parameter around the known value function for the case of zero transaction
cost. The method of solution when the futures are uncorrelated follows a method used previously
to obtain the analogous result for one risky asset. However, when the futures are correlated, a new
methodology must be developed. It is suspected in this case that the value function is not twice
continuously differentiable, and this prevents application of the former methodology.
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1. Introduction. We consider an agent seeking to optimally invest and consume in the
presence of proportional transaction costs. The agent can trade in two kinds of futures con-
tracts, driven by two possibly correlated Brownian motions. A futures contract is marked to
market every day, and its value is thereby reset to zero. An agent holding a futures contract
receives the daily differences in the futures prices. Because these absolute rather than relative
changes in the futures price determine the cash flow that accrues from a position in futures,
we model the futures price of the contract of type i as an arithmetic (rather than geomet-
ric) Brownian motion with drift and diffusion coefficients αi, σi > 0, respectively. The agent
can also hold cash in the money market account with constant interest rate r, and she may
consume.

A proportional transaction cost μiλ is charged for trading in the futures contracts of type i,
where μi is a positive constant, i = 1, 2. The transaction costs and consumption are deducted
from the money market account. The agent maximizes the expected discounted integral over

[0,∞) of the utility of consumption, where the utility function is U(C)
�
= Cp

p , C ≥ 0, and
p ∈ (0, 1). We compute the coefficient of the leading term in the asymptotic expansion of the
value function for positive λ about the known value function for the case λ = 0. This leading
term is of order λ2/3. The proof is divided into two cases: when the two futures prices are
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independent and when they are correlated.

This work generalizes that of Janeček and Shreve [13] by allowing the investor to trade
in more than one risky asset. The proof technique in [13] is to reduce the dimensionality of
the problem, write down an asymptotic expansion of the value function for the reduced prob-
lem, assume this function is a twice continuously differentiable solution of the corresponding
Hamilton–Jacobi–Bellman (HJB) equation, and use this assumption to formally determine
the leading coefficients in the asymptotic expansion. Then one can perturb both up and down
the order-λ term in the asymptotic expansion to obtain functions that are provably super- and
subsolutions of the HJB equation, and hence upper and lower bounds on the value function.
These functions agree in the λ0 and λ2/3 terms, and hence identify the coefficients of these
two terms.

A straightforward generalization of [13] works for the model of this paper when the futures
prices are independent, and that is provided in section 9. (To save space, we omit the formal
determination of the coefficients in the asymptotic expansion, which can be found in [5, section
3]. Here we begin the proof by writing down the functions corresponding to different values of
K in (9.24) that we ultimately prove are super- and subsolutions of the HJB equation.) When
the futures prices are correlated, the formal determination of the coefficients in the asymptotic
expansion along the lines of [5, section 3] leads to inconsistent equations, which suggests that
the second derivative of the value function is not continuous everywhere. Abandoning the
methodology of [13] in this case, in section 10 we construct tight upper and lower bounds on
the value function by considering an auxiliary problem having independent futures contracts.
The construction of the lower bound uses the fact that the risky asset prices are arithmetic
rather than geometric Brownian motions. In particular, the second-order operator L2 of (6.10)
involves first and second derivatives in the radial direction only; see Case II of the proof of
Lemma 10.6.

This paper is organized as follows. Section 2 sets out the model, notation, and all as-
sumptions of the paper. The case of zero transaction cost has a solution similar to that due
to Merton [17], [18] for investment in multiple geometric Brownian motion stock prices. The
solution for arithmetic Brownian motions is provided in section 3. Similar to [17], [18], here
the optimal solution is to hold the number of futures contracts equal to a constant vector,
which we call the Merton proportion, times the value of the portfolio, and the value function is
a positive constant times the utility function. We state the main result of the paper in section
4. Section 5 develops the HJB equation for the full problem. The continuity of the value
function needed for the HJB characterization is proved in Appendix A. Section 6 reduces the
dimensionality of the problem and develops the HJB equation for the reduced problem. This
section includes the comparison theorem for super- and subsolutions of the HJB equation,
whose proof is in Appendix B. Section 7 describes how to partition the solvency region for
the reduced problem as a first step toward constructing super- and subsolutions of the HJB
equation. Section 8 extends functions defined in the middle of the solvency region to other
parts of the region and derives properties of the extensions. This method of extension is used
in sections 9 and 10 to construct super- and subsolutions and thereby prove the main result
reported in section 4.

For the case of a single risky asset, Magill and Constantinides [16] introduced transaction
costs into Merton’s infinite-horizon discounted optimal consumption model [17], [18]. They
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argued that in the presence of a proportional transaction cost, an agent should not trade when
the state of the problem is in a region M containing the Merton proportion, and should trade
just enough on the boundary of M to keep the state from exiting this region. Constantinides
[6] numerically computed the effect of transaction costs on the value function for the problem
with one risky asset, and observed that transaction costs have a “first-order effect on asset
demand” and a “second-order effect on equilibrium asset return.” Davis and Norman [8] put
this argument on a rigorous mathematical foundation. Shreve and Soner [21] used viscosity
solution analysis to relax the assumptions in [8]. Because there is an explicit solution for
the infinite-horizon discounted optimal consumption problem with zero transaction cost, but
apparently no closed-form solution for positive transaction cost, a determination of the no-
trading region M and the value function for the transaction cost problem by asymptotic
analysis around the zero-transaction-cost problem has been developed. Heuristic analysis
along these lines was provided by Whalley and Wilmott [23] and Atkinson and Al-Ali [2].
Rigorous calculations of the value function expansion were given by [21], [13], [14], the last
one making rigorous the insight of Rogers [20]. These expansions make precise the numerical
observations of [6].

The previous work pertains to problems with a single risky asset. For multiple independent
risky assets, Akian, Menaldi, and Sulem [1] characterized the value function as the unique
viscosity solution of the HJB equation and provided numerics. Atkinson and Mokkhavesa
[4] provided a perturbation analysis for independent assets. Correlated assets were treated
by perturbation analysis by Atkinson and Ingpochai [3] for small correlations, and a numer-
ical study for two correlated assets was performed by Muthuraman and Kumar [19]. These
works provide strong evidence that in the case of multiple independent risky assets, the no-
transaction region M is a rectangle, but if the assets are correlated, the region M is not even
polyhedral.

Perturbation analysis is based on the assumption of “smooth pasting”; i.e., the value
function is twice continuously differentiable across the boundary of M . This condition was
verified in the case of one risky asset in [21]. However, as observed above, there is reason to
doubt smooth pasting in models with correlated risky assets.

Goodman and Ostrov [12] take a duality approach to transaction costs and show that the
quasi–steady state probability density of the optimal portfolio is uniform for a single stock
but generally blows up when there are multiple stocks.

There is a related body of literature on growth-optimal portfolios in the presence of trans-
action costs; see, e.g., [9], [10], [11], [15], [22].

2. Model definition. An agent has three investment opportunities, a money market ac-
count with constant rate of interest r and two types of futures contracts. The futures price
associated with the contract of type i is an arithmetic Brownian motion

Fi(t) = Fi(0) + αit+ σiBi(t),

where each αi is constant, each σi is a strictly positive constant, and (B1, B2) is a two-
dimensional Brownian motion with correlation given by 〈B1, B2〉(t) = ρt, where ρ is a constant
in (−1, 1). The two-dimensional Brownian motion (B1, B2) is defined on a filtered probability
space (Ω,F , {F(t)}t≥0 ,P). We use arithmetic rather than geometric Brownian motion to
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describe futures prices because the cost of purchasing futures contracts is zero, and hence
the absolute rather than the relative change in futures prices determines the payoff of these
contracts as investment opportunities. Without changing the investment opportunities in this
problem, we may replace one or both of the Fi(t) by −Fi(t) = −Fi(0)−αit+σi

(−Bi(t)
)
. We

may also interchange the indices on the two arithmetic Brownian motions. By making these
changes if necessary, we may and do assume almost without loss of generality that

(2.1) α1 > 0, 0 ≤ ρ < 1.

To achieve (2.1) we need only that one of the two futures prices has nonzero drift. We shall
need this condition only in section 10, where we analyze the case ρ �= 0.

The agent chooses four adapted processes, Li,Mi, i = 1, 2. The process Li(t) (respectively,
Mi(t)) denotes the number of futures contracts of type i bought (respectively, sold) by time t,
and is thus a nondecreasing, right-continuous process with initial condition Li(0) ≥ 0 (respec-
tively, Mi(0) ≥ 0) representing the number of futures contracts of time i bought (respectively,
sold) at time 0. We adopt the convention Li(0−) = Mi(0−) = 0, i = 1, 2. The agent begins
with an initial position Yi(0−) in futures contracts of type i, and thus her position in futures
contracts of type i at time t is

(2.2) Yi(t) = Yi(0−) + Li(t)−Mi(t), t ≥ 0.

The agent finances trading in futures by investing or borrowing at the interest rate r.
There is a positive transaction cost for this trading. In particular, for i = 1, 2, there is a
constant λi = μiλ, where μi > 0 and λ > 0 are constants, representing the transaction cost
per contract incurred from trading in futures contracts of type i. The agent chooses an adapted
nonnegative rate of consumption process C satisfying

∫ t
0 C(u)du < ∞ for all t ≥ 0, and then

the agent’s position in the money market account evolves according to the equation

(2.3) dX(t) =

2∑
i=1

Yi(t)dFi(t)−
2∑

i=1

λi
(
dLi(t) + dMi(t)

)
+
(
rX(t)− C(t)

)
dt.

We distinguish the agent’s initial position in the money market accountX(0−) from the agent’s
position (after any transactions) at time zero. The latter is X(0) = X(0−)−∑2

i=1 λi(Li(0)+
Mi(0)).

This is an asymptotic study as λ ↓ 0, and all other parameters, including μi, i = 1, 2, are
held constant. In particular, λi = O(λ). In section 10, in order to analyze the case ρ �= 0, in
addition to (2.1) we will need the assumptions

(2.4) μ2α1 > μ1α2, ρ <
μ2σ1
μ1σ2

.

For much of the analysis it is convenient to write the trading and consumption processes
as proportions of the money market position. As long as X(u−) is bounded away from zero,
0 ≤ u ≤ t, we may define

c(t) =

∫ t

0

C(u)du

X(u)
, �i(t) =

∫ t

0

dLi(u)

X(u−)
, mi(t) =

∫ t

0

dMi(u)

X(u−)
, i = 1, 2,
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so that for t ≥ 0,

dYi(t) = X(t−)
(
d�i(t)− dmi(t)

)
, i = 1, 2,(2.5)

dX(t) =

2∑
i=1

Yi(t)dFi(t)−X(t−)

2∑
i=1

λi
(
d�i(t) + dmi(t)

)
+X(t)

(
r − c(t)

)
dt.(2.6)

We define the three-dimensional solvency region to be the open set

(2.7) D3 �
{
(y1, y2, x) : x− λ1|y1| − λ2|y2| > 0

}
.

We denote the closure of D3 by D3 and the boundary by ∂D3. A policy (L1, L2, M1,M2, C) is
admissible for the initial condition (Y1(0−), Y2(0−),X(0−)) ∈ D3 if we have (Y1(t), Y2(t),X(t))
∈ D3 for all t ≥ 0.

If (Y1, Y2,X) is outside D3, then closing out the futures positions results in a strictly neg-
ative money market position; the agent is not permitted to enter this region. If (Y1, Y2,X) ∈
∂D3, then the agent can immediately close out her futures positions, which will bring her
money market position to zero. In fact, because not closing out the futures positions would
result in a positive probability of exiting the closed solvency region, this is the only admissible
action available (see [5, section 2, Remark 2.1] for the precise argument, or for the case of one
risky asset, see [21]). We conclude that every admissible policy keeps (Y1, Y2,X) inside the
open solvency region, where X is strictly positive, and we may use the representation (2.5),
(2.6) rather than (2.2), (2.3) until the first time the boundary of the solvency region is hit, if it
is ever hit. Upon hitting ∂D3, (Y1, Y2,X) jumps immediately to the origin and remains there.
Thus we may characterize admissible policies in terms of the processes (�1, �2,m1,m2, c) ap-
pearing in (2.5), (2.6), knowing that at the first time (Y1, Y2,X) reaches ∂D3, it jumps to the
origin and remains there. We denote by A(y1, y2, x) the set of all such policies corresponding
to the initial condition (y1, y2, x) ∈ D3.

The agent has the utility function U(C) = 1
pC

p, defined for C ≥ 0, where p is a constant
in (0, 1). Let β > 0 be a constant impatience factor. The value function for the problem of
expected infinite-horizon discounted consumption and investment is

(2.8) v(y1, y2, x) � sup
(�1,�2,m1,m2,c)∈A(y1,y2,x)

E

∫ ∞

0
e−βtU

(
c(t)X(t)

)
dt,

where, of course, we mean that X is given by (2.5), (2.6) with Yi(0−) = yi, i = 1, 2, and
X(0−) = x, and we take c(t)X(t) = 0 after the first time that (Y1, Y2,X) reaches ∂D3. In
particular,

(2.9) v = 0 on ∂D3.

We develop an asymptotic expansion in the small parameter λ > 0 for the function v.

Remark 2.1 (concavity of v). The function v is concave on D3. In order to see this, let

(L1, L2,M1,M2, C) be an admissible policy for (y1, y2, x) ∈ D3 and let (L̂1, L̂2, M̂1, M̂2, Ĉ)
be an admissible policy for (ŷ1, ŷ2, x̂) ∈ D3. Because of the linearity of (2.2) and (2.3) and
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the convexity of D3, for any δ ∈ (0, 1), δ(L1, L2,M1,M2, C) + (1 − δ)(L̂1, L̂2, M̂1, M̂2, Ĉ) is
admissible for δ(y1, y2, x) + (1− δ)(ŷ1, ŷ2, x̂). The concavity of U then implies

v
(
δy1 + (1− δ)ŷ1, δy2 + (1− δ)ŷ2, δx + (1− δ)x̂

)
≥ E

∫ ∞

0
e−βtU

(
δC(t) + (1− δ)Ĉ(t)

)
dt

≥ δE

∫ ∞

0
e−βtU

(
C(t)

)
dt+ (1− δ)E

∫ ∞

0
e−βtU

(
Ĉ(t)

)
dt.

Maximizing the right-hand side over admissible policies for (y1, y2, x) and (ŷ1, ŷ2, x̂), we obtain
the claimed concavity of v on D3.

To make the notation more compact, we denote by 
α, 
λ, and 
F the two-dimensional
column vectors of constants and processes


α �
[
α1

α2

]
, 
λ �

[
λ1
λ2

]
, 
F �

[
F1

F2

]
,

and we use similar notation for other two-dimensional vectors of constants, variables, and
processes. We define the nonsingular matrices

Σ �
[
σ1 0
0 σ2

]
, V �

[
σ21 ρσ1σ2

ρσ1σ2 σ22

]
.

Finally, we define the vector

(2.10) 
θ =
1

1− p
V−1
α.

In order to avoid cases in the subsequent analysis, we make the following assumption.
Assumption 2.2. We assume throughout that 
θ is in the open first quadrant.
The following assumption is essential.
Assumption 2.3. We assume throughout that

(2.11) A � β − rp

1− p
− p

2(1− p)2
V−1
α · 
α

is strictly positive, which, as we shall see in the next section, guarantees that the value function
is finite for the problem with zero transaction cost λ, and hence the value function is finite
for the less favorable problem with positive transaction cost.

We note for future reference that

(2.12) β − rp− p
α · 
z + 1

2
p(1− p)(V
z · 
z ) = (1− p)

[
A+

1

2
p
(
V(
z − 
θ ) · (
z − 
θ )

)]
.

Remark 2.4. Notation such as 
z will always be a two-dimensional column vector when
used in matrix calculations such as in (2.12), and its transpose will be denoted by 
z T . For
example, V
z ·
z = 
z TV
z. To save space when we want to specify the components of a column
vector 
z, we abuse notation and write 
z = (z1, z2).
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3. Zero transaction cost (λ = 0). The model of section 2 makes sense even if λ = 0,
and since in this case we can instantaneously change positions in the futures without cost, the
value function is a function of the position in the money market alone. The solvency region
is D3 = {(y1, y2, x) : x > 0}. Equation (2.3) simplifies to

(3.1) dX(t) = 
Y (t) · d
F (t) + (rX(t)− C(t)
)
dt.

In particular, X is continuous. The processes Yi of (2.2) are right continuous with left-hand
limits and have finite variation on each finite interval of time. We remove the finite-variation
condition and obtain a more favorable problem whose value function is still a function of the
position in the money market alone. This value function is

(3.2) sup
Y1,Y2,C

E

[∫ ∞

0
e−βtU

(
C(t)

)
dt

∣∣∣∣X(0) = x

]
, x ≥ 0,

where the supremum is over all adapted processes Y1, Y2 and nonnegataive adapted processes
C that ensure that X(t) given by (3.1) is defined and nonnegative for all t ≥ 0.

The argument by Merton [17], [18] for investing in multiple geometric Brownian motions
is easily adapted to this situation to show that the value function (3.2) is

(3.3) v0(x) =
1

p
Ap−1xp, x ≥ 0,

and the optimal portfolio and consumption policy are

(3.4) 
Y (t) = X(t)
θ, C(t) = AX(t), t ≥ 0,

where X is the money market position process obtained by using this policy. The argument
is brief, and for the sake of completeness, we include it here.

It is straightforward to verify that v0 given by (3.3) satisfies the HJB equation

(3.5) min
�y∈R2,c≥0

[
βv0(x)−

(

α · 
y + rx− c

)
v′0(x)−

1

2
(V
y · 
y)v′′0 (x)− U(c)

]
= 0

for all x > 0. Indeed, the minimizing 
y in (3.5) is
(p−1)v′0(x)

v′′0 (x)

θ = x
θ and the minimizing c is

(v′0(x))1/(p−1) = Ax. Substitution of these values into the left-hand side of (3.5) and some
simple algebra results in the equality

(3.6) βv0(x)− (
α · 
θ + r −A)xv′0(x)−
1

2
(V
θ · 
θ )x2v′′0(x)− U(Ax) = 0.

In particular, v0 satisfies the HJB inequality

(3.7) βv0(x)−
(

α · 
y + rx− c

)
v′0(x)−

1

2
(V
y · 
y)v′′0 (x)− U(c) ≥ 0, 
y ∈ R

2, c ≥ 0.

Inequality (3.7) together with Itô’s formula applied to e−βtX(t) shows that for any adapted
processes Y1 and Y2 that are right continuous with left limits, and for any consumption process
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C satisfying
∫ t
0 C(u)du <∞ for all t ≥ 0,

0 ≤ e−β(t∧τn)v0
(
X(t ∧ τn)

)
≤ v0

(
X(0)

) − ∫ t∧τn

0
e−βuU

(
C(u)

)
du+

∫ t∧τn

0
e−βuv′0

(
X(u)

)
Σ
Y (u) · d 
B(u),(3.8)

where τn � inf {t ≥ 0 : X(t) ≤ 1/n}. This implies that the local martingale v0(X(0)) +∫ t∧τn
0 e−βuv′0(X(u))Σ
Y (u) · d 
B(u) is nonnegative and hence is a supermartingale. Taking

expectations in (3.8), we thus obtain E
∫ t∧τn
0 e−βuU

(
C(u)

)
du ≤ v0

(
X(0)

)
. Using the mono-

tone convergence theorem as n → ∞ and t → ∞, and then maximizing over Y1, Y2, and C,
we conclude that

(3.9) sup
Y1,Y2,C

E

∫ ∞

0
e−βtU

(
C(t)

)
dt ≤ v0

(
X(0)

)
.

To obtain equality in (3.9), we use the policy given by (3.4) and use (3.6) in place of (3.7)
to write

e−β(t∧τn)v0
(
X(t ∧ τn)

)
= v0

(
X(0)

) − ∫ t∧τn

0
e−βuU

(
C(u)

)
du+

∫ t∧τn

0
e−βuv′0

(
X(u)

)
Σ
Y (u) · d 
B(u)(3.10)

in place of (3.8). For this policy,

X(t) = X(0) exp

[(

α · 
θ + r −A− 1

2
V
θ · 
θ

)
t+Σ
θ · 
B(t)

]
,

which satisfies E[X2p(t)] = X2p(0)ep(2�α·�θ+2r−2A+V�θ·�θ )t, and so the Itô integral in (3.10) is a
martingale. Taking expectations and then limits in (3.10), we obtain

1

p
Ap−1 lim

t→∞ lim
n→∞E

[
e−β(t∧τn)Xp(t ∧ τn)

]
+ E

∫ ∞

0
e−βtU

(
C(t)

)
dt = v0

(
X(0)

)
.

But (2.12) implies e−βtXp(t) = Xp(0)e−AtM(t), where M(t) = exp[pΣ
θ · 
B(t)− 1
2p

2(V
θ · 
θ )t]
is a square-integrable martingale. For each t ≥ 0, {Xp(0)e−A(t∧τn)M(t∧τn)}∞n=1 is a uniformly
integrable sequence of random variables. For the process X under consideration, τn satisfies
limn→∞ τn = ∞, and hence

lim
n→∞E

[
e−β(t∧τn)Xp(t ∧ τn)

]
= E

[
e−βtXp(t)] = Xp(0)e−At,

which has limit zero as t→ ∞ because of Assumption 2.3. This concludes the proof of equality
in (3.9).



34 MAXIM BICHUCH AND STEVEN SHREVE

4. Main result. The main result of this paper is the following theorem.
Theorem 4.1. Under Assumptions 2.2 and 2.3 and conditions (2.1) and (2.4), the value

function (2.8) for the problem with positive λ satisfies

v(y1, y2, x) = v0(x)− γλ2/3xp +O(λ),

where the absolute value of the O(λ) term is bounded by λ times a constant that is independent
of λ > 0 and (y1, y2, x) so long as this triple is in a compact subset of the solvency region D3.
The parameter γ is defined in (10.6) below.

The proof of Theorem 4.1 follows the statement of Theorem 10.1. In section 9 we construct
a subsolution and a supersolution for the HJB equation when ρ = 0. These are consequently
lower and upper bounds, respectively, for v. The subsolution and supersolution we construct
differ by O(λ) and hence determine v up to order λ. For the case ρ �= 0, in section 10 we
create an auxiliary problem with two types of futures contracts that are independent. We use
this auxiliary problem and the result already obtained for independent futures to construct
lower and upper bounds for v. Again, these bounds differ by O(λ). The constructions suggest
nearly (up to order λ) optimal policies, but in order not to further lengthen an already long
paper, we do not rigorously construct these policies and prove that they are nearly optimal.

5. HJB equation for λ > 0. Because the agent can increase her position by size η1 > 0
in type-one futures by reducing the money market account balance by λ1η1, thereby moving
in the [1, 0,−λ1] direction in (y1, y2, x) in D3, a move in this direction cannot increase the
value function. In other words, v1 − λ1vx ≤ 0, where v1 denotes the partial derivative of v
with respect to y1. Moreover, in any region in which it is optimal for the agent to increase her
position in type-one futures, v1 − λ1vx = 0. Analogously, v2 − λ2vx ≤ 0, and in any region in
which it is optimal for the agent to increase her position in type-two futures, v2 − λ2vx = 0.
Furthermore, the agent can decrease her position by size η1 > 0 in type-one futures by reducing
the money market account balance by λ1η1, which leads to −v1 − λ1vx ≤ 0, with equality
holding in any region in which it is optimal to decrease the position in type-one futures. Also,
−v2 − λ2vx ≤ 0, with equality holding in any region in which it is optimal to decrease the
position in type-two futures. In the remaining region, where it is optimal to consume but not
change the futures positions, the value function should satisfy the partial differential equation
L3v − Ũ(vx) = 0, where L3 is the linear differential operator

(5.1) L3ψ � βψ − (rx+ 
α · 
y)ψx − 1

2
(V
y · 
y)ψxx,

and Ũ , obtained by optimizing over consumption, is

(5.2) Ũ(c̃) = sup
c≥0

(
U(c) − cc̃

)
=

1− p

p
c̃ p/(p−1), c̃ > 0.

(The Fenchel–Legendre transform of −U is Ũ(−c̃).)
The following theorem makes these considerations precise. For this theorem, we denote

by C1,1,2(D3) the set of functions ψ defined and continuous on D3 whose partial derivatives
ψ1, ψ2, and ψxx are defined and continuous on D3.
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Theorem 5.1. When λ is strictly positive, the value function v defined by (2.8) is continuous
on D3 defined by (2.7) and is a viscosity solution of the HJB equation

(5.3) min
[L3v − Ũ(vx),−v1 + λ1vx,−v2 + λ2vx, v1 + λ1vx, v2 + λ2vx

]
= 0.

This means that for every (y1, y2, x) ∈ D3 and every function ψ ∈ C1,1,2(D3) agreeing with v
at (y1, y2, x), the inequality ψ ≥ v (respectively, ψ ≤ v) on D3 implies

(5.4) min[L3ψ − Ũ(ψx),−ψ1 + λ1ψx,−ψ2 + λ2ψx, ψ1 + λ1ψx, ψ2 + λ2ψx]

is nonpositive (respectively, nonnegative) at (y1, y2, x).
The proof of continuity of v on D3 is in Appendix A. The proof that v is a viscosity

solution of (5.3) is standard and is not given here. The details for this particular model are
presented in [5, Appendix A, Theorem A.12], which is a parallel of the proof found in [21].

6. Reduction of dimension. Because D3 is a cone and every term in (2.5) and (2.6) is
scaled by X(t−) or X(t), we have A(ay1, ay2, ax) = A(y1, y2, x) whenever a > 0. It follows
that

(6.1) v(ay1, ay2, ax) = apv(y1, y2, x), (y1, y2, x) ∈ D3, a ≥ 0.

We note also that (y1, y2, x) ∈ D3 if and only if x > 0 and (y1x ,
y2
x ) is in the two-dimensional

solvency region

(6.2) D2 �
{
(z1, z2) : 1− λ1|z1| − λ2|z2| > 0

}
.

We define

(6.3) u(z1, z2) = v(z1, z2, 1), (z1, z2) ∈ D2,

and note that because of (6.1),

(6.4) v(y1, y2, x) = xpu
(y1
x
,
y2
x

)
, (y1, y2, x) ∈ D3 \ {(0, 0, 0)}.

Thus, to determine v it suffices to determine u. From (2.9) we have

(6.5) u = 0 on ∂D2.

We need to transform the HJB equation (5.3) into the new variables. Let ϕ be a C2

function defined on D2, and set

(6.6) ψ(y1, y2, x) = xpϕ
(y1
x
,
y2
x

)
, (y1, y2, x) ∈ D3.

We use the notation zi =
yi
x , ϕi =

∂
∂zi
ϕ, ϕi,j =

∂2

∂zizj
ϕ. We further adopt the notation


z =

[
z1
z2

]
, ∇ϕ(
z ) =

[
ϕ1(
z )
ϕ2(
z )

]
, ∇2ϕ(
z ) =

[
ϕ11(
z ) ϕ12(
z )
ϕ21(
z ) ϕ22(
z )

]
.
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It is straightforward to calculate

ψx(y1, y2, x) = xp−1
[
pϕ(
z )−∇ϕ(
z ) · 
z ],(6.7)

ψxx(y1, y2, x) = xp−2
[
p(p− 1)ϕ(
z ) + 2(1− p)∇ϕ(
z ) · 
z +∇2ϕ(
z )
z · 
z ] ,(6.8)

ψi(y1, y2, x) = xp−1ϕi(
z ), i = 1, 2.(6.9)

Consequently, L3ψ(y1, y2, x) = xpL2ϕ(
z ), where

L2ϕ(
z ) �
[
β − rp− p
α · 
z + 1

2
p(1− p)(V
z · 
z )

]
ϕ(
z )

+
(
r + 
α · 
z − (1− p)(V
z · 
z ))∇ϕ(
z ) · 
z − 1

2
(V
z · 
z )(∇2ϕ(
z )
z · 
z ).(6.10)

For i = 1, 2, we define the first-order operators

Biϕ(
z ) � λipϕ(
z )− ϕi(
z )− λi∇ϕ(
z ) · 
z,(6.11)

Siϕ(
z ) � λipϕ(
z ) + ϕi(
z )− λi∇ϕ(
z ) · 
z.(6.12)

We may write the first-order operators in (5.3) applied to ψ as

−ψi(y1, y2, x) + λiψx(y1, y2, x) = xp−1Biϕ(
z ),(6.13)

ψi(y1, y2, x) + λiψx(y1, y2, x) = xp−1Siϕ(
z ).(6.14)

Recalling the discussion at the beginning of section 5, the reader can verify that in the region in
which it is optimal to buy (respectively, sell) type-i futures, we would expect to have Biu = 0
(respectively, Siu = 0).

Definition 6.1. A continuous function w defined on D2 is a viscosity subsolution of the
two-variable HJB equation

(6.15) min
[L2w − Ũ(pw −∇w · 
z ),B1w,B2w,S1w,S2w

]
= 0

if for every point 
z ∈ D2 and for every C2 function ϕ defined on D2 and agreeing with ϕ at

z, ϕ ≥ w on D2 implies that

(6.16) min[L2ϕ− Ũ(pϕ−∇ϕ · 
z ),B1ϕ,B2ϕ,S1ϕ,S2ϕ]

is nonpositive at 
z. We say w is a viscosity supersolution of (6.15) if for every point 
z ∈ D2

and every C2 function ϕ defined on D2 and agreeing with ϕ at 
z, ϕ ≤ w on D2 implies that
the expression in (6.16) is nonnegative at 
z. We say w is a viscosity solution of (6.15) if it is
both a viscosity subsolution and a viscosity supersolution.

We have a counterpart to Theorem 5.1 for the two-variable function u.
Theorem 6.2. When λ is strictly positive, the function u defined by (6.3) is continuous on

D2 defined by (6.2) and is a viscosity solution of (6.15).
Proof. Because v and u are related by (6.3), continuity of u on its domain D2 follows from

continuity of v on its domain D3. If (z1, z2) is in D2 and ϕ is a C2 function defined on D2,
agreeing with u at (z1, z2), and dominating u on D2, then ψ(z1, z2, 1) defined by (6.6) is a
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C2 function defined on D3, agreeing with v at (z1, z2, 1), and dominating v on D3. Theorem
5.1 implies that the expression (5.4) is nonpositive at (z1, z2, x), and because of (6.7)–(6.9),
(6.13), and (6.14), this implies that the expression in (6.16) is nonpositive at (z1, z2). Hence,
u is a viscosity subsolution of (6.15). The viscosity supersolution proof is the same.

Theorem 6.3 (comparison). Assume λ > 0. Let the continuous functions w+ and w− defined
on D2 be a viscosity supersolution and a viscosity subsolution, respectively, of (6.15). If w+ ≥
w− = 0 on ∂D2 and w+ is strictly positive on D2, then w

+ ≥ w− on D2.

The proof of Theorem 6.3 is provided in Appendix B. Because u is both a supersolution
and a subsolution of (6.15), satisfies (6.5), and is strictly positive on D2, Theorem 6.3 has an
immediate corollary.

Corollary 6.4. Let w± be as in Theorem 6.3. Then w− ≤ u ≤ w+ on D2. In particular, u
is the unique continuous function defined on D2 that vanishes on ∂D2, is strictly positive in
D2, and is a viscosity solution of (6.15).

We close this section with an observation we will need in section 10.

Lemma 6.5. We have u(
0) = u(
θ) +O(λ), where 
0 denotes the origin in R
2.

Proof. By selling θ1 type-1 futures contracts and θ2 type-2 futures contracts, the agent
can move instantaneously from the position (θ1, θ2, 1) to (0, 0, 1 − 
λ · 
θ ) in D3. Therefore,
because of (6.4),

u(
θ ) = v(θ1, θ2, 1) ≥ v(0, 0, 1 − 
λ · 
θ ) = (1− 
λ · 
θ)pv(0, 0, 1) = u(
0 ) +O(λ).

On the other hand, by purchasing θ1/(1 + 
λ · 
θ ) type-1 and θ2/(1 + 
λ · 
θ ) type-2 futures
contracts, the agent can move instantaneously from the position (0, 0, 1) to 
ξ �

(
θ1/(1 + 
λ ·


θ ), θ2/(1 + 
λ · 
θ ), 1/(1 + 
λ · 
θ )) in R
3. Therefore,

u(
0 ) = v(0, 0, 1) ≥ v(
ξ ) =

(
1

1 + 
λ · 
θ

)p

v(θ1, θ2, 1) = u(
θ ) +O(λ).

7. Partitioning the solvency region. The left-hand side of the HJB equation (6.15) is the
minimum of five terms. We conjecture but do not prove that the solvency region is partitioned
into nine corresponding regions (see Figure 1) with the properties set out in this section. This
section is for orientation purposes only and is not part of the proof development of the paper.

There should be an (open) middle region M in which L2u − Ũ(pu − ∇u · 
z ) = 0. The
point 
θ is inside the middle region M , and since 
θ is in the open first quadrant by assumption,
for sufficiently small λ > 0 we expect the region M to be a subset of the open first quadrant.
When (Z1, Z2), where Zi � Yi

X , i = 1, 2, is in this region, it is optimal to consume but not
transact. Transactions occur at the boundaries of M to prevent (Z1, Z2) from exiting M , the
closure of M .

In addition, there should be an (open) “southern” region S, and when (Z1, Z2) is in
this region, it is optimal to increase the position in futures contracts of type two, so that
(Z1, Z2) moves along the ray emanating from −(0, 1/λ2) until it reaches ∂M . Indeed, suppose
we begin with (Y1, Y2,X) at the point (y01 , y

0
2 , x

0) so that (Z1, Z2) is at the point (z01 , z
0
2),

where z0i = y0i /x
0. If we increase the position in type-two futures by t > 0, we move to

the new point (y01, y
0
2 + t, x0 − λ2t) in R

3, and in the two variables, we move to the point
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Figure 1. Solvency region.

(z1, z2) = (y01/(x
0 − λ2t), (y

0
2 + t)/(x0 − λ2t)). A bit of algebra confirms that this point is on

the line passing through (0,−1/λ2) and (z01 , z
0
2), whose equation is

(7.1)
z1
z01

=
1 + λ2z2
1 + λ2z02

.

Similarly, there is an (open) “eastern” region in which it is optimal to sell type-one futures,
moving in D2 along the ray emanating from (1/λ1, 0) until ∂M is reached. In the (open)
“southeastern” region, it is optimal to simultaneously buy type-two futures and sell type-one
futures, moving along the ray in D that connects the initial position with the “corner” of M
where S, E, and SE meet. We call this corner 
ζSE.

In W one should buy type-one futures, and in N one should sell type-two futures. In
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SW one should simultaneously buy type-one and type-two futures, in NW one should simul-
taneously buy type-one and sell type-two futures, and in NE one should simultaneously sell
type-one and type-two futures. In these three cases, the transactions indicated should move
the state to the “nearest corner” of M . If the initial position is outside M , then there should
be an initial transaction that moves the state process (Z1, Z2) to ∂M as described above, and
thereafter the state process should remain in M , with the agent transacting just enough on
∂M to achieve this.

In the region S, in which it is optimal to buy type-two futures, we expect to have B2u = 0.
In the region SE, in which it is optimal to simultaneously buy type-two futures and sell type-
one futures, we expect to have B2u = 0 and S1u = 0.

We do not actually construct this partition and the function u. Instead, we consider the
case where the futures prices are uncorrelated (ρ = 0), and we construct a subsolution and a
supersolution of (6.15) by setting up a partition of D2 of the form in Figure 1, constructing a
function insideM and using the appropriate first-order equations for each of the outer regions
to extend this function to D2 \M . The case ρ �= 0 requires a more subtle analysis based on an
auxiliary problem in which the two types of futures are uncorrelated. We thus use the solution
of the problem when ρ = 0 as a tool to treat the problem when ρ �= 0. Because we need to
extend a function defined on a middle region M to D2 \M more than once, we provide that
construction generically in the next section.

8. Extension to D2 \ M . In this section we assume that D2 has been partitioned into
nine regions, as shown in Figure 1. These are not necessarily the regions discussed in section
7; i.e., they are not necessarily related to the optimal policy or the value function u. We
assume that the nonempty open middle region M is a subset of the open first quadrant and
is bounded by the graphs of four C1 functions:

southern boundary: ∂SM �
{
(ζ1, ζ2) : ζ2 = fS(ζ1), ζ

SW
1 ≤ ζ1 ≤ ζSE1

}
,(8.1)

eastern boundary: ∂EM �
{
(ζ1, ζ2) : ζ1 = fE(ζ2), ζ

SE
2 ≤ ζ2 ≤ ζNE

2

}
,(8.2)

northern boundary: ∂NM �
{
(ζ1, ζ2) : ζ2 = fN (ζ1), ζ

NW
1 ≤ ζ1 ≤ ζNE

1

}
,(8.3)

western boundary: ∂WM �
{
(ζ1, ζ2) : ζ1 = fW (ζ2), ζ

SW
2 ≤ ζ2 ≤ ζNW

2

}
.(8.4)

All other boundaries in Figure 1 are straight lines. We further assume that the functions
fS, fE , fN , and fW satisfy the conditions

f ′S(ζ1) <
1 + λ2fS(ζ1)

λ2ζ1
, ζSW1 ≤ ζ1 ≤ ζSE1 ,(8.5)

f ′E(ζ2) >
−1 + λ1fE(ζ2)

λ1ζ2
, ζSE2 ≤ ζ2 ≤ ζNE

2 ,(8.6)

f ′N (ζ1) >
−1 + λ2fN(ζ1)

λ2ζ1
, ζNW

1 ≤ ζ1 ≤ ζNE
1 ,(8.7)

f ′W (ζ2) <
1 + λ1fW (ζ2)

λ1ζ2
, ζSW2 ≤ ζ2 ≤ ζNW

2 .(8.8)

Remark 8.1. In sections 8–10, we repeatedly begin with a function defined on M , extend
it to D2, and develop its properties in the nonmiddle regions S, SE, E, NE, N , NW , W ,



40 MAXIM BICHUCH AND STEVEN SHREVE

and SW . The proofs follow the same pattern. We prove the desired properties in S and SE
only, and we provide key equations to assist the reader in developing the proof for E. The
proof for W can be obtained by interchanging the coordinates in the proof given for S, and
the proof in N can be obtained by interchanging the coordinates in E.

Given a point 
z in S ∩ D2, there is a unique point 
ζ ∈ ∂SM lying on the line passing
through 
z and the southern vertex (0,−1/λ2) of D2, as we now show. This line intersects
∂SM at any point 
ζ satisfying ζSW1 ≤ ζ1 ≤ ζSE1 and (cf. (7.1))

1 + λ2fS(ζ1)

ζ1
=

1 + λ2z2
z1

.

To solve this equation for ζ1, we must invert the function ζ1 �→ (1 + λ2fS(ζ1))/ζ1. The
derivative of this function is strictly negative for ζSW1 ≤ ζ1 ≤ ζSE1 because of (8.5), and hence
this function has a C1 inverse

gS :

[
1 + λ2fS(ζ

SE
1 )

ζSE1

,
1 + λ2fS(ζ

SW
1 )

ζSW1

]
onto−→ [

ζSW1 , ζSE1

]
.

Because 
z ∈ S, 1+λ2z2
z1

is in the domain of gS , and the point we seek is given by ζ1 = gS(
1+λ2z2

z1
),

ζ2 = fS(ζ1). The mapping from 
z to 
ζ defined this way is C1.
If 
z is in E ∩ D2, to find 
ζ ∈ ∂EM lying on the line through 
z and the eastern vertex

( 1
λ1
, 0), we must solve the equation (1 − λ1fE(ζ2))/ζ2 = (1 − λ1z1)/z2 for ζ2. We proceed as

before.
Remark 8.2. For future reference, we record here the conclusion that if 
z ∈ S ∩ D2, then

there is a unique point 
ζ ∈ ∂SM satisfying the equations

(8.9)
z1
ζ1

=
1 + λ2z2
1 + λ2ζ2

, ζ2 = fS(ζ1).

We shall abuse notation, using 
ζ to denote both the point in ∂SM and the mapping on S∩D2.
The mapping 
ζ is a C1 function on S, and its first derivatives have continuous extensions to
S ∩ D2. The corresponding equations for 
z in E ∩ D2 and 
ζ ∈ ∂EM are

(8.10)
z2
ζ2

=
1− λ1z1
1− λ1ζ1

, ζ1 = fE(ζ2).

Finally, we define a mapping on 
ζ on SE ∩ D2 to be identically 
ζSE. We define analogous
mappings for the other regions.

If 
z lies in two regions, the two mappings defined at 
z agree, and hence we can use the
single symbol 
ζ for both these mappings. For example, if 
z ∈ (S ∩ SE) ∩ D2, then 
ζ = 
ζSE.
Using this fact and the first equation in (8.9), one can verify (8.11). We have

z1

ζSE1

=
1 + λ2z2

1 + λ2ζSE2

=
1− λ1z1 + λ2z2

1− λ1ζSE1 + λ2ζSE2

, 
z ∈ (S ∩ SE) ∩ D2,(8.11)

z2

ζSE2

=
1− λ1z1

1− λ1ζSE1

=
1− λ1z1 + λ2z2

1− λ1ζSE1 + λ2ζSE2

, 
z ∈ (E ∩ SE) ∩D2.(8.12)
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The verification of (8.12) uses the first equation in (8.10). The second equation in each of
(8.11) and (8.12) is a consequence of the first equation in these displays.

Definition 8.3. Let O be an open subset of R2, and let Ô be a set satisfying O ⊂ Ô ⊂ O.
We say that a function w is Ck on Ô if w is Ck on O and the partial derivatives of w up to
order k have continuous extensions to Ô. We call these continuous extensions the derivatives
defined from inside O, and we denote them by wO

i , w
O
i,j, etc.

Theorem 8.4 (function extension). Let D2 be partitioned into nine regions, as described in
this section. For 
z ∈ D2 \M , let 
ζ denote the point on ∂M defined in Remark 8.2. Let wM

be defined and C1 on M , and extend wM to D2 by the formula

(8.13) w(
z ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wM (
z ) if 
z ∈M,(
1 + λ2z2
1 + λ2ζ2

)p

wM (
ζ ) =

(
z1
ζ1

)p

wM (
ζ ) if 
z ∈ S ∩D2,(
1− λ1z1 + λ2z2

1− λ1ζSE1 + λ2ζSE2

)p

wM (
ζSE) if 
z ∈ SE ∩ D2,(
1− λ1z1
1− λ1ζ1

)p

wM (
ζ ) =

(
z2
ζ2

)p

wM (
ζ ) if 
z ∈ E ∩ D2,(
1− λ1z1 − λ2z2

1− λ1ζNE
1 − λ2ζNE

2

)p

wM (
ζNE) if 
z ∈ NE ∩ D2,(
1− λ2z2
1− λ2ζ2

)p

wM (
ζ ) =

(
z1
ζ1

)p

wM (
ζ ) if 
z ∈ N ∩D2,(
1 + λ1z1 − λ2z2

1 + λ1ζ
NW
1 − λ2ζ

NW
2

)p

wM (
ζNW ) if 
z ∈ NW ∩ D2,(
1 + λ1z1
1 + λ1ζ1

)p

wM (
ζ ) =

(
z2
ζ2

)p

wM (
ζ ) if 
z ∈W ∩ D2,(
1 + λ1z1 + λ2z2

1 + λ1ζSW1 + λ2ζSW2

)p

wM (
ζSW ) if 
z ∈ SW ∩ D2.

(Note that 
z can fall into more than one case in (8.13), but the definition of w(
z ) is unam-
biguous because of (8.11), (8.12), and their analogues for the other six straight-line boundaries
inside D2.) Define w = 0 on ∂D2. Then w is continuous on D2, w is C1 in each of the non-
middle open regions, and the first derivatives of w have continuous extensions to the closures
of each of these regions intersected with D2 (although these extensions may differ for different
regions), and

B2w
S = 0 on S ∩ D2, S1w

E = 0 on E ∩D2,(8.14)

S2w
N = 0 on N ∩ D2, B1w

W = 0 on W ∩ D2,(8.15)

B2w
SE = S1w

SE = 0 on SE ∩ D2,(8.16)

S1w
NE = S2w

NE = 0 on NE ∩ D2,(8.17)

S2w
NW = B1w

NW = 0 on NW ∩D2,(8.18)

B1w
SW = B2w

SW = 0 on SW ∩ D2.(8.19)
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In addition, we have the following implications:

B2w
M = 0 on ∂SM =⇒ wS

i (
z ) =

(
z1
ζ1

)p−1

wM
i (
ζ ), i = 1, 2, 
z ∈ S ∩D2,(8.20)

S1w
M = 0 on ∂EM =⇒ wE

i (
z ) =

(
z2
ζ2

)p−1

wM
i (
ζ ), i = 1, 2, 
z ∈ E ∩D2,(8.21)

S2w
M = 0 on ∂NM =⇒ wN

i (
z ) =

(
z1
ζ1

)p−1

wM
i (
ζ ), i = 1, 2, 
z ∈ N ∩ D2,(8.22)

B1w
M = 0 on ∂WM =⇒ wW

i (
z ) =

(
z2
ζ2

)p−1

wM
i (
ζ ), i = 1, 2, 
z ∈W ∩ D2,(8.23)

B2w
M (
ζSE) = S1w

M (
ζSE) = 0

=⇒ wSE
i (
z ) =

(
1− λ1z1 + λ2z2

1− λ1ζSE1 + λ2ζSE2

)p−1

wM
i (
ζSE), i = 1, 2, 
z ∈ SE ∩D2,

and w is C1 at 
ζSE,(8.24)

S1w
M (
ζNE) = S2w

M (
ζNE) = 0

=⇒ wNE
i (
z ) =

(
1− λ1z1 − λ2z2

1− λ1ζNE
1 − λ2ζNE

2

)p−1

wM
i (
ζNE), i = 1, 2, 
z ∈ NE ∩ D2,

and w is C1 at 
ζNE,(8.25)

S2w
M (
ζNW ) = B1w

M (
ζNW ) = 0

=⇒ wNW
i (
z ) =

(
1 + λ1z1 − λ2z2

1 + λ1ζNW
1 − λ2ζNW

2

)p−1

wM
i (
ζNW ), i = 1, 2, 
z ∈ NW ∩ D2,

and w is C1 at 
ζNW ,(8.26)

B1w
M (
ζSW ) = B2w

M (
ζSW ) = 0

=⇒ wSW
i (
z ) =

(
1 + λ1z1 + λ2z2

1 + λ1ζ
SW
1 + λ2ζ

SW
2

)p−1

wM
i (
ζSW ), i = 1, 2, 
z ∈ SW ∩D2

and w is C1 at 
ζSW .(8.27)

Consequently, if

(8.28) B2w
M = 0 on ∂SM, S1w

M = 0 on ∂EM, S2w
M = 0 on ∂NM, B1w

M = 0 on ∂WM,

then w is C1 on D2, and hence we may omit the superscripts on the partial derivatives wi in
(8.14)–(8.27). Furthermore, under condition (8.28),

B2w = 0 on (SW ∪ S ∪ SE) ∩ D2, S1w = 0 on (SE ∪ E ∪NE) ∩ D2,(8.29)

S2w = 0 on (NW ∪N ∪NE) ∩ D2, B1w = 0 on (SW ∪W ∪NW ) ∩ D2.(8.30)

If, in addition,

(8.31) min
[B1w,B2w,S1w,S2w

]
= 0 on ∂M,
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then

(8.32) min
[B1w,B2w,S1w,S2w

]
= 0 on D2 \M.

Finally, if condition (8.28) holds and wM is C2 on M , then w is C2 on each of the nonmiddle
open regions and the second derivatives of w have continuous extensions to the closure of each
of these regions intersected with D2.

Proof. It is immediate from its definition that w is continuous on D2. It is also immediate
from Remark 8.2 and the definition of w that in each of the eight nonmiddle open regions,
w is C1 and its first derivatives in each region have limits as the boundaries of the region
are approached, except for the boundary of D2, where the derivatives explode. Therefore, it
suffices to prove (8.14)–(8.19) in the interior of each of the indicated regions.

We prove the first equality in (8.14). Let 
z ∈ S be given. Then there is a point 
ζ ∈ ∂SM
so that 
z lies on the line segment connecting (0,−1/λ2) with 
ζ. We parameterize this line as
z1(t) = tλ2z1, z2(t) = −(1/λ2) + t(1 + λ2z2). We use the second equation in the second line
of (8.13) to compute the directional derivative of w along this line, evaluated at 
z, which is
d
dtw(
z(t))|t=1/λ2

= pλ2w(
z). But this directional derivative evaluated at 
z is also

z′1(1/λ2)w1(
z) + z′2(1/λ2)w2(
z) = λ2z1w1(
z) + (1 + λ2z2)w2(
z).

Setting these two equal we obtain B2w(
z) = 0.
For 
z ∈ E, we parameterize the line through 
z connecting (1/λ1, 0) with ζ ∈ ∂EM by

z1(t) = 1/λ1 − t(1 − λ1z1), z2(t) = tλ1z2. We use the second equation in the fourth line of
(8.13), compute the directional at 
z by two methods, and obtain S1w = 0.

For z ∈ SE, we simply compute the partial derivatives in the third line of (8.13) and
verify that (8.16) holds.

We prove the implications (8.20), (8.21), and (8.24). Again, it suffices to consider 
z in the
interior of each set. Assume the hypothesis of (8.20). For 
z ∈ S, we compute

w1(
z ) =
∂

∂z1

[(
1 + λ2z2
1 + λ2ζ2

)p

wM (
ζ )

]
=

(
z1
ζ1

)p [
− λ2p

1 + λ2ζ2
wM (
ζ )

∂ζ2
∂z1

+ wM
1 (
ζ )

∂ζ1
∂z1

+ wM
2 (
ζ )

∂ζ2
∂z1

]
,(8.33)

where we have made the substitution (8.9) after computing the derivative. We use the hy-
pothesis of (8.20) in the form

(8.34) − λ2p

1 + λ2ζ2
wM (
ζ ) +wM

2 (
ζ ) = − λ2ζ1
1 + λ2ζ2

wM
1 (
ζ )

to simplify this, obtaining

(8.35) w1(
z ) =

(
z1
ζ1

)p

wM
1 (
ζ )

[
∂ζ1
∂z1

− λ2ζ1
1 + λ2ζ2

· ∂ζ2
∂z1

]
.

However, (8.9) implies

(8.36)
λ2

1 + λ2z2
=

∂

∂z1

(
λ2z1

1 + λ2z2

)
=

∂

∂z1

(
λ2ζ1

1 + λ2ζ2

)
=

λ2
1 + λ2ζ2

[
∂ζ1
∂z1

− λ2ζ1
1 + λ2ζ2

· ∂ζ2
∂z1

]
,
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and thus

(8.37)
∂ζ1
∂z1

− λ2ζ1
1 + λ2ζ2

· ∂ζ2
∂z1

=
1 + λ2ζ2
1 + λ2z2

=
ζ1
z1
.

Substitution of this equation into (8.35) gives us the formula in (8.20) for wS
1 .

For 
z ∈ S, we compute

w2(
z ) =
∂

∂z2

[(
z1
ζ1

)p

wM (
ζ )

]
=

(
z1
ζ1

)p [
− p

ζ1
wM (
ζ )

∂ζ1
∂z2

+ wM
1 (
ζ )

∂ζ1
∂z2

+ wM
2 (
ζ )

∂ζ2
∂z2

]
.(8.38)

We again use the hypothesis of (8.20), this time in the form

(8.39) − p

ζ1
w(
ζ ) + wM

1 (
ζ ) = −1 + λ2ζ2
λ2ζ1

wM
2 (
ζ ),

to simplify, obtaining

(8.40) w2(
z ) =

(
z1
ζ1

)p

wM
2 (
ζ )

[
∂ζ2
∂z2

− 1 + λ2ζ2
λ1ζ1

· ∂ζ1
∂z2

]
.

However, (8.9) implies

(8.41)
1

z1
=

∂

∂z2

(
1 + λ2z2
λ2z1

)
=

∂

∂z2

(
1 + λ2ζ2
λ2ζ1

)
=

1

ζ1

[
∂ζ2
∂z2

− 1 + λ2ζ2
λ2ζ1

· ∂ζ1
∂z2

]
,

and thus

(8.42)
∂ζ2
∂z2

− 1 + λ2ζ2
λ2ζ1

· ∂ζ1
∂z2

=
ζ1
z1
.

Substitution into (8.40) gives us the formula in (8.20) for wS
2 .

Before turning to (8.21), we observe that we can take the limits in (8.33) and (8.38) as

z ∈ S approaches 
ζSE. If, instead of the hypothesis of (8.20), we assume only B2w

M (
ζSE) = 0,
we have (8.34) and (8.39) at 
ζ = 
ζSE, and we may substitute these into (8.33) and (8.38),
respectively. The result of this is to obtain the conclusion of (8.20) at the point 
z = 
ζSE.
Similarly, if we assume only S1w

M (
ζSE) = 0, then the argument we give for (8.21) below can
be modified to show that the conclusion of (8.21) holds at the point 
z = 
ζSE. In other words,
under the hypothesis of (8.24), we have for i = 1, 2,

(8.43) wS
i (

ζSE) = wM

i (
ζSE) = wE
i (

ζSE).

Hypothesis (8.21) implies −(p/ζ2)w
M (
ζ )+wM

2 (
ζ ) = ((1−λ1ζ1)/(λ1ζ2))wM
1 (
ζ ) for 
z ∈ E.

Thus w1(
z) = (z2/ζ2)
pwM

1 (
ζ )[∂ζ1/∂z1 + ((1− λ1ζ1)/(λ1ζ2))∂ζ2/∂z1]. However, (8.10) implies
−1/z2 = −(1/ζ2)[∂ζ1/∂z1 + ((1− λ1ζ1)/(λ1ζ2))∂ζ2/∂z1], and this yields the formula in (8.21)
for wE

1 . We next use the hypothesis of (8.21) in the form ((λ1p)/(1−λ1ζ1))wM (
ζ )+wM
1 (
ζ ) =
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((λ1ζ2)/(1−λ1ζ1))wM
2 (
ζ ) in order to compute w2(
z ) = (z2/ζ2)

pwM
2 (
ζ )[∂ζ2/∂z2+((λ1ζ2)/(1−

λ1ζ2))∂ζ1/∂z2]. We simplify this using (8.10) and the formula derived from (8.10), λ1/(1 −
λ1z1) = (λ1/(1−λ1ζ1))[∂ζ2/∂z2+(λ1ζ2/(1−λ1ζ1))∂ζ1/∂z2]. This yields the formula in (8.21)
for wE

2 (
z ).

We next compute the derivatives w1 and w2 in SE under the hypothesis of (8.24), namely,
B2w

M (
ζSE) = S1w
M (
ζSE) = 0. These equations can be written as the system

λ2ζ
SE
1 wM

1 (
ζSE) + (1 + λ2ζ
SE
2 )wM

2 (
ζSE) = λ2pw
M (
ζSE),

−(1− λ1ζ
SE
1 )wM

1 (
ζSE) + λ1ζ
SE
2 wM

2 (
ζSE) = λ1pw
M (
ζSE).

This leads to the derivative formulas

− 1

λ1
wM
1 (
ζSE) =

1

λ2
wM
2 (
ζSE) =

p

1− λ1ζSE1 + λ2ζSE2

wM (
ζSE).

Using these formulas and the fact that 
ζ = 
ζSE for all 
z ∈ SE, we can differentiate directly
in (8.13) to obtain the formulas for wSE

i , i = 1, 2, in (8.24).

Under the hypothesis of (8.24), we have obtained for i = 1, 2 the formula wSE
i (
ζSE) =

wM
i (
ζSE). Combining this with (8.43), we conclude that w is C1 at 
ζSE.

Under assumption (8.28), the hypotheses of (8.20)–(8.27) are satisfied. Equations (8.11),
(8.12), and their counterparts for other boundaries show that the derivative formulas in (8.20)–
(8.27) agree on the boundaries of the regions in which they are specified. Hence, w is C1 on
D2, and (8.29)–(8.30) follow from (8.14)–(8.19).

We next show that (8.29)–(8.31) imply (8.32). Following Remark 8.1, we check this only in
S∩D2, E∩D2, and SE∩D2. The first equation in (8.29) implies pw(
z )−∇w(
z ) ·
z = 1

λ2
w2(
z )

for 
z ∈ S ∩ D2. Using this and (8.20), we see that for 
z ∈ S ∩ D2,

B1w(
z ) =
λ1
λ2
w2(
z )−w1(
z ) =

(
z1
ζ1

)p−1 [λ1
λ2
w2(
ζ )− w1(
ζ )

]
,

S1w(
z ) =
λ1
λ2
w2(
z ) +w1(
z ) =

(
z1
ζ1

)p−1 [λ1
λ2
w2(
ζ ) + w1(
ζ )

]
,

S2w(
z ) = 2w2(
z ) = 2

(
z1
ζ1

)p−1

w2(
ζ ).

Substituting 
ζ into these equations, we obtain formulas for B1w(
ζ ), S1w(
ζ ), and S2w(
ζ ), and
we then see that for 
z ∈ S ∩ D2,

(8.44) B1w(
z ) =

(
z1
ζ1

)p−1

B1w(
ζ ), S1w(
z ) =

(
z1
ζ1

)p−1

S1w(
ζ ), S2w(
z ) =

(
z1
ζ1

)p−1

S2w(
ζ ).

But (8.31) implies that B1w(
ζ ) ≥ 0, S1w(
ζ ) ≥ 0, and S2w(
ζ ) ≥ 0. We conclude from (8.44)
and the first equation in (8.14) that (8.32) holds on S ∩ D2.

The second equation in (8.29) implies pw(
z ) − ∇w(
z ) · 
z = − 1
λ1
w1(
z) for 
z ∈ E ∩ D2.

Using (8.21) we see that S2w(
z ) = (z2/ζ2)
p−1S2w(
ζ ) ≥ 0, B1w(
z ) = (z2/ζ2)

p−1B1w1(
ζ ) ≥ 0,
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B2w(
z ) = (z2/ζ2)
p−1B2w1(
ζ ) ≥ 0. This and the second equation in (8.14) imply that (8.32)

holds on E ∩ D2.

The proof that (8.32) holds on SE \ ∂D2 follows a similar argument. For 
z in this set,
we showed in (8.16) that B2w(
z ) = 0. Using this and (8.24), we obtain in place of (8.44) the
formulas

B1w(
z ) =

(
1− λ1z1 + λ2z2

1− λ1ζ
SE
1 + λ2ζ

SE
2

)p−1

B1w(
ζ
SE),

Siw(
z ) =

(
1− λ1z1 + λ2z2

1− λ1ζ
SE
1 + λ2ζ

SE
2

)p−1

Siw(
ζ
SE), i = 1, 2.

Therefore, (8.31) implies that (8.32) holds on SE \ ∂D2.

Finally, the mapping from 
z to 
ζ is C1 in each of the open sets S, SE, E, NE, N , NW ,
W , and SW , and the derivative of this mapping has a continuous extension to the closure of
each of these sets (see Remark 8.2). If wM is C2 on M , then from the first-derivative formulas
in (8.20)–(8.27) we conclude that the second derivative of w is defined on each of these sets
and has a continuous extension to the closure of each of these sets intersected with D2.

Remark 8.5. Because, for 
z ∈ S, we have ∂ζ2
∂zi

= f ′S(ζ1)
∂ζ1
∂zi
, i = 1, 2, we obtain from (8.37),

(8.9), and (8.42) the formulas

∂ζ1
∂z1

=

(
1 + λ2ζ2
1 + λ2z2

)
· 1 + λ2ζ2
1 + λ2ζ2 − λ2ζ1f ′S(ζ1)

= 1 +O(λ), 
z ∈ S,(8.45)

∂ζ1
∂z2

= −
(
1 + λ2ζ2
1 + λ2z2

)
· λ2ζ1
1 + λ2ζ2 − λ2ζ1f ′S(ζ1)

= −λ2ζ1 +O(λ2), 
z ∈ S.(8.46)

Note that the denominator 1 + λ2ζ2 − λ2ζ1f
′
S(ζ1) in (8.45) and (8.46) is strictly positive by

(8.5) and hence bounded below for 
ζ ∈ ∂SM . For E, the analogous formulas are

∂ζ2
∂z2

=

(
1− λ1ζ1
1− λ1z1

)
· 1− λ1ζ1
1− λ1ζ1 + λ1ζ2f ′E(ζ2)

= 1 +O(λ), 
z ∈ E,(8.47)

∂ζ2
∂z1

=

(
1− λ1ζ1
1− λ1z1

)
· λ1ζ2
1− λ1ζ1 + λ1ζ2f ′E(ζ2)

= λ1ζ2 +O(λ2), 
z ∈ E.(8.48)

We close this section with a theorem that provides sufficient conditions for a function of
the type appearing in Theorem 8.4 to be a viscosity subsolution or viscosity supersolution of
(6.15).

Theorem 8.6. Suppose D2 is partitioned into finitely many disjoint open sets O1, . . . ,On

so that D2 = ∪n
k=1Ok. We assume that for every 
z ∈ D2, there is a line segment in the

radial direction with one end point at 
z that is entirely in one of the sets Ok. Suppose w ∈
C(D2) ∩ C1(D2), w = 0 on ∂D2, and w is C2 in each Ok ∩ D2 (Definition 8.3). If, for
k = 1, . . . , n,

(8.49) min
[L2w − Ũ(pw −∇w · 
z ),B1w,B2w,S1w,S2w

] ≤ 0 on Ok ∩ D2
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(where (8.49) is evaluated in Ok and also on ∂Ok ∩D2, in the latter case using the continuous
extension to Ok ∩ D2 of the second derivatives of w defined in Ok), then w is a viscosity
subsolution of (6.15). If, for k = 1, . . . , n,

(8.50) min
[L2w − Ũ(pw −∇w · 
z ),B1w,B2w,S1w,S2w

] ≥ 0 on Ok ∩ D2,

then w is a viscosity supersolution of (6.15).

Proof. We assume (8.49) and prove that w is a subsolution of (6.15). The proof that (8.50)
implies the supersolution property for w is analogous.

Let 
z ∈ D2 be given. Let ϕ be a C2 function defined on D2 that agrees with w at 
z and
dominates w on D2. Then ∇ϕ(
z) = ∇w(
z). Set 
z(α) = (1 + α)
z. By assumption, there is
a k and ε > 0 such that Ok contains either the line segment {
z(α) : −ε ≤ α ≤ 0} or the
line segment {
z(α) : 0 ≤ α ≤ ε}. For specificity, we consider the latter case. The function
f(α) = ϕ(
z (α)) − w(
z (α)) is C2 on [0, ε] and attains its minimum at α = 0. Therefore,
0 ≤ f ′′(0) = ∇2ϕ(
z )
z · 
z −∇2wOk(
z )
z · 
z, where ∇2wOk denotes the second derivative of w
extended by continuity from Ok to Ok ∩ D2. From the definition (6.10) of L2, we see that
(8.49) now implies the nonpositivity of (6.16) at 
z.

9. The case ρ = 0. We first prove the special case of our main result, Theorem 4.1,
under the assumption that ρ = 0. When ρ = 0, we do not need conditions (2.1) and (2.4).
We state the result for the function u of two variables defined by (6.3).

Theorem 9.1. Under Assumptions 2.2 and 2.3 and ρ = 0, the value function u for the
problem with positive λ satisfies

(9.1) u(
θ ) =
1

p
Ap−1 − γλ2/3 +O(λ).

The constant γ in (9.1) is

(9.2) γ � 3

2
Ap−2(V
θ · 
θ )

2∑
i=1

μiθ
2
i

νi
,

where

(9.3) νi =
3

√
12μiθ2i

(1− p)σ2i
(V
θ · 
θ ), i = 1, 2.

The remainder of this section is the proof of Theorem 9.1. It is divided into several steps.
The idea of the proof is to construct two functions, a subsolution and a supersolution of (6.15).
We construct each function by partitioning the solvency region as in Figure 1, defining the
function in M , extending the function via Theorem 8.4, and verifying that the function is a
subsolution or a supersolution using Theorem 8.6.

9.1. Partitioning the solvency region. We need two partitions of the solvency region,
corresponding to a subsolution and a supersolution of (6.15). We create both partitions
simultaneously. Let B be a positive constant and K a real constant to be chosen later. We
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shall in fact choose K to be negative to get a subsolution and positive to get a supersolution.
With ν1 and ν2 defined by (9.3) and

(9.4) −1

2
ν1λ

1/3 ≤ δ1 ≤ 1

2
ν1λ

1/3, −1

2
ν2λ

1/3 ≤ δ2 ≤ 1

2
ν2λ

1/3,

define

(9.5) hi(δi) � μi

[
3

2
δ2i λ

2/3 − 1

ν2i
δ4i +

3

2
Bδ2i λ

4/3

]
= O(λ4/3)

so that

h′i(δi) = μi

[
3δiλ

2/3 − 4

ν2i
δ3i + 3Bδiλ

4/3

]
= O(λ),(9.6)

h′′i (δi) = μi

[
3λ2/3 − 12

ν2i
δ2i + 3Bλ4/3

]
= O(λ2/3).(9.7)

We further define

(9.8) H(δ1, δ2) �
2∑

i=1

1

νi

[−phi(δi) + (δi + θi)h
′
i(δi)

]
= O(λ)

so that

(9.9)
∂

∂δi
H(δ1, δ2) =

1

νi

[
(1− p)h′i(δi) + (δi + θi)h

′′
i (δi)

]
= O(λ2/3).

Finally, we set

GS(δ1, δ2) � λ2 − pγA1−pλ2λ
2/3 + pKA1−pλ2λ+

h′2(δ2)
ν2

+ λ2H(δ1, δ2),(9.10)

GE(δ1, δ2) � λ1 − pγA1−pλ1λ
2/3 + pKA1−pλ1λ− h′1(δ1)

ν1
+ λ1H(δ1, δ2),(9.11)

GN (δ1, δ2) � λ2 − pγA1−pλ2λ
2/3 + pKA1−pλ2λ− h′2(δ2)

ν2
+ λ2H(δ1, ζ2),(9.12)

GW (δ1, δ2) � λ1 − pγA1−pλ1λ
2/3 + pKA1−pλ1λ+

h′1(δ1)
ν1

+ λ1H(δ1, δ2).(9.13)

We define the boundary functions of the middle region M appearing in (8.1)–(8.4) by

fS(ζ1) = FS(ζ1 − θ1) + θ2, fE(ζ2) = FE(ζ2 − θ2) + θ1,

fN (ζ1) = FN (ζ1 − θ1) + θ2, fW (ζ2) = FW (ζ2 − θ2) + θ1,

where FS , FE , FN , and FW are defined implicitly by the formulas

GS

(
δ1, FS(δ1)

)
= 0, GE

(
FE(δ2), δ2

)
= 0,(9.14)

GN

(
δ1, FN (δ1)

)
= 0, GW

(
FW (δ2), δ2

)
= 0.(9.15)
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In particular, we are using the change of variables δi = ζi− θi for i = 1, 2. We can make these
definitions because of the following lemma.

Lemma 9.2. For sufficiently small λ > 0, there exist C1 functions FS(δ1), FE(δ2), FN (δ1),
and FW (δ2), defined for (δ1, δ2) satisfying (9.4), so that (9.14) and (9.15) are satisfied. These
functions are “nearly constant” in the sense that for (δ1, δ2) satisfying (9.4) and for any

constant ξ >
√

2
3pγA

1−p +B,

−1

2
ν2λ

1/3 < FS(δ1) < −1

2
ν2λ

1/3(1− ξλ1/3),

1

2
ν1λ

1/3(1− ξλ1/3) < FE(δ2) <
1

2
ν1λ

1/3,

1

2
ν2λ

1/3(1− ξλ1/3) < FN (δ1) <
1

2
ν2λ

1/3,

−1

2
ν1λ

1/3 < FW (δ2) < −1

2
ν1λ

1/3(1− ξλ1/3).

In addition, fS(ζ1), fE(ζ2), fN(ζ1), and fW (ζ2) are C
1 and satisfy (8.5)–(8.8) and

(9.16) f ′S(ζ1) = O(λ1/3), f ′E(ζ2) = O(λ1/3), f ′N(ζ1) = O(λ1/3), f ′W (ζ2) = O(λ1/3)

as long as δ1 = ζ1 − θ1 and δ2 = ζ2 − θ2 satisfy (9.4).

Proof. Following Remark 8.1 we provide the proofs for FS and FE . Let δ1 satisfy (9.4),
let ξ ∈ R be given, and set δ∗2 = −1

2ν2λ
1/3(1− ξλ1/3). Then

GS(δ1, δ
∗
2) = μ2λ− pγA1−pμ2λ

5/3

+
μ2
ν2
δ∗2
[
3λ2/3 − λ2/3(1− 2ξλ1/3 + ξ2λ2/3) + 3Bλ4/3

]
+O(λ2)

=
3

2
μ2

(
ξ2 − 2

3
pγA1−p −B

)
λ5/3 +O(λ2),

and the O(λ2) term is uniform in δ1. The O(λ5/3) term in the last line is negative if ξ = 0 and

is positive if ξ exceeds
√

2
3pγA

1−p +B. Let us fix ξ >
√

2
3pγA

1−p +B. Then for sufficiently

small λ > 0 there is some FS(δ1) in the interval (−1
2ν2λ

1/3,−1
2ν2λ

1/3(1 − ξλ1/3)) for which
GS(δ1, FS(δ1)) = 0. But for δ1 and δ2 satisfying (9.4),

(9.17)
∂

∂δ2
GS(δ1, δ2) =

h′′2(δ2)
ν2

+O(λ5/3) ≥ 3Bμ2
ν2

λ4/3 +O(λ5/3) > 0

for sufficiently small λ > 0, uniformly in δ1 and δ2. Hence, the zero of GS(δ1, ·) is unique.
Furthermore, because GS is C1 and (9.17) holds, the implicit function theorem implies that
FS is also C1. In addition, the fact that (∂/∂δ1)GS(δ1, δ2) = O(λ5/3) and relation (9.17) show
that

F ′
S(δ1) = −

∂
∂δ1
GS(δ1, δ2)

∣∣
δ2=FS(δ1)

∂
∂δ2
GS(δ1, δ2)

∣∣
δ2=FS(δ1)

= O(λ1/3).
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It follows that

(9.18) f ′S(ζ1) = O(λ1/3), θ1 − 1

2
ν1λ

1/3 ≤ ζ1 ≤ θ1 +
1

2
ν1λ

1/3,

and thus (8.5) is satisfied for ζ1 in the interval specified in (9.18).

Again let ξ ∈ R be given, but now define δ∗1 = 1
2ν1λ

1/3(1−ξλ1/3) and compute GE(δ
∗
1 , δ2) =

3
2μ1(ξ

2 − 2
3pγA

1−p−B)λ5/3 +O(λ2). We proceed as above to produce FE(δ2) ∈ (12ν1λ
1/3(1−

ξλ1/3), 12ν1λ
1/3) such thatGE(FE(δ2), δ2) = 0. For δ1 and δ2 satisfying (9.4), (∂/∂δ1)GE(δ1, δ2)

≤ −3Bμ1

ν1
λ4/3 + O(λ5/3) < 0 for sufficiently small λ > 0, uniformly in δ1 and δ2. Because

(∂/∂δ2)GE(δ1, δ2) = O(λ5/3), we must have F ′
E(δ2) = O(λ1/3). Hence f ′E(ζ2) = O(λ1/3),

θ2 − 1
2ν2λ

1/3 ≤ ζ2 ≤ θ2 +
1
2ν2λ

1/3, which implies (8.6) for ζ2 in the range just specified.
Remark 9.3. Because of the inequalities in Lemma 9.2, the graph in the (δ1, δ2)-plane of

the continuous function FS(δ1), −1
2ν1λ

1/3 ≤ δ1 ≤ 1
2ν1λ

1/3, must intersect the graph in the

(δ1, δ2)-plane of the continuous function FE(δ2), −1
2ν2λ

1/3 ≤ δ2 ≤ 1
2νλ

1/3. The intersection

point must be unique because the derivatives of both FS and FE are of order λ1/3, and it
must lie in (12ν1λ

1/3(1 − ξλ1/3), 12ν1λ
1/3) × (−1

2ν2λ
1/3,−1

2ν2λ
1/3(1 − ξλ1/3)). We denote the

intersection point by 
δSE = (δSE1 , δSE2 ). We then define 
ζSE = 
δSE + 
θ. Similarly, we choose

intersection points and define 
ζNE, 
ζNW , and 
ζSW . This completes the construction of the
boundary functions described by (8.1)–(8.4) for the middle region M so that (8.5)–(8.8) are
satisfied.

We have constructed M to be a proper subset of the rectangle

(9.19) R(λ) �
(
θ1 − 1

2
ν1λ

1/3, θ1 +
1

2
ν1λ

1/3

)
×
(
θ2 − 1

2
ν2λ

1/3, θ2 +
1

2
ν2λ

1/3

)
.

We fix ξ >
√

2
3pγA

1−p +B and define four “perimeter sets” of R(λ) by

PS �
{

z ∈ R : θ2 − 1

2
ν2λ

1/3 < z2 < θ2 − 1

2
ν2λ

1/3(1− ξλ1/3)

}
,

PE �
{

z ∈ R : θ1 +

1

2
ν1λ

1/3(1− ξλ1/3) < z1 < θ1 +
1

2
ν1λ

1/3

}
,

PN �
{

z ∈ R : θ2 +

1

2
ν2λ

1/3(1− ξλ1/3) < z2 < θ2 +
1

2
ν2λ

1/3

}
,

PW �
{

z ∈ R : θ1 − 1

2
ν1λ

1/3 < z1 < θ1 − 1

2
ν1λ

1/3(1− ξλ1/3)

}
.

We have shown that for sufficiently small λ > 0,(
ζ1, fS(ζ1)

) ∈ PS , f ′S(ζ1) = O(λ1/3), ζSW1 ≤ ζ1 ≤ ζSE1 ,(9.20) (
fE(ζ2), ζ2) ∈ PE , f ′E(ζ2) = O(λ1/3), ζSE2 ≤ ζ2 ≤ ζNE

2 ,(9.21) (
ζ1, fN (ζ1)

) ∈ PN , f ′N(ζ1) = O(λ1/3), ζNW
1 ≤ ζ1 ≤ ζNE

1 ,(9.22) (
fW (ζ2), ζ2

) ∈ PW , f ′W (ζ2) = O(λ1/3), ζSW2 ≤ ζ2 ≤ ζNW
2 .(9.23)
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In other words, the boundaries of M are almost straight lines, and the region M almost
coincides with the rectangle R(λ).

The boundaries of M depend on the constant K appearing in the definitions of GS , GE ,
GN , and GW . However, the perimeter sets PS , PE , PN , and PW do not, and the O(λ1/3) terms
appearing in (9.20)–(9.23) depend only on bounds that are uniform over these perimeter sets,
and hence they do not depend on K.

Finally, we define the eight nonmiddle regions of D2, as shown in Figure 1.

9.2. Construction of wM on D2. We define a C2 function wM on the rectangle R(λ)
defined by (9.19) whose restriction to M will play the role of wM in Theorem 8.4 by the
formula

(9.24) wM (
z ) � 1

p
Ap−1 − γλ2/3 +Kλ−

2∑
i=1

1

νi
Ap−1hi(zi − θi), 
z ∈ R(λ),

where the constant K is chosen to satisfy conditions specified in the proofs of Lemmas 9.8
and 9.9 below. We may restrict wM to M and then extend this restricted function wM |M to
D2, as described in Theorem 8.4. We call the extended function w. Note that w = wM on
M , but w does not agree with wM on R(λ) \M .

Lemma 9.4. The function wM |M satisfies (8.28) and (8.31). Consequently, w is C1 on D2,
its first derivatives are given by (8.20)–(8.27), and w satisfies (8.29), (8.30), and (8.32). For
sufficiently small λ > 0, the function w also satisfies

(9.25) min
[B1w,B2w,S1w,S2w

] ≥ 0 on M.

Proof. Using the notation 
z = 
δ + 
θ, it is straightforward to verify that for 
z ∈ R,

B2w
M (
z ) = Ap−1GS(
δ ), S1w

M (
z ) = Ap−1GE(
δ ),(9.26)

S2w
M (
z ) = Ap−1GN (
δ ), B1w

M (
z ) = Ap−1GW (
δ ).

Equations (9.14) and (9.15) imply (8.28). Once we have proved (9.25), then (8.28) will imply
(8.31).

It remains to prove (9.25). We show that B2w ≥ 0 and S1w ≥ 0 on M ; the proofs of the
other two inequalities in (9.25) are analogous. In fact, we prove the stronger result that

B2w
M (
z ) ≥ 0, 
z ∈ R(λ) such that z2 ≥ fS(z1),

S1w
M (
z ) ≥ 0, 
z ∈ R(λ) such that z1 ≤ fE(z2).

Since B2w
M (
z ) = 0 when 
z ∈ R(λ) and z2 = fS(z1), and S1w

M (
z ) = 0 when 
z ∈ R(λ) and
z1 = fE(z2), for this it will suffice to show that

∂

∂z2
B2w

M (
z ) ≥ 0,
∂

∂z1
S1w

M (
z ) ≤ 0, 
z ∈ R(λ).

Using the first equality in (9.26), we have from (9.17) that

∂

∂z2
B2w

M (
z ) = Ap−1 ∂

∂δ2
GS(
δ ) ≥ 3Bμ2

ν2
Ap−1λ4/3 +O(λ5/3),
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which is strictly positive for sufficiently small λ > 0, uniformly in 
z ∈ R. Similarly,

∂

∂z1
S1w

M (
z ) = Ap−1 ∂

∂δ1
GE(
δ ) ≤ −3Bμ1

ν1
Ap−1λ4/3 +O(λ5/3).

Remark 9.5 (derivative estimates of w on ∂M). It is straightforward to compute the first
derivatives of wM on the perimeter sets PS , PE , PN , and PW . Using (9.24) we obtain

wM
2 = Ap−1λ2 +O(λ4/3), wM

1 = O(λ) on PS ,(9.27)

wM
1 = −Ap−1λ1 +O(λ4/3), wM

2 = O(λ) on PE ,(9.28)

wM
2 = −Ap−1λ2 +O(λ4/3), wM

1 = O(λ) on PN ,

wM
1 = Ap−1λ1 +O(λ4/3), wM

2 = O(λ) on PW .

The O(λ) and O(λ4/3) terms in these formulas do not depend on K.

The second partial derivatives of w may not exist on ∂M , but we can compute the second
partials of wM inside the perimeter sets, and on ∂M these coincide with the second partials
of w on computed from inside M . Direct computation reveals

wM
2,2 = O(λ), wM

1,1 = O(λ2/3) on PS ∪ PN ,(9.29)

wM
1,1 = O(λ), wM

2,2 = O(λ2/3) on PE ∪ PN ,(9.30)

wM
1,2 = 0 on R(λ).(9.31)

In particular, for i, j ∈ {1, 2},

(9.32) wM
i,j(

ζSE) = O(λ), wM

i,j(

ζNE) = O(λ), wM

i,j(

ζNW ) = O(λ), wM

i,j(

ζSW ) = O(λ).

The O(λ) and O(λ2/3) terms in (9.29)–(9.32) do not depend on K.

We derive additional estimates on the pure second partials of wM on the boundaries of
M . The first equation in (8.28), B2w = 0, evaluated along the southern boundary of M is

λ2pw
(
ζ1, fS(ζ1)

)− λ2ζ1w1

(
ζ1, fS(ζ1)

)− (1 + λ2fS(ζ1)
)
w2

(
ζ1, fS(ζ1)

)
= 0

for ζSW1 ≤ ζ1 ≤ ζSE1 . Differentiation yields (recall (9.31))

λ2(p− 1)w1

(
ζ1, fS(ζ1)

)
+ λ2(p − 1)w2

(
ζ1, fS(ζ1)

)
f ′S(ζ1)− λ2ζ1w

M
1,1

(
ζ1, fS(ζ1)

)
=
(
1 + λ2fS(ζ1)

)
wM
2,2

(
ζ1, fS(ζ1)

)
f ′S(ζ1).(9.33)

From (9.27) and the second equation in (9.29), we see that the left-hand side of (9.33) is
O(λ5/3). In conclusion,

(9.34) wM
2,2

(
ζ1, fS(ζ1)

)
f ′S(ζ1) = O(λ5/3), ζSW1 ≤ ζ1 ≤ ζSE1 .

The second equation in (8.28), S1w = 0, evaluated along the eastern boundary of M is

λ1pw
(
fE(ζ2), ζ2

)
+ (1− λ1fE(ζ2)

)
w1

(
fE(ζ2), ζ2

)− λ1ζ2w2

(
fE(ζ2), ζ2

)
= 0
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for ζSE2 ≤ ζ2 ≤ ζNE
2 . Differentiation yields

(9.35) wM
1,1

(
fE(ζ2), ζ2

)
f ′E(ζ2) = O(λ5/3), ζSE2 ≤ ζ2 ≤ ζNE

2 .

The analogous equations on the other two boundaries of M are (see Remark 8.1)

wM
2,2

(
ζ1, fN (ζ1)

)
f ′N(ζ1) = O(λ5/3), ζNW

1 ≤ ζ1 ≤ ζNE
1 ,(9.36)

wM
1,1

(
fW (ζ2), ζ2

)
f ′W (ζ2) = O(λ5/3), ζSW2 ≤ ζ2 ≤ ζNW

2 .(9.37)

The O(λ5/3) terms appearing in (9.34)–(9.37) are independent of K.

9.3. The second partial derivatives of w outside M . We compute second partial deriva-
tives of w in the regions S, E, and SE. In S ∩D2, the first partial derivatives wi are given by
(8.20) with 
z and 
ζ related by (8.9). From this formula, using (9.31), we compute

wS
1,1(
z ) =

∂

∂z1

[(
1 + λ2z2
1 + λ2ζ2

)p−1

w1(
ζ )

]

=

(
1 + λ2z2
1 + λ2ζ2

)p−1 [λ2(1− p)

1 + λ2ζ2
f ′S(ζ1)w1(
ζ ) + wM

1,1(

ζ )

]
∂ζ1
∂z1

, 
z ∈ S ∩ D2.

In light of the second equality in (9.20), (9.27), (9.29), and (8.45), we see that

(9.38) wS
1,1(


ζ ) = wM
1,1(


ζ ) +O(λ5/3), 
ζ ∈ ∂SM.

Recalling (9.31), we next compute

wS
1,2(
z ) =

∂

∂z2

[(
z1
ζ1

)p−1

w1(
ζ )

]

=

(
z1
ζ1

)p−1 [1− p

ζ1
w1(
ζ ) + wM

1,1(

ζ )

]
∂ζ1
∂z2

, 
z ∈ S ∩D2,

and (9.27), (9.29), and (8.46) imply

(9.39) wS
1,2(


ζ ) = O(λ5/3), 
ζ ∈ ∂SM.

Finally,

wS
2,2(
z ) =

∂

∂z2

[(
z1
ζ1

)p−1

w2(
ζ )

]

=

(
z1
ζ1

)p−1 [1− p

ζ1
w2(
ζ ) + wM

2,2(

ζ )f ′S(ζ1)

]
∂ζ1
∂z2

, 
z ∈ S ∩ D2,(9.40)

and (9.27), (9.29), the second equality in (9.20), and (8.46) imply

(9.41) wS
2,2(


ζ ) = −(1− p)Ap−1λ22 +O(λ7/3), 
ζ ∈ ∂SM.
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In E∩D2, the first partial derivatives wi are given by (8.21) with 
z and 
ζ related by (8.10).
Therefore

wE
1,1(
z ) =

(
z2
ζ2

)p−1 [1− p

ζ2
w1(
ζ ) + wM

1,1(

ζ )f ′E(ζ2)

]
∂ζ2
∂z1

, 
z ∈ E ∩ D2.(9.42)

Using (9.28), (9.30), (9.21), and (8.48) we obtain

(9.43) wE
1,1(


ζ ) = −(1− p)Ap−1λ21 +O(λ7/3), ζ ∈ ∂EM.

We also have

wE
1,2(
z ) =

(
z2
ζ1

)p−1 [1− p

ζ2
w2(
ζ ) + wM

2,2(

ζ )

]
∂ζ2
∂z1

, 
z ∈ E ∩ D2.(9.44)

Using (9.28), (9.30), and (8.48) we obtain

(9.45) wE
1,2(


ζ ) = O(λ5/3), 
ζ ∈ ∂EM.

Finally,

(9.46) wE
2,2(
z ) =

(
1− λ1z1
1− λ1ζ1

)p−1 [λ1(p− 1)

1− λ1ζ1
f ′E(ζ2)w2(
ζ ) + wM

2,2(

ζ )

]
∂ζ2
∂z2

, 
z ∈ E ∩D2.

Using (9.28), (9.21), (9.30), and (8.47) we obtain

(9.47) wE
2,2(


ζ ) = wM
2,2(


ζ ) +O(λ5/3), 
ζ ∈ ∂EM.

We may take 
z in (9.42), (9.44), and (9.46) to be in SE∩E∩D2 so that ζ in these formulas
becomes 
ζSE. We see then that for i, j ∈ {1, 2},

(9.48) wE
i,j(
z ) = O(λ), 
z ∈ SE ∩E ∩ D2,

where the O(λ) term is uniform in 
z as long as 
z is bounded away from ∂D2; see Remark
9.10 below in this regard. An analogous proof shows that wS

i,j = O(λ) in compact subsets of

SE ∩ S ∩ D2.

In SE we begin with the formula (8.24) and compute for 
z ∈ SE ∩ D2 that

wSE
1,1 (
z ) =

(1− p)λ1

1− λ1ζSE1 + λ2ζSE2

(
1− λ1z1 + λ2z2

1− λ1ζSE1 + λ2ζSE2

)p−2

w1(
ζ
SE),(9.49)

wSE
1,2 (
z ) = − (1− p)λ2

1− λ1ζSE1 + λ2ζSE2

(
1− λ1z1 + λ2z2

1− λ1ζSE1 + λ2ζSE2

)p−2

w1(
ζ
SE),(9.50)

wSE
2,2 (
z ) = − (1− p)λ2

1− λ1ζSE1 + λ2ζSE2

(
1− λ1z1 + λ2z2

1− λ1ζSE1 + λ2ζSE2

)p−2

w2(
ζ
SE).(9.51)
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We then use (9.28) twice and (9.27) to conclude that

wSE
1,1 (


ζSE) = − 1− p

1− λ1ζSE1 + λ2ζSE2

Ap−1λ21 +O(λ7/3),(9.52)

wSE
1,2 (


ζSE) =
1− p

1− λ1ζSE1 + λ2ζSE2

Ap−1λ1λ2 +O(λ7/3),(9.53)

wSE
2,2 (


ζSE) = − 1− p

1− λ1ζSE1 + λ2ζSE2

Ap−1λ22 +O(λ7/3).(9.54)

The O(λ), O(λ5/3), and O(λ7/3) in (9.38), (9.39), (9.41), (9.43), (9.45), (9.47), (9.48), and
(9.52)–(9.54) do not depend on K.

Remark 9.6. Returning to (9.40), we use (8.46) and (8.9) to write

wS
2,2(
z ) = −

(
z1
ζ1

)p−2 [1− p

ζ1
w2(
ζ ) + wM

2,2(

ζ )f ′S(ζ1)

]
· λ2ζ1
1 + λ2ζ2 − λ2ζ1f ′S(ζ1)

for 
z ∈ S ∩ D2. Replacing 
z by 
ζ ∈ ∂SM , we obtain

wS
2,2(


ζ ) = −
[
1− p

ζ1
w2(
ζ ) + wM

2,2(

ζ )f ′S(ζ1)

]
· λ2ζ1
1 + λ2ζ2 − λ2ζ1f

′
S(ζ1)

,

and substituting this back into the original equation, we conclude that

(9.55) wS
2,2(
z ) =

(
z1
ζ1

)p−2

wS
2,2(


ζ ), 
z ∈ S ∩D2.

Arguing in the same way from (9.42), (8.48), and (8.10), we conclude that

(9.56) wE
1,1(
z ) =

(
z2
ζ2

)p−2

wE
1,1(


ζ ), 
z ∈ E ∩ D2.

9.4. L2w − Ũ(pw − ∇w · �z ) in M .
Lemma 9.7. Fix a > 0. For 0 ≤ b < a, the function Ũ defined by (5.2) satisfies

Ũ(a− b) =
1− p

p
ap/(p−1) + ba1/(p−1) +O(b2).

Proof. A Taylor series expansion of f(x) = x1/(p−1) around x = a yields

(a− b)1/(p−1) = a1/(p−1) +
b

1− p
a(2−p)/(p−1) +O(b2).

This implies that

Ũ(a− b) =
1− p

p
(a− b) · (a− b)1/(p−1)

=
1− p

p
(a− b)

[
a1/(p−1) +

b

1− p
a(2−p)/(p−1) +O(b2)

]
,
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and the result follows by simplification of this last expression.

Lemma 9.8. The function w defined in section 9.2 is C2 on the closed set M and for
sufficiently large K satisfies

(9.57) L2w
M − Ũ(pw −∇w · 
z ) ≥ 0

on this set. For sufficiently small (i.e., negative) K, the reverse inequality holds.

Proof. On the set M ⊂ R, the function w agrees with the function wM defined by (9.24),
and the second derivative limits of w on ∂M in (9.57) are understood to be those from inside
M . From (9.5)–(9.7), for 
z ∈M we have

w(
z ) =
1

p
Ap−1 − γλ2/3 +Kλ+O(λ4/3),(9.58)

∇w(
z ) · 
z = O(λ), ∇2wM (
z )
z · 
z = O(λ2/3),(9.59)

where the coefficients in the O(λ4/3), O(λ), and O(λ2/3) terms in (9.58)–(9.59) depend on the
model parameters but not on the constantK appearing in (9.58). We write pw(
z )−∇w(
z )·
z =
a − b by setting a = Ap−1 and b = pγλ2/3 − pKλ + O(λ) and use Lemma 9.7 and (9.58) to
obtain

Ũ
(
pw(
z )−∇w(
z ) · 
z ) = 1− p

p
Ap +A

[
pγλ2/3 − pKλ+O(λ)

]
= (1− p)Aw(
z ) + γAλ2/3 −KAλ+O(λ).(9.60)

Together with these equations, (6.10) and (2.12) imply

L2w
M (
z )− Ũ

(
pw(
z )−∇w(
z ) · 
z )

=
1

2
p(1− p)

(
V(
z − 
θ ) · (
z − 
θ )

)
w(
z )− 1

2
(V
z · 
z )(∇2wM (
z )
z · 
z )

− γAλ2/3 +KAλ+O(λ), 
z ∈M,(9.61)

where the O(λ) term is independent of K. For 
z ∈ M , V(
z − 
θ ) · (
z − 
θ ) = O(λ2/3), and
hence

1

2
p(1− p)

(
V(
z − 
θ ) · (
z − 
θ )

)
w(
z ) =

1

2
(1− p)Ap−1V(
z − 
θ ) · (
z − 
θ ) +O(λ4/3)

=
1

2
(1− p)Ap−1

2∑
i=1

σ2i (zi − θi)
2 +O(λ4/3).

(9.62)
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Because 
z = 
θ +O(λ1/3), the second equation in (9.59) implies

−1

2
(V
z · 
z )(∇2wM (
z )
z · 
z )

= −1

2
(V
θ · 
θ )(∇2wM (
z )
z · 
z )+O(λ)

=
1

2
(V
θ · 
θ )

2∑
i=1

1

νi
Ap−1z2i h

′′
i (zi − θi) +O(λ)

=
1

2
(V
θ · 
θ )

2∑
i=1

1

νi
Ap−1θ2i h

′′
i (zi − θi) +O(λ)

=
1

2
Ap−1(V
θ · 
θ )

2∑
i=1

μiθ
2
i

νi

[
3λ2/3 − 12

ν2i
(zi − θi)

2

]
+O(λ)

=
3

2
Ap−1(V
θ · 
θ )

2∑
i=1

μiθ
2
i

νi
λ2/3 − 6Ap−1(V
θ · 
θ )

2∑
i=1

μiθ
2
i

ν3i
(zi − θi)

2 +O(λ)

= γAλ2/3 − 1

2
(1− p)Ap−1

2∑
i=1

σ2i (zi − θi)
2 +O(λ),(9.63)

where we have used (9.2) and (9.3) in the last step. Substituting (9.62) and (9.63) into (9.61),
we obtain

(9.64) L2w
M (
z )− Ũ

(
pw(
z )−∇w(
z ) · 
z ) = KAλ+O(λ),

where the O(λ) term is independent of K. By choosing K > 0 sufficiently large, we can ensure
that KAλ + O(λ) ≥ 0. By choosing K sufficiently small (i.e., negative), we can ensure the
reverse inequality.

9.5. L2w − Ũ(pw − ∇w · �z ) in D2 \ M .
Lemma 9.9. The function w defined in section 9.2 is C2 on each of the eight nonmiddle

sets S ∩D2, SE ∩ D2, . . . , SW ∩ D2 and for sufficiently large K satisfies

(9.65) L2w − Ũ(pw −∇w · 
z ) ≥ 0

on each of these sets.
Proof. By Lemma 9.8, w is C2 on M , and by Lemma 9.4, it also satisfies (8.28). Theorem

8.4 implies that w is C2 on each of the eight nonmiddle sets.
Following Remark 8.1, we prove (9.65) only on S ∩ D2, E ∩ D2, and SE ∩ D2. We first

prove (9.65) on ∂SM . According to Lemma 9.8, for sufficiently large K,

(9.66) L2w
M (
ζ )− Ũ

(
pw(
ζ )−∇w(
ζ ) · 
ζ ) ≥ 0, 
ζ ∈ ∂M.

Because w is C1, the only difference between this inequality and the inequality we wish to
prove for 
ζ ∈ ∂SM ,

(9.67) L2w
S(
ζ )− Ũ

(
pw(
ζ )−∇w(
ζ ) · 
ζ ) ≥ 0,
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is in the second-order term in the operator L2. In (9.66) this term is

−1

2
(V
ζ · 
ζ )(∇2wM (
ζ )
ζ · 
ζ ) = −1

2
(V
ζ · 
ζ )wM

1,1(

ζ )ζ21 +O(λ),

where we have used (9.29) and (9.31). As observed in Remark 9.5, the O(λ) term appearing
in this equation is independent of K. In (9.67) this term is

−1

2
(V
ζ · 
ζ )(∇2wS(
ζ )
ζ · 
ζ ) = −1

2
(V
ζ · 
ζ )wM

1,1(

ζ )ζ21 +O(λ5/3),

where we have used (9.38), (9.39), and (9.41). These terms differ by O(λ), so (9.64) implies

L2w
S(
ζ )− Ũ

(
pw(
ζ )−∇w(
ζ ) · 
ζ )

= L2w
M (
ζ )− Ũ

(
pw(
ζ )−∇w(
ζ ) · 
ζ ) +O(λ)

= KAλ+O(λ), ζ ∈ ∂SM,(9.68)

where the O(λ) term is independent of K. Increasing K if necessary, we can ensure that (9.67)
holds on ∂SM .

We extend the inequality (9.67) from ∂SM to the rest of S ∩ D2. We begin with the
inequality B2w = 0, which holds in S ∩D2 (Lemma 9.4). We first write this equality, compute
the partial derivative with respect to z1, and then compute the partial derivative with respect
to z2 to obtain the three equations

λ2pw(
z )− w2(
z )− λ2∇w(
z ) · 
z = 0,(9.69)

λ2(p− 1)w1(
z )− wS
1,2(
z )− λ2∇wS

1 (
z ) · 
z = 0,(9.70)

λ2(p− 1)w2(
z )− wS
2,2(
z )− λ2∇wS

2 (
z ) · 
z = 0.(9.71)

Multiplying (9.69) by 1 − p, multiplying (9.70) by z1, multiplying (9.71) by z2 − (1/λ2),
summing the three resulting equations, and then dividing by λ2, we obtain

(9.72) −p(1− p)w(
z ) + 2(1 − p)∇w(
z ) · 
z +∇2wS(
z )
z · 
z = 1

λ22
wS
2,2(
z ), 
z ∈ S ∩ D2.

Equations (9.69) and (9.72) permit us to write

L2w
S(
z )− Ũ(pw(
z )−∇w(
z ) · 
z)

= βw(
z )− (r + 
α · 
z )(pw(
z )−∇w(
z ) · 
z )
− 1

2
(V
z · 
z )(− p(1− p)w(
z ) + 2(1 − p)∇w(
z) · 
z +∇2wS(
z )
z · 
z )

− Ũ
(
pw(
z )−∇w(
z ) · 
z )

= βw(
z )− (r + 
α · 
z) 1

λ2
w2(
z )− 1

2
(V
z · 
z ) 1

λ22
wS
2,2(
z )− Ũ

(
1

λ2
w2(
z )

)
.(9.73)

The region S is the union of line segments connecting points 
ζ ∈ ∂SM with (0,−1/λ2).
We parameterize these segments as

(9.74) z1(t) =
ζ1

1 + λ2ζ1t
, z2(t) =

ζ2 − ζ1t

1 + λ2ζ1t
, t ≥ 0,
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so that 1 + λ2z2(t) = (1 + λ2ζ2)/(1 + λ2ζ1t) and (cf. (8.9))

(9.75)
z1(t)

1 + λ2z2(t)
=

ζ1
1 + λ2ζ2

.

We set 
z(t) = (z1(t), z2(t)) and note that 
z(0) = 
ζ and 
z(∞) = (0,−1/λ2) (recall the abuse
of notation of Remark 2.4). We show that

JS(t) �
1

zp1(t)

[
βw
(

z(t)

)− (r + 
α · 
z(t)) 1

λ2
w2

(

z(t)

) − 1

2

(
V
z(t) · 
z(t)) 1

λ22
wS
2,2

(

z(t)

)
− Ũ

(
1

λ2
w2

(

z(t)

))]
(9.76)

is nondecreasing in t. From (9.67) and (9.73), we have JS(0) ≥ 0. Once we show that JS is
nondecreasing, we can conclude that the expression in (9.73) is nonnegative in S ∩ D2.

Note first from (5.2) that

(9.77)
1

zp1(t)
Ũ

(
1

λ2
w2

(

z(t)

))
= Ũ

(
w2

(

z(t)

)
λ2z

p−1
1 (t)

)
.

Observe next from (8.13), (8.20), and (9.55) that

(9.78)
w
(

z(t)

)
zp1(t)

=
w(
ζ )

ζp1
,

w2

(

z(t)

)
zp−1
1 (t)

=
w2(
ζ )

ζp−1
1

,
wS
2,2

(

z(t)

)
zp−2
1 (t)

=
wS
2,2(


ζ)

ζp−2
1

.

Therefore

JS(t) =
βw(
ζ )

ζp1
− 1

z1(t)

(
r + 
α · 
z(t)) w2(
ζ )

λ2ζ
p−1
1

− 1

2z21(t)

(
V
z(t) · 
z(t))wS

2,2(

ζ )

λ22ζ
p−2
1

− Ũ

(
w2(
ζ )

λ2ζ
p−1
1

)
.

We examine the terms that depend on t. Using the definitions of zi(t), we have

1

z1(t)

(
r + 
α · 
z(t)) = (rλ2 − α2)t+

r + 
α · 
ζ
ζ1

,(9.79)

1

2z21(t)

(
V
z(t) · 
z(t)) = 1

2

[
σ21 + σ22

(
ζ2
ζ1

− t

)2
]
.(9.80)

Thus, JS(t) is a quadratic function of t, and because of (9.41), the coefficient of the t2 term
is positive for sufficiently small λ > 0. It remains only to show that J ′

S(0) ≥ 0. Using (9.40),
(9.34), (8.46), (9.27), the fact that ζ ∈ PS , and the definition θ2 = α2

(1−p)σ2
2
when ρ = 0, we
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have

J ′
S(0) = −(rλ2 − α2)

w2(
ζ )

λ2ζ
p−1
1

+ σ22
ζ2w

S
2,2(


ζ )

λ22ζ
p−1
1

= −(rλ2 − α2)
w2(
ζ )

λ2ζ
p−1
1

− σ22ζ2

λ22ζ
p−1
1

[
1− p

ζ1
w2(
ζ ) +O(λ5/3)

] (
λ2ζ1 +O(λ2)

)
=

w2(
ζ )

λ2ζ
p−1
1

[
α2 − rλ2 − (1− p)σ22ζ2

]
+O(λ2/3)

=
1

ζp−1
1

(
Ap−1 +O(λ1/3)

)[
α2 − (1− p)σ22ζ2

]
+O(λ2/3)

=
1

ζp−1
1

(
Ap−1 +O(λ1/3)

) [
α2 − (1− p)σ22

(
θ2 − 1

2
ν2λ

1/3

)]
+O(λ2/3)

=
1

2ζp−1
1

Ap−1(1− p)σ22ν2λ
1/3 +O(λ2/3),(9.81)

which is positive, uniformly for 
ζ ∈ ∂SM , for sufficiently small λ > 0.
When ζ ∈ ∂EM , we have from (9.30), (9.31), and (9.43), (9.45), and (9.47) that

−1

2
(V
ζ · 
ζ )(∇2wM (
ζ )
ζ · 
ζ ) = −1

2
(V
ζ · 
ζ )wM

2,2(

ζ )ζ22 +O(λ),

−1

2
(V
ζ · 
ζ )(∇2wE(
ζ )
ζ · 
ζ ) = −1

2
(V
ζ · 
ζ )wM

2,2(

ζ )ζ22 +O(λ5/3).

These terms differ by O(λ), and (9.64) implies, increasing K if necessary, that

(9.82) L2w
E(
ζ )− Ũ

(
pw(
ζ )−∇w(
ζ ) · 
ζ ) ≥ 0, 
ζ ∈ ∂EM.

We extend (9.82) to the rest of E ∩ D2. We begin with the inequality S1w = 0, which
holds on E ∩ D2 (Lemma 9.4). We first write this inequality, compute the partial derivative
with respect to z1, and then compute the partial derivative with respect to z2 to obtain the
three equations

λ1pw(
z ) + w1(
z )− λ1∇w(
z ) · 
z = 0,(9.83)

λ1(p− 1)w1(
z ) + wE
1,1(
z )− λ1∇wE

1 (
z) · 
z = 0,(9.84)

λ1(p− 1)w2(
z ) + wE
1,2(
z )− λ1∇wE

2 (
z) · 
z = 0.(9.85)

Multiplying (9.83) by 1 − p, multiplying (9.84) by z1 + (1/λ1), multiplying (9.85) by z2,
summing the three resulting equations, and then dividing by λ1, we obtain

(9.86) −p(1− p)w(
z ) + 2(1− p)∇w(
z ) · 
z +∇2wE(
z )
z · 
z =
1

λ21
wE
1,1(
z), 
z ∈ E ∩ D2.

Therefore, in place of (9.73), we have

L2w
E(
z )− Ũ

(
pw(
z )−∇w(
z ) · 
z)

= βw(
z ) + (r + 
α · 
z) 1

λ1
w1(
z )− 1

2
(V
z · 
z) 1

λ21
wE
1,1(
z )− Ũ

(
− 1

λ1
w1(
z )

)
.(9.87)
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The region E is the union of line segments connecting points 
ζ ∈ ∂EM with (1/λ1, 0). We
parameterize these segments as z1(t) = (ζ1+ ζ2t)/(1+λ1ζ2t), z2(t) = ζ2/(1+λ1ζ2t) and show
that

JE(t) �
1

zp2(t)

[
βw
(

z(t)

)
+ (r + 
α · 
z(t)) 1

λ1
w1

(

z(t)

)− 1

2
(V
z(t) · 
z(t)) 1

λ21
wE
1,1

(

z(t)

)
− Ũ

(
− 1

λ1
w1

(

z(t)

))]
is nondecreasing in t. From (9.82) and (9.87), we have JE(0) ≥ 0. From (8.13), (8.21), and
(9.56), we have

JE(t) =
βw(
ζ )

ζp2
+

1

z2(t)

(
r + 
α · 
z(t)) w1(
ζ )

λ1ζ
p−1
2

− 1

2z22(t)

(
V
z(t) · 
z(t))wE

1,1(

ζ )

λ21ζ
p−2
2

− Ũ

(
− w1(
ζ )

λ1ζ
p−1
2

)
.

The terms that depend on t are

1

z2(t)

(
r + 
α · 
z(t)) = (rλ1 + α1)t+

r + 
α · 
ζ
ζ2

,

1

2z22(t)

(
V
z(t) · 
z(t)) = 1

2

[
σ21

(
ζ1
ζ2

+ t

)2

+ σ22

]
.

Thus, JE(t) is a quadratic function of t, and because of (9.43), the coefficient of the t2 term is
positive. It remains to show that J ′

E(0) ≥ 0. Using (9.42), (9.35), (8.48), and (9.28), one can

show that J ′
E(0) = Ap−1(1 − p)σ21ν1λ

1/3/(2ζp−1
2 ) + O(λ2/3), where we also use the fact that


ζ ∈ PE . For sufficiently small λ > 0, J ′
E(0) ≥ 0.

Finally, we establish (9.65) in SE ∩D2. We first establish this inequality on the boundary
between SE ∩ D2 and E ∩ D2. For this we repeat the proof above that (9.65) holds on E,
replacing 
ζ in that argument by 
ζSE, so that 
z(t) traverses the boundary between SE ∩ D2

and E ∩D2. This is possible because (9.83) holds on SE (Lemma 9.4), and the counterparts
of (9.82) and (9.86),

L2w
SE(
ζSE)− Ũ

(
pw(
ζSE)−∇w(
ζSE) · 
ζSE) ≥ 0,(9.88)

−p(1− p)w(
z) + 2(1− p)∇w(
z) · 
z +∇2wSE(
z)
z · 
z =
1

λ21
wSE
1,1 (
z), 
z ∈ SE ∩ D2,

(9.89)

also hold, as we now show. Inequality (9.88) follows from (9.64), using the estimates (9.32)
and (9.52)–(9.54), where it may again be necessary to increase K. Lemma 9.4 implies not
only that (9.83) holds on SE, but also that (9.84) and (9.85) hold there when we replace wE

i,j

by wSE
i,j in these equations. We obtain (9.89) from these equations just as we obtained (9.86).

We conclude that

(9.90) L2w
SE(
z )− Ũ

(
pw(
z )−∇w(
z ) · 
z ) ≥ 0, 
z ∈ SE ∩E ∩ D2.
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Lemma 9.4 implies that (9.69)–(9.71) and hence (9.72) hold in SE∩D2 (where we replace
wS
i,j by wSE

i,j in these equations). Let 
z ∈ SE ∩D2 be given. The point 
z is on a line segment

connecting (0,−1/λ2) with a point we call 
ζ in SE ∩ E ∩ D2. We parameterize this line
segment by (9.74), and, analogously to (9.76), we define

JSE(t) �
1

zp1(t)

[
βw
(

z(t)

)− (r + 
α · 
z(t)) 1

λ2
w2

(

z(t)

)
− 1

2

(
V
z(t) · 
z(t)) 1

λ22
wSE
2,2

(

z(t)

)− Ũ

(
1

λ2
w2

(

z(t)

))]
.

From (9.90), we have JSE(0) ≥ 0. As in the proof of (9.65) in S, we need only to show that
JSE is nondecreasing.

Just as before, we have (9.77). Set η = −λ1ζ1
1−λ1ζ1+λ2ζ2

. From (9.75), we have z1(t)
ζ1

= 1+λ2z2(t)
1+λ2ζ2

,
and hence

(9.91)
z1(t)

ζ1
= η

z1(t)

ζ1
+ (1− η)

1 + λ2z2(t)

1 + λ2ζ2
=

1− λ1z1(t) + λ2z2(t)

1− λ1ζ1 + λ2ζ2
.

From (8.13) applied to both 
z(t) and 
ζ, we have

w
(

z(t)

)
=

(
1− λ1z1(t) + λ2z2(t)

1− λ1ζSE1 + λ2ζSE2

)p

w(ζSE),

w(
ζ ) =

(
1− λ1ζ1 + λ2ζ2

1− λ1ζ
SE
1 + λ2ζ

SE
2

)p

w(ζSE),

and these equations together with (9.91) imply the first equation in (9.78). Applying (8.27)
to both 
z(t) and ζ and arguing in the same way, we obtain the second equation in (9.78).
Applying (9.51) to both 
z(t) and ζ, we obtain the analogue

wSE
2,2

(

z(t)

)
zp−2
1 (t)

=
wSE
2,2 (


ζ )

ζp−2
1

of the third equation in (9.78). Using the above equations we obtain the formula

JSE(t)

=
βw(
ζ )

ζp1
− 1

z1(t)

(
r + 
α · 
z(t)) w2(
ζ )

λ2ζ
p−1
1

− 1

2z21(t)

(
V
z(t) · 
z(t))wSE

2,2 (

ζ )

λ22ζ
p−2
1

− Ũ

(
w2(
ζ )

λ2ζ
p−1
1

)
.

The terms that depend on t satisfy (9.79) and (9.80), and because of (9.27) and (9.51), the
coefficient of the t2 term is positive for sufficiently small λ > 0. It remains only to show that
J ′
SE(0) ≥ 0. The analogue of the first equality in (9.81) is

(9.92) J ′
SE(0) = −(rλ2 − α2)

w2(
ζ )

λ2ζ
p−1
1

+ σ22
ζ2w

SE
2,2 (


ζ )

λ22ζ
p−1
1

.
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Substitution of (8.24) and (9.51) into (9.92) yields

J ′
SE(0) =

(1− λ1ζ1 + λ2ζ2)
p−2

λ2ζ
p−1
1 (1 − λ1ζSE1 + λ2ζSE2 )p−1

[
(α2 − rλ2)(1− λ1ζ1 + λ2ζ2)

− ζ2σ
2
2(1− p)

]
w2(
ζ

SE).

The positivity of w2(
ζ
SE) is ensured by (9.27). Because 
ζ is on the line segment connecting

(1/λ1, 0) and 
ζSE, we have (cf. (8.10)) 1 − λ1ζ1 = (ζ2/ζ
SE
2 )(1 − λζSE1 ). It thus suffices to

establish the positivity of

(α2 − rλ2)(1 − λ1ζ1 + λ2ζ2)− ζ2σ
2
2(1− p)

=
ζ2

ζSE2

[
(α2 − rλ2)(1− λ1ζ

SE
1 + λ2ζ

SE
2 )− σ22(1− p)ζSE2

]
=

ζ2

ζSE2

[
α2 − σ22(1− p)ζSE2 +O(λ)

]
=

ζ2

ζSE2

[
α2 − σ22(1− p)

(
θ2 − 1

2
ν2λ

1/3 +O(λ2/3)

)]
=

ζ2

ζNE
2

[
1

2
σ22(1− p)ν2λ

1/3 +O(λ2/3)

]
,

which is positive for sufficiently small λ > 0.

9.6. Conclusion of the proof of Theorem 9.1. Since wM is strictly positive on M for
sufficiently small λ, in fact, is 1

pA
p−1 − γλ2/3 + O(λ) on this set, the function w is strictly

positive on D2. Also, w is equal to zero on ∂D2.
We review the proof to this point to conclude that for sufficiently large positive K, say

K = K+ > 0, w satisfies (8.50) on each of the nine regions into which we have partitioned
D2. For the region M , this is Lemmas 9.4 and 9.8. For the other regions, this is Lemma
9.9 and equality (8.32), which follows from the fact that w satisfies (8.31) (see Lemma 9.4).
We have partitioned the solvency region D2 into nine regions, as shown in Figure 1. The
boundaries of these regions are straight lines, except for the four boundaries of M , which are
nearly horizontal or vertical because of (9.16). Therefore, for every 
z ∈ D2, there is a line
segment in the radial direction with one end point at 
z that is entirely in the closure of one
of the nine regions. Theorem 8.6 implies that w is a viscosity supersolution of (6.15). When
K = K+, we denote w by w+.

We have also shown that for sufficiently small K, say K = K− < 0, w satisfies (8.49) in
each of the nine regions into which we have partitioned D2. For the region M , this is Lemma
9.8. For the other regions, this is equality (8.32). Theorem 8.6 implies that w is a viscosity
subsolution of (6.15). When K = K−, we denote w by w−.

Theorem 6.3 implies that w− ≤ u ≤ w+ on D, and in particular,

1

p
Ap−1 − γλ2/3 +K−λ+O(λ4/3) ≤ u(
θ ) ≤ 1

p
Ap−1 − γλ2/3 +K+λ+O(λ4/3).

This is Theorem 9.1.
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Remark 9.10. Let us fix a compact set C ⊂ R
2 such that C contains R(1) defined by (9.19).

For 0 < λ ≤ 1, R(λ) contains M , and w defined by (9.24) is equal to 1
pA

p−1 − γλ2/3 + O(λ)

on M , and thus u(
θ ) differs from u on the boundary of M by O(λ). The solvency region D2

depends on λ, expanding to cover all of R2 as λ decreases to zero. For small enough λ > 0,
C ⊂ D2 and it is apparent from the extension formula (8.13) that w on C \M differs from its
value on the boundary of M by O(λ). Therefore, the conclusion (9.1) of Theorem 9.1 can be
extended to assert that

(9.93) u(
z ) =
1

p
Ap−1 − γλ2/3 +O(λ), 
z ∈ C,

where C ⊂ R
2 is an arbitrary compact set containing R(1), and the O(λ) term in (9.93) is

uniform over C. In fact, we do not need the condition that C contains R(1) since any compact
subset of R2 is a subset of a compact subset containing R(1).

10. The case ρ �= 0. In this section we prove the main result, Theorem 4.1, under the
assumption ρ �= 0. As in section 9, we first state the result for the function u of two variables
defined by (6.3); see Theorem 10.1 below. Following Theorem 10.1, we provide the proof of
Theorem 4.1.

10.1. Auxiliary problem. In order to exploit our analysis of the case ρ = 0 contained in
Theorem 9.1, we define an auxiliary problem in which the tradable assets are the risk-free
asset with rate of return r, the first type of futures contract, and a fund holding both types
of futures contracts. In particular, we define the two risky price processes

(10.1) F 1(t) = F1(t), F 2(t) = −ρσ2
σ1

F1(t) + F2(t).

In vector notation, 
F (t) = D
F (t), where

(10.2) D �
[

1 0
−ρσ2

σ1
1

]
.

Whereas d
dt〈
F , 
F 〉(t) = V, we have

(10.3)
d

dt
〈
F , 
F 〉 = V � DVDT =

[
σ21 0
0 (1− ρ2)σ22

]
,

and hence F1 and F 2 are independent Gaussian processes. The counterparts of the drift vector


α and the desired position vector 
θ for the market with risky assets F1 and F2 and risk-free
rate r are (cf. (2.10))

(10.4) 
α = D
α, 
θ =
1

1− p
V−1
α = (DT )−1
θ.

In order to state the following theorem, we also define σ1 = σ1, σ2 = σ2
√

1− ρ2, μ
1
= μ1,

and μ
2
= −ρσ2

σ1
μ1 + μ2. Because of the second equality in (2.4), μ

2
is strictly positive. We

also define λi = μ
i
λ, i = 1, 2.
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Theorem 10.1. Assume (2.1) and (2.4). Under Assumptions 2.2 and 2.3, the value function
u for the problem with positive λ satisfies

(10.5) u(
θ ) =
1

p
Ap−1 − γλ2/3 +O(λ).

The constant γ in (10.5) is

(10.6) γ � 3

2
Ap−2(V 
θ · 
θ )

2∑
i=1

μ
i
θ2i

νi
,

where

(10.7) νi =
3

√
12μ

i
θ2i

(1− p)σ2i
(V 
θ · 
θ), i = 1, 2.

Remark 10.2. It is straightforward to verify that V 
θ · 
θ = V
θ · 
θ.
Before providing the proof of Theorem 10.1, we consider its consequences. As in Remark

9.10, we see that for an arbitrary compact set C ⊂ R
2,

(10.8) u(
z ) =
1

p
Ap−1 − γλ2/3 +O(λ), z ∈ C,

where the O(λ) term in (10.8) is uniform over C. Note also that if ρ = 0, (10.5) and (10.8)
reduce to (9.1) and (9.93), respectively, so Theorem 9.1 is a special case of Theorem 10.1.

Proof of Theorem 4.1. Assume that (y1, y2, x) is in a compact subset of the (open) solvency
region D3. Then x is bounded and bounded away from zero, so 
z � (y1x ,

y2
x ) is in a compact

set. Multiplying (10.8) by xp and using (3.3) and (6.4), we obtain Theorem 4.1.
We prove Theorem 10.1 by first providing an upper bound for u(
θ ) in section 10.2. In

subsequent sections we obtain a lower bound. Both these bounds are of the form of the
right-hand side of (10.5), which implies that (10.5) holds.

10.2. Upper bound.
Lemma 10.3. Under the assumptions of Theorem 10.1,

(10.9) u(
θ ) ≤ 1

p
Ap−1 − γλ2/3 +O(λ).

Proof. Consider the auxiliary problem with risky price processes given by (10.1). Suppose
that for i = 1, 2, trading in the process with price F i incurs proportional transaction cost
λi � μ

i
λ. We verify that this problem satisfies Assumptions 2.2 and 2.3, i.e., that 
θ is in the

first quadrant and that

(10.10)
β − rp

1− p
− p

2(1 − p)2
V−1
α · 
α

is strictly positive. But V−1
α · 
α = (DVDT )−1D
α ·D
α = V−1
α · 
α, and hence the expression
in (10.10) is A defined by (2.11), and Assumption 2.3 for the auxiliary problem follows from
Assumption 2.3 for the original problem.
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The first equality in the formula for 
θ in (10.4) shows that θ1 = α1/((1 − p)σ21), and this

is positive because of (2.1). The second equality in the formula for 
θ implies θ2 = θ2, which is
positive because of Assumption 2.2 for the original problem. Hence, Assumption 2.2 for the
auxiliary problem holds.

In light of Lemma 6.5, it suffices to prove (10.9) with u(
0 ) replacing u(
θ ) on the left-hand
side. We first apply Theorem 9.1 and Lemma 6.5 to the auxiliary problem to conclude that
its two-dimensional value function u satisfies

(10.11) u(
0 ) =
1

p
Ap−1 − γλ2/3 +O(λ).

To show (10.9) it thus suffices to show that the auxiliary problem is “more favorable” than
the original problem. In particular, we show that given a policy for the original problem that
is admissible for the initial condition (0, 0, 1), there is a corresponding policy for the auxiliary
problem that is admissible for this initial condition and that results in the same expected
utility.

Let C, Li, Mi, i = 1, 2, be an admissible policy in the original problem for the initial
condition Y1(0−) = 0, Y1(0−) = 0, X(0−) = 1. Then Y1, Y2,X given by (2.2) and (2.3) are
in the closure of the solvency region D3 given by (2.7) at all times, i.e.,

(10.12) X(t)− λ1|Y1(t)| − λ2|Y2(t)| ≥ 0, t ≥ 0.

Define

C = C, L1 = L1 +
ρσ2
σ1

L2, M1 =M1 +
ρσ2
σ1

M2, L2 = L2, M2 =M2,

and use this policy in the auxiliary problem with initial condition Y 1(0−) = 0, Y 2(0−) = 0,
X(0−) = 1. Then at each time t ≥ 0,

Y 1(t) = L1(t)−M1(t) +
ρσ2
σ1

(
L2(t)−M2(t)

)
= Y1(t) +

ρσ2
σ1

Y2(t),

Y 2(t) = L2(t)−M2(t) = Y2(t).

The corresponding auxiliary problem money market position satisfies (cf. (2.3))

dX(t) =
2∑

i=1

Y i(t) dF i(t)−
2∑

i=1

λi
(
dLi(t) + dM i(t)

)
+
(
rX(t)− C(t)

)
dt

=
2∑

i=1

Yi(t) dFi(t)−
2∑

i=1

λi
(
dLi(t) + dMi(t)

)
+
(
rX(t)− C(t)

)
dt.

Because X satisfies the stochastic differential equation (2.3) determining X, and X(0−) =
X(0−) = 1, we have X(t) = X(t) for all t ≥ 0. The three-dimensional solvency region for the
auxiliary problem is (cf. (2.7))

(10.13) D2 �
{
(y

1
, y

2
, x : x− λ1|y2| − λ2|y2| > 0

}
.
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The triangle inequality implies

X(t)− λ1
∣∣Y 1(t)

∣∣− λ2
∣∣Y 2(t)

∣∣ ≥ X(t)− λ1
∣∣Y1(t)∣∣− λ2

∣∣Y2(t)∣∣,
and admissibility of C, Li, M i, i = 1, 2, in the auxiliary problem for the initial condition
(0, 0, 1) follows from (10.12). Because C = C, the expected utility accumulated by the two
policies in their respective problems coincides.

Remark 10.4. We note in the proof of Lemma 10.3 that if L1 and M2 increase simultane-
ously while M1 and L2 remain constant, which might happen for the optimal policy in the
original problem, then L1 and M1 increase simultaneously. But it is strictly suboptimal to
buy and sell the same risky asset simultaneously. In this situation we can construct a policy
that does strictly better in the auxiliary problem than the policy constructed in the proof of
Lemma 10.3, and hence it is possible that the value function in the auxiliary problem strictly
dominates the value function in the original problem. In particular, it is not straightforward
to use the auxiliary problem to obtain the reverse of inequality (10.9).

10.3. Partitioning the solvency region for the lower bound. In this section we obtain
the reverse of inequality (10.9) by constructing a subsolution for the original problem. This
subsolution is built on the observation that the second derivative term in the operator L2

defined by (6.10) is the second directional derivative in the radial direction. Furthermore,
trading in either the positive or negative radial direction does not call for buying one type
of contract while selling another type, and hence the problem noted in Remark 10.4 does
not arise. As in section 9, we do not actually construct a nearly optimal policy, but rather
construct a nearly optimal expected utility by partitioning D2 into regions similarly to Figure
1 and then constructing a function piecemeal in these regions.

We modify the construction in section 9.1 to first partition the solvency region D2 for the
auxiliary problem. Let B be a fixed positive constant and K a negative constant to be chosen
later. Still using the notation of the auxiliary problem, for

(10.14) −1

2
ν1λ

1/3 ≤ δ1 ≤
1

2
ν1λ

1/3, −1

2
ν2λ

1/3 ≤ δ2 ≤
1

2
ν2λ

1/3,

in place of (9.5) we define

(10.15) hi(δi) � μ
i

[
3

2
δ2iλ

2/3 − 1

ν2i
δ4i +

3

2
Bδ2iλ

4/3

]
= O(λ4/3)

so that the analogues of (9.6) and (9.7) hold. We further define (cf. (9.8))

H(δ1, δ2) �
2∑

i=1

1

νi

[− phi(δi) + (δi + θi)h
′
i(δi)

]
= O(λ)

so that the analogue of (9.9) holds. Finally, we set

GS(δ1, δ2)�λ2 − pγA1−pλ2λ
2/3 + pKA1−pλ2λ+

h′2(δ2)
ν2

+ λ2H(δ1, δ2) +
ρσ2h

′
1(δ1)

σ1ν1
,

GE(δ1, δ2)�λ1 − pγA1−pλ1λ
2/3 + pKA1−pλ1λ− h′1(δ1)

ν1
+ λ1H(δ1, δ2),
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GN (δ1, δ2)�λ2 − pγA1−pλ2λ
2/3 + pKA1−pλ2λ− h′2(δ2)

ν2
+ λ2H(δ1, δ2)−

ρσ2h
′
1(δ1)

σ1ν1
,

GW (δ1, δ2)�λ1 − pγA1−pλ1λ
2/3 + pKA1−pλ1λ+

h′1(δ1)
ν1

+ λ1H(δ1, δ2).

The definitions of GE and GW are parallel to the definitions (9.11) and (9.13) of GE and GW .
The definitions of GS and GN are not parallel to the definitions of GS and GN in (9.10) and
(9.12), but we have the relationships

GS(δ1, δ2)−
ρσ2
σ1

GW (δ1, δ2) = μ
2
(λ− pγA1−pλ5/3) +

h′2(δ2)
ν2

+O(λ2),(10.16)

GN (δ1, δ2)−
ρσ2
σ1

GE(δ1, δ2) = μ
2
(λ− pγA1−pλ5/3)− h′2(δ2)

ν2
+O(λ2).(10.17)

Lemma 10.5. For sufficiently small λ > 0, there exist C1 functions FE(δ2) and FW (δ2),
so that

(10.18) GE

(
FE(δ2), δ2

)
= 0, GW

(
FW (δ2), δ2

)
= 0, −1

2
ν2λ

1/3 ≤ δ2 ≤
1

2
ν2λ

1/3.

These functions are “nearly constant” in the sense that for δ2 as specified in (10.18) and for

any constant ξ >
√

2
3pγA

1−p +B,

1

2
ν1λ

1/3(1− ξλ1/3) < FE(δ2) <
1

2
ν1λ

1/3,

−1

2
ν1λ

1/3 < FW (δ2) < −1

2
ν1λ

1/3(1− ξλ1/3).

In addition, f
E
(ζ

2
) � FE(ζ2 − θ2) + θ1 and f

W
(ζ2) � FW (ζ

2
− θ2) + θ1 are C1 and satisfy

(8.6) and (8.8) and

(10.19) f ′
E
(ζ

2
) = O(λ1/3), f ′

W
(ζ

2
) = O(λ1/3)

as long as δ2 = ζ
2
− θ2 is as specified in (10.18).

Proof. Because the definitions of GE and GW are parallel to the definitions of GE and
GW , μ

1
= μ1, and ν1 = ν1, the proof of Lemma 9.2 applies.

To construct a middle region M in D2, we first locate the southwest corner. We fix

ξ >
√

2
3pγA

1−p +B. We set δ2 = −1
2ν2λ

1/3(1− ξλ1/3) and use (10.16) and (10.18) to write

GS(FW (δ2), δ2) = μ
2
(λ− pγA1−pλ5/3) +

h′2(δ2)
ν2

+O(λ2).

Writing δ2 as

δ2 = −1

2
ν2λ

1/3

(
1− λ1/3

√
2

3
pγA1−p +B + η

)
,
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so that
4δ22
ν22

= λ2/3 − 2λ

√
2

3
pγA1−p +B + η +

2

3
pγA1−pλ4/3 +Bλ4/3 + ηλ4/3,

we compute

(10.20) GS

(
FW (δ2), δ2

)
=

3

2
μ
2
ηλ5/3 +O(λ2).

The O(λ2) term in (10.20) is uniform in η ∈ [−B,B], for sufficiently small λ > 0 the expression
in (10.20) is negative for η = −B and positive for η = B, and GS and FW are continuous.
Hence, there must exist η ∈ [−B,B] and corresponding δ2 such that GS(FW (δ2), δ2) = 0. We

denote this value of δ2 by δSW2 , and we define δSW1 = FSW (δSW2 ), 
δ
SW

= (δSW1 , δSW2 ). In

conclusion, by increasing ξ to equal
√

2
3pγA

1−p + 2B if necessary, we have

−1

2
ν1λ

1/3 < δSW1 < −1

2
ν1λ

1/3(1− ξλ1/3),(10.21)

−1

2
ν2λ

1/3 < δSW2 < −1

2
ν2λ

1/3(1− ξλ1/3),(10.22)

GW (
δ
SW

) = 0, GS(

δ
SW

) = 0.(10.23)

We locate the northeast corner of M by a similar argument. In particular, we use (10.17)
and (10.18) to write

GN

(
δ1, FE(δ1)

)
= μ

2
(λ− pγA1−pλ5/3)− h′2(δ2)

ν2
+O(λ2),

we write δ2 as

δ2 =
1

2
ν2λ

1/3

(
1− λ1/3

√
2

3
pγA1−p +B + η

)
,

and we obtain GN (δ1, FE(δ1)) =
3
2μ2ηλ

5/3 +O(λ2) in place of (10.20). In conclusion, we find


δ
NE

= (δNE
1 , δNE

2 ) such that

1

2
ν1λ

1/3(1− ξλ1/3) < δNE
1 <

1

2
ν1λ

1/3,(10.24)

1

2
ν2λ

1/3(1− ξλ1/3) < δNE
2 <

1

2
ν2λ

1/3,(10.25)

GE(

δ
NE

) = 0, GN (
δ
NE

) = 0.(10.26)

The points 
δ
SW

and 
δ
NE

are plotted in Figure 2, and the graphs of FW and FE are

shown. For sufficiently small λ > 0, both the line connecting −
θ with 
δ
NE

and the line

connecting −
θ with 
δ
SW

have positive slopes, and the slope of the former is strictly greater
than the slope of the latter, as we now show. The first inequality in (2.4) implies that

μ
2
α1 =

(
−ρσ2
σ1

μ1 + μ2

)
α1 > μ1

(
−ρσ2
σ1

α1 + α2

)
= μ

1
α2.
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�0
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ν
1
λ
1
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−

1 2
ν
1
λ
1
/
3

1

2
ν2λ

1/3

−

1

2
ν2λ

1/3
�

�

�

�

δ
1
=

F
E
(δ

2
)δ 1

=
F

W
(
δ 2
)

−
�θ

�δ
SE

�δ
NE

�δ
NW

�δ
SW

Figure 2. Construction of M .

The second equation in (10.4) shows that αi = (1 − p)σ2i θi, i = 1, 2, and hence σ21θ1μ2 >

σ22θ2μ1. This is equivalent to θ1
3

√
μ
2
θ22/σ

2
2 > θ2

3

√
μ
1
θ21/σ

2
1, which in turn implies θ1ν2 > θ2ν1.

We conclude that

(10.27)
θ2 +

1
2ν2λ

1/3

θ1 +
1
2ν1λ

1/3
>
θ2 − 1

2ν2λ
1/3

θ1 − 1
2ν1λ

1/3
.

Because of (10.21), (10.22), (10.24), and (10.25), the expressions on the left- and right-hand
sides of (10.27) are the slopes, to order of accuracy O(λ1/3), of the lines in question.

As indicated in Figure 2, the line passing through −
θ and 
δ NE
intersects the graph of the

continuous function FW . We select an intersection point and denote it by 
δ
NW

. Similarly,
the line passing through −
θ and 
δ NW intersects the graph of the continuous function FE . We

select an intersection point and denote it by 
δ
SE

.

Let us now change from the variables 
δ to the variables 
z by translating by 
θ, i.e., defining

z = 
δ + 
θ, so that 
0 maps to 
θ and −
θ maps to 
0. The set M is the image of the open

bounded region in Figure 2 under this change of variables. Its corners are 
ζ
SW

= 
δ
SW

+ 
θ,


ζ
SE

= 
δ
SE

+ 
θ, 
ζ
NE

= 
δ
NE

+ 
θ, and 
ζ
NW

= 
δ
NW

+ 
θ. It has two straight-line boundaries,
both of which are segments of rays emanating from the origin. The other two boundaries are
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the graphs of the functions

f
W
(ζ

2
) � FW (ζ

2
− θ2) + θ1, ζSW

2
≤ ζ

2
≤ ζNW

2
,(10.28)

f
E
(ζ

2
) � FE(ζ2 − θ2) + θ1, ζSE

2
≤ ζ

2
≤ ζNE

2
.(10.29)

Finally, we reverse the transformation used to obtain the auxiliary problem. In particular,
with D defined by (10.2), we make the change of variables

(10.30) 
z = DT
z,

which we write componentwise as (z1, z2) = (z1 − (ρσ2/σ1)z2, z2) (see Remark 2.4). We set
M = DTM . Under this transformation, 
θ maps to 
θ, which is assumed to be in the open first
quadrant. Hence, for sufficiently small λ > 0, M is a subset of the open first quadrant. We

denote by 
ζSW , 
ζSE, 
ζNE, and 
ζNW the images under DT of 
ζ
SW

, 
ζ
SE

, 
ζ
NE

, and 
ζ
NW

,

respectively. Since DT maps rays through the origin to rays through the origin, the boundary
of M between 
ζSW and 
ζSE is a segment of a ray through the origin, as is the boundary of
M between 
ζNW and 
ζNE. Furthermore, ζSW2 = ζSW

2
< ζNW

2
= ζNW

2 , and the boundary of

M between 
ζSW and 
ζNW is the graph of the function

fW (ζ2) � f
W
(ζ2)− ρσ2

σ1
ζ2, ζSW2 ≤ ζ2 ≤ ζNW

2 .

Similarly, the boundary of M between 
ζSE and 
ζNE is the graph of the function

fE(ζ2) � f
E
(ζ2)− ρσ2

σ1
ζ2, ζSE2 ≤ ζ2 ≤ ζNE

2 .

We complete the partition of D2 into nine regions, as described in section 7 and shown in
Figure 1. Note, however, that in contrast to Figure 1, here the region M has eastern and
western boundaries that are nearly linear with negative slope rather than nearly constant and
southern and northern boundaries that are segments of rays emanating from the origin. In
particular, the hypothesis in Theorem 8.6 is satisfied that each point in D2 is the end point
of a segment in the radial direction lying completely in the closure of one of the nine regions
into which D2 has been partitioned. Because f

W
and f

E
satisfy analogues of (8.8) and (8.6),

it is straightforward to verify that fW and fE also satisfy these inequalities.

10.4. Construction of a subsolution. Throughout this section, we use the change of
variables (10.30) and the notation 
z = (z1, z2), 
z = (z1, z2). Define

(10.31) w(
z) =
1

p
Ap−1 − γλ2/3 +Kλ−

2∑
i=1

1

νi
Ap−1hi(zi − θi), 
z ∈M.

According to Lemma 10.5, (10.28), and (10.29),

GW (
ζ − 
θ ) = 0 for 
ζ ∈ ∂WM, GE(

ζ − 
θ ) = 0 for 
ζ ∈ ∂EM.
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For 
z ∈M ,

B1w
M (
z) = λ1pw(
z)− (1 + λ1z1)w

M
1 (
z)− λ1z2w

M
2 (
z)

= Ap−1

[
λ1 − pγA1−pλ1λ

2/3 + pKA1−pλ1λ+
h′1(z1 − θ1)

νi
+ λ1H(
z − 
θ )

]
= Ap−1GW (
z − 
θ ).

Therefore,

(10.32) B1w
M = 0 on ∂WM.

Similarly, for 
z ∈M ,

S1w
M (
z) = λ1pw(
z) + (1− λz1)w

M
1 (
z)− λ1z2w

M
2 (
z)

= Ap−1

[
λ1 − pγA1−pλ1λ

2/3 + pKA1−pλ1λ− h′1(z1 − θ1)

ν1
+ λ1H(
z − 
θ )

]
= Ap−1GE(
z − 
θ ).

Therefore,

(10.33) S1w
M = 0 on ∂EM.

In addition, the second equation in (10.23) implies

(10.34) B2w
M (
ζ

SW
) = Ap−1

[
GS(


ζ
SW − 
θ)− ρσ2h

′
1(ζ

SW
1

− θ1)

σ1ν1

]
=
ρσ2
σ1

w
M
1 (
ζ

SW
).

Similarly, the second equation in (10.26) implies

(10.35) S2w
M (
ζ

NE
) = Ap−1

[
GN (
ζ

NE − 
θ ) +
ρσ2h

′
1(ζ

NE
1

− θ1)

σ1ν1

]
= −ρσ2

σ1
w

M
1 (
ζ

NE
).

We recall (10.30) and define

(10.36) w(
z) = w
(
(DT )−1
z

)
= w

(
z1 +

ρσ2
σ1

z2, z2

)
, 
z ∈M,

so that

(10.37) ∇wM (
z) = D∇wM (
z), ∇2wM (
z) = D∇2wM (
z)DT .

It is straightforward to calculate from (10.32)–(10.35) that

B1w
M = 0 on ∂WM, S1w

M = 0 on ∂EM,(10.38)

B2w
M
(

ζSW

)
= 0, S2w

M
(

ζNE

)
= 0.(10.39)
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We extend w to D2 by Theorem 8.4. The extended function satisfies (8.14)–(8.19).

Lemma 10.6. The function w defined on M by (10.36) and extended to D2 by Theorem 8.4
is a subsolution of (6.15) on D2.

Proof. Let 
z 0 ∈ D2 be given, and let ϕ be a C2 function defined on D2, agreeing with w
at 
z 0, and dominating w on D2. We must show that the expression in (6.16) is nonpositive.

Case I: 
z 0 ∈ M . Using (10.3), (10.4), (10.30), and (10.37), it is straightforward to verify
that 
α ·
z = 
α ·
z, V
z ·
z = V 
z ·
z, ∇wM (
z) ·
z = ∇wM (
z) ·
z, and ∇2wM (
z)
z ·
z = ∇2wM (
z)
z ·
z.
Therefore,

L2w(
z) =

[
β − rp− p
α · 
z + 1

2
p(1− p)(V
z · 
z)

]
w(
z)

+
(
r + 
α · 
z − (1− p)(V
z · 
z))∇w(
z) · 
z − 1

2
(V
z · 
z)(∇2w(
z)
z · 
z)

=

[
β − rp− p
α · 
z + 1

2
p(1− p)(V 
z · 
z)

]
w(
z)

+
(
r + 
α · 
z − (1− p)(V 
z · 
z))∇w(
z) · 
z − 1

2
(V 
z · 
z)(∇2w(
z)
z · 
z).

Similarly,

Ũ
(
pw(
z)−∇w(
z) · 
z) = Ũ

(
pw(
z)−∇w(
z) · 
z).

We apply Lemma 9.8 to the function w to conclude that for sufficiently small (i.e., negative)
K the inequality

(10.40) L2w − Ũ(pw −∇w · 
z) ≤ 0 on M

holds. But w is C2 in M and ϕ − w attains its minimum over M at 
z 0. This implies that
∇w(
z 0) = ∇ϕ(
z 0), and

(10.41) ∇2w(
z 0)
z 0 · 
z 0 ≤ ∇2ϕ(
z 0)
z 0 · 
z 0.

It follows from the definition of L2 and (10.40) that

L2ϕ(
z
0)− Ũ

(
pϕ(
z 0)−∇ϕ(
z 0) · 
z 0

) ≤ L2w(
z
0)− Ũ

(
pw(
z 0)−∇w(
z 0) · 
z 0

) ≤ 0.

Case II: 
z 0 ∈ (∂NM ∪∂SM)\{
ζSW , 
ζSE, 
ζNE, 
ζNW }. We use continuity to extend (10.40)
to

(10.42) L2w
M − Ũ(pwM −∇wM · 
z) ≤ 0 on M.

We define ∂◦NM � ∂NM \{
ζNW , 
ζNE} and ∂◦SM � ∂SM \{
ζSW , 
ζSE}. The function w might
not be C2 on ∂◦NM and ∂◦SM , but because these boundaries are segments of rays emanating
from the origin, w has two continuous derivatives in the radial direction on these boundaries.
But ∇w(
z 0) · 
z 0 and ∇2w(
z 0)
z 0 · 
z 0 are the first and second derivatives of w in the radial
direction, and because these are the only derivatives of w appearing on the left-hand side of
(10.42), we may repeat the argument of Case I, using (10.42) in place of (10.40).
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Case III: 
z 0 ∈ (∂WM ∪ ∂EM) \ {
ζSW , 
ζSE, 
ζNE, 
ζNW }. The derivative formulas (8.21)
and (8.23) coupled with (10.38) imply that w is C1 at 
z 0. Depending on the location of

z 0, we obtain from (10.38) that either B1w(
z

0) = 0 or S1w(
z
0) = 0. By assumption on ϕ,

∇w(
z 0) = ∇ϕ(
z 0), and hence either B1ϕ(
z
0) = 0 or S1ϕ(
z

0) = 0. In either case, (6.16) is
nonpositive.

Case IV: 
z 0 ∈ {
ζSW , 
ζNE}. We treat the case 
z 0 = 
ζSW only. From the first equations in
(10.38) and (10.39) and implication (8.27) in Theorem 8.4, we conclude that w is C1 at 
ζSW .
Hence, ∇ϕ(
ζSW ) = ∇w(
ζSW ), and the first equation in either (10.38) or (10.39) shows that
(6.16) is nonpositive.

Case V: 
z 0 ∈ {
ζSE , 
ζNW}. We treat the case 
ζSE only. We parameterize the line con-
necting (1/λ1, 0) with 
ζ

SE by


z(t) =
(
z1(t), z2(t)

)
=
(
1/λ1 − t(1− λ1ζ

SE
1 ), tλ1ζ

SE
2

)
so that 
z(1/λ1) = 
ζSE. The direction vector of this line 
z ′(t) = (−1 + λ1ζ

SE
1 , λ1ζ

SE
2 ) ap-

proaches (−1, 0) as λ ↓ 0. On the other hand, equation (10.19) implies that

f ′E(ζ2) = f
E
(ζ2)− ρσ2

σ1
= −ρσ2

σ1
+O(λ1/3)

is bounded away from ±∞, so tangents to the boundary ∂EM are bounded away from hor-
izontal. Likewise, the direction vector of ∂SM , which is 
ζSE, converges to 
θ as λ ↓ 0, and
hence this is also bounded away from horizontal. It follows that for sufficiently small λ > 0,
the line 
z(t) crosses from E into M at t = 1/λ1.

The directional derivative of w in the 
z ′(t) direction, computed at 
ζSE from inside M , is
(−1+ λ1ζ

SE
1 )wM

1 (
ζSE) + λ1ζ
SE
2 wM

2 (
ζSE), and because of (10.33), this is equal to λ1pw(
ζ
SE).

According to (8.13), this directional derivative computed from inside E is

d

dt

(
z2(t)

ζSE2

)p ∣∣∣
t=1/λ1

wM (
ζSE) = pλ1w
M (
ζSE),

and hence the directional derivative is continuous across the boundary point 
ζSE, i.e., 
z ′(1/λ1)·
∇wM (
ζSE) = 
z ′(1/λ1) · ∇wE(
ζSE). The function ϕ(
z(t))−w(
z(t)) is minimized at t = 1/λ1,
and hence


z ′(1/λ1)∇ϕ(
ζSE) = 
z ′(1/λ1)∇wM (
ζSE) = pλ1w(
ζ
SE) = pλ1ϕ(
ζ

SE).

This equation shows that S1ϕ(
ζ
SE) = 0, and hence (6.16) is nonpositive at 
ζSE.

Case VI: 
z 0 ∈ (E∩D2)\∂EM . Equation (8.14) implies that S1w
E(
z 0) = 0. If 
z 0 ∈ E∩D2,

where w is C1 and hence ∇ϕ(
z 0) = ∇w(
z 0), this implies that (6.16) is nonpositive. Suppose

z 0 ∈ ∂E ∩ D2. We have already dealt with ∂EM , so we need only to treat the case that 
z 0

lies in the interior of the line segment connecting (0, 1/λ2) with 
ζ
SE or with 
ζNE. We treated

the former case in Case V, there showing that (6.16) is nonpositive at 
ζSE. The proof at 
z 0

is simpler because it is not necessary to prove that the directional derivative is continuous at

z 0. The proof if 
z 0 lies in the interior of the line segment connecting (0, 1/λ2) with 
ζNE is
the same.
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Case VII: 
z 0 ∈ (S ∩ D2) \ ∂SM . This proceeds as in Case VI.

Case VIII: 
z 0 ∈ SE. Starting with the equation

(10.43) w(
z) =

(
1− λ1z1 + λ2z2

1− λ1ζ
SE
1 + λ2ζ

SE
2

)p

w(
ζ SE)

obtained from (8.13), we compute for 
z 0 ∈ SE that

(10.44) B2w(
z
0) = λ2pw(
z

0)− λ2z
0
1w1(
z

0)− (1 + λ2z
0
2)w2(
z

0) = 0.

From (10.43) we see that w is C1 in SE, and hence∇ϕ(
z 0) = w(
z 0). It follows that B2ϕ(
z
0) =

0, and hence the expression in (6.16) is nonpositive.

Appendix A. Continuity of v. This appendix proves the continuity of v claimed in Theo-
rem 5.1 For this proof, we need the following lower bound.

Lemma A.1. The constant C∗ � β−rp
1−p is positive, and

(A.1) v(y1, y2, x) ≥ 1

p
Cp−1
∗
(
x− λ1|y1| − λ2|y2|

)p
, (y1, y2, x) ∈ D3.

Proof. Positivity of C∗ follows from the definition (2.11) of A, Assumption 2.3 that A > 0,
and the positive semidefiniteness of V−1.

In light of (2.9), to prove (A.1) we need only to consider (y1, y2, x) ∈ D3. For initial
condition (y1, y2, x) ∈ D3, we consider the policy that liquidates the futures positions at time
zero, so that X(0) = x − λ1|y1| − λ2|y2| > 0, invests solely in the money market account
thereafter, and consumes at a constant proportional rate c > 0. Then X(t) = X(0)e(r−c)t for

all t ≥ 0. The resulting expected utility is Xp(0)cp

p

∫∞
0 e−(β−rp+cp)tdt. We obtain the lower

bound

v(y1, y2, x) ≥ cp

p(β − rp+ cp)

(
x− λ1|y1| − λ2|y2|

)p
,

valid for all c > 0. Maximizing the right-hand side over c > 0, we obtain (A.1).
Theorem A.2 (continuity of v). When λ > 0, the value function v is continuous on D3.

Proof. A concave function defined on a convex set is continuous on the interior of its
domain. Thus, because of Remark 2.1, v is continuous on D3. It remains to prove the
continuity of v at the boundary of D3, where it is equal to zero.

The boundary of D3 has four faces, which we denote by

F±± �
{
(y1, y2, x) : λ1|y1|+ λ2|y2| = x,±y1 ≥ 0,±y2 ≥ 0

}
.

These faces intersect at the origin, where the continuity of v follows from the bound

(A.2) 0 ≤ v(y1, y2, x) ≤ v0(x)

for all (y1, y2, x) ∈ D3, and v0(x) = 1
pA

p−1xp, introduced in section 3, is the value function

corresponding to λ = 0. We prove the continuity on F×
++ � F++ \ {(0, 0, 0)}. The proof of

the continuity on the other three faces is analogous.
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Let δ be a number in (0, 1) to be chosen later (see (A.6) below), and define

Hδ � {(
y, x) ∈ D3 : (1− δ)x < 
λ · 
y < x}.

The boundary of Hδ comprises four parts: (1) the origin, (2) the set F×
++, (3) the “inner

boundary”
∂iHδ �

{
(
y, x) ∈ D3 : (1− δ)x = 
λ · 
y},

and the “side boundary”

∂sHδ �
{
(
y, x) ∈ ∂D3 : (1− δ)x ≤ 
λ · 
y ≤ x, λ1|y1|+ λ2|y2| = x, y1y2 < 0

}
.

We define the constant

Mδ � sup
{
v(y1, y2, 1) : (y1, y2, 1) ∈ ∂iHδ

}
,

which is finite because of the upper bound (A.2). Lemma A.1 implies that Mδ ≥ 1
pC

p−1
∗ δp

(set y1 = (1 − δ)/λ1, y2 = 0 so that (1, y1, y2) ∈ ∂iHδ). We next define Aδ by the equation
1
pA

p−1
δ δp =Mδ so that 0 < Aδ ≤ C∗. Finally, we set

(A.3) ψ(y1, y2, x) =

{
1
pA

p−1
δ

(
x− λ1y1 − λ2y2

)p
if (y1, y2, x) ∈ Hδ,

v(y1, y2, x) if (y1, y2, x) ∈ D3 \Hδ

and subsequently show that ψ dominates v on Hδ. From inside D3, F
×
++ can be approached

only through Hδ. Because ψ is nonnegative and continuous on Hδ, and ψ has limit zero as
F×
++ is approached, this will establish the continuity of v on F×

++.
On F++ ∪ ∂sHδ, v is zero and ψ is nonnegative. On the remaining part of the boundary

of Hδ, namely ∂iHδ,

ψ(y1, y2, x) =
1

p
Ap−1

δ δpxp =Mδx
p ≥ xpv

(y1
x
,
y2
x
, 1
)
= v(y1, y2, x),

where we have used (6.1) in the last step. Consequently, v ≥ ψ on ∂Hδ, and indeed,

(A.4) ψ ≥ v on D3 \Hδ.

Using the notation (5.1) and (5.2), we observe that in Hδ

L3ψ(y1, y2, x)− Ũ
(
ψx(y1, y2, x)

)
= Ap−1

δ (x− 
λ · 
y)p−2

[
β

p
(x− 
λ · 
y)2 − (rx+ 
α · 
y)(x− 
λ · 
y)

+
1

2
(1− p)V
y · 
y − 1− p

p
Aδ(x− 
λ · 
y)2

]
≥ Ap−1

δ (x− 
λ · 
y)p−2

×
[
r(x− 
λ · 
y)2 − (rx+ 
α · 
y)(x− 
λ · 
y) + 1

2
(1− p)V
y · 
y

]
,(A.5)
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where we have used the inequality Aδ ≤ C∗ in the last step. We bound the right-hand
side of (A.5) from below. If (y1, y2, x) ∈ Hδ and y1 < 0, then y2 > 0. In this case, the
inequality λ1|y1|+λ2|y2| < x defining D3 and the inequality 
λ ·
y > (1− δ)x defining Hδ imply
λ1|y1| < 1

2δx. Similarly, if (y1, y2, x) ∈ Hδ and y2 < 0, then λ2|y2| < 1
2δx. If y1 ≥ 0, then

regardless of the sign of y2, (y1, y2, x) ∈ Hδ implies λ1y1 ≤ x − λ2y2 ≤ (1 + 1
2δ)x. The same

result holds for y2. In other words,

max
{
λ|y1|, λ2|y2|

} ≤
(
1 +

1

2
δ

)
x ≤ 2x, (y1, y2, x) ∈ Hδ.

Therefore, for (
y, x) ∈ Hδ,

rx+ 
α · 
y ≤ rx+max

[
α1

λ1
,
α2

λ2

] (
λ1|y1|+ λ2|y2|

) ≤ (r + 4max

[
α1

λ1
,
α2

λ2

])
x

and

(rx+ 
α · 
y)(x− 
λ · 
y) ≤ δ

(
r + 4max

[
α1

λ1
,
α2

λ2

])
x2.

Let e2 denote the smallest eigenvalue of V, which is positive. For (
y, x) ∈ Hδ,

V
y · 
y ≥ e2
y · 
y
≥ e2 min

[
1

λ21
,
1

λ22

]
(λ21y

2
1 + λ22y

2
2)

≥ 1

2
e2 min

[
1

λ21
,
1

λ22

]
(
λ · 
y)2

≥ 1

2
e2 min

[
1

λ21
,
1

λ22

]
(1− δ)2x2.

Therefore, the term in square brackets in the last line of (A.5) is bounded below by (−κ1δ +
κ2(1−δ)2)x2, where the positive constants κ1 and κ2 do not depend on δ. We choose δ ∈ (0, 1)
so that this expression is positive, i.e., so that

(A.6) Lψ(y1, y2, x)− Ũ
(
ψx(y1, y2, x)

) ≥ 0, (y1, y2, x) ∈ Hδ.

In the HJB equation (5.3) there are four first-order terms corresponding to the four possible
“pure” trades, trades that involve only one risky asset and the money market account. Suppose
that starting from (y1, y2, x) ∈ Hδ, the agent increases or decreases her position in type-one
futures by the amount η1 ≥ 0 and increases or decreases her position in type-two futures by the
amount η2 ≥ 0. Then her position in the three assets changes to (y1±η1, y2±η2, x−λ1η1−λ2η2).
Because

(x− λ1η1 − λ2η2)− λ1(y1 ± η1)− λ2(y2 ± η2) ≤ x− λ1y1 − λ2y2,

the change in ψ satisfies

ψ(y1 ± η1, y2 ± η2, x− λ1η1 − λ2η2)− ψ(y1, y2, x) ≤ 0,

(y1, y2, x) ∈ Hδ, (y1 ± η1, y2 ± η2, x− λ1η1 − λ2η2) ∈ Hδ.(A.7)
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This shows that at all points in Hδ, the derivatives of ψ in the directions in which the agent
can trade are nonpositive.

The value function v has a property like (A.7), as discussed at the beginning of section 5.
Specifically, for η1 ≥ 0, η2 ≥ 0, v satisfies

v(y1 ± η1, y2 ± η2, x− λ1η1 − λ2η2)− v(y1, y2, x) ≤ 0,

(y1, y2, x) ∈ D3, (y1 ± η1, y2 ± η2, x− λ1η1 − λ2η2) ∈ D3.

Combining this with (A.7), using the definition (A.3) of ψ outside Hδ and the inequality ψ ≥ v
on ∂Hδ (see (A.4)), we conclude that (A.7) can be strengthened to

ψ(y1 ± η1, y2 ± η2, x− λ1η1 − λ2η2)− ψ(y1, y2, x) ≤ 0,

(y1, y2, x) ∈ Hδ, (y1 ± η1, y2 ± η2, x− λ1η1 − λ2η2) ∈ D3.(A.8)

For each positive integer n > 1
δ , define

Kn �
{
(
y, x) ∈ D3 :

(
1− δ +

1

n

)
x ≤ 
λ · 
y ≤ x

(
1− 1

n

)
,
1

n
< x < n

}
,

a compact subset of Hδ. Let (L1, L2,M1,M2, C) be an admissible policy with initial condition
(y1, y2, x) ∈ Kn, let Y1, Y2, and X be given by (2.2) and (2.3), and define

τn = inf
{
t ≥ 0 :

(

Y (t),X(t)

)
/∈ Kn

}
.

Itô’s formula and inequality (A.8) imply

e−β(t∧τn)ψ
(

Y (t ∧ τn),X(t ∧ τn)

)
= ψ(y1, y2, x)

+

∫ t∧τn

0
e−βs

[
− Lψ(
Y (s),X(s)

)
ds− C(s)ψx

(

Y (s),X(s)

)
ds

+ψx

(

Y (s),X(s)

)
Σ
Y (s) · d 
B(s)

+
2∑

i=1

(
ψi

(

Y (s),X(s)

) − λiψx

(

Y (s),X(s)

))
dLc

i (s)

+

2∑
i=1

(
− ψi

(

Y (s),X(s)

) − λiψx

(

Y (s),X(s)

))
dM c

i (s)

]
+

∑
0≤s≤t∧τn

e−βs
[
ψ
(

Y (s) + Δ
L(s)−ΔM(s),X(s) − 
λ ·Δ
L(s)− 
λ ·ΔM(s)

)
−ψ

(

Y (s),X(s)

)]
≤ ψ(y1, y2, x) +

∫ t∧τn

0
e−βs

[
−Lψ(
Y (s),X(s)

)
+ Ũ

(
ψx

(

Y (s),X(s)

))]
ds

−
∫ t∧τn

0
e−βsU

(
C(s)

)
ds+

∫ t∧τn

0
e−βsψx

(

Y (s),X(s)

)
Σ
Y (s) · d 
B(s).
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Taking expectations and using (A.6) we obtain

(A.9) E

[
e−β(t∧τn)ψ

(

Y (t ∧ τn),X(t ∧ τn)

)] ≤ ψ(y1, y2, x)− E

∫ t∧τn

0
e−βsU

(
C(s)

)
ds.

Letting t → ∞, using Fatou’s lemma on the left-hand side and the monotone convergence
theorem on the right-hand side of (A.9), we see that

(A.10) E

[
e−βτnI{τn<∞}ψ

(

Y (τn),X(τn)

)] ≤ ψ(y1, y2, x)− E

∫ τn

0
e−βsU

(
C(s)

)
ds.

As n → ∞, τn converges up to a limit, which we call τ∞. Fatou’s lemma and the monotone
convergence theorem applied to (A.10) result in

E

[
e−βτ∞I{τ∞<∞}ψ

(

Y (τ∞)−,X(τ∞)− )] ≤ ψ(y1, y2, x)− E

∫ τ∞

0
e−βsU

(
C(s)

)
ds.

But on the set {τ∞ < ∞}, (Y (τ∞)−,X(τ∞)−) is in ∂Hδ, where ψ dominates v (see (A.4)).
Furthermore, v does not increase along jumps caused by trades. Therefore,

E

[
e−βτ∞I{τ∞<∞}v

(

Y (τ∞),X(τ∞)

)] ≤ E

[
e−βτ∞I{τ∞<∞}v

(

Y (τ∞)−,X(τ∞)− )]

≤ E

[
e−βτ∞I{τ∞<∞}ψ

(

Y (τ∞)−,X(τ∞)− )] .

By the dynamic programming principle, v(y1, y2, x) is the supremum over admissible policies
of E[e−βτ∞I{τ∞<∞}v

(

Y (τ∞),X(τ∞)

)
] + E

∫ τ∞
0 e−βsU

(
C(s)

)
ds, and we have just shown that

this is dominated by ψ(y1, y2, x).

Having thus shown that v ≤ ψ on Kn, we use the observation that ∪∞
n=1Kn = Hδ to assert

that v ≤ ψ on Hδ. This is what we set out to prove.

Appendix B. Comparison theorem. This appendix provides the proof of Theorem 6.3.
We follow the proof of Theorem 3.3 of [7], modifying it in order to account for the fact that
Ũ given by (5.2) has limit infinity as its argument goes down to zero, and hence condition
(3.14) in [7] is not satisfied by the function H given by (B.1) below.

We have defined the concept of a viscosity solution of the two-variable HJB equation (6.15)
in Definition 6.1. An equivalent definition is used in [7], which we state as Theorem B.1 below.
For this we need some notation.

We denote by S the set of symmetric 2 × 2 matrices. We denote a generic element of
D2 × R × R

2 ×S → R by (
z, s, 
q,X), and we define functions Si and Bi for i = 1, 2 and Hi

for i = 1, 2, 3, 4, 5 on this set by the formulas (where we omit variables not involved in the
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definition of the function)

Bi(
z, s, 
q) = λips− qi − λi
q · 
z, i = 1, 2,

Si(
z, s, 
q) = λips+ qi − λi
q · 
z, i = 1, 2,

H1(
z, s) = (1− p)

[
A+

1

2
p
(
V(
z − 
θ ) · (
z − 
θ )

)]
s,

H2(
z, 
q) = (r + α · 
z − (1− p)(V
z · 
z )
q · 
z,
H3(
z,X) = −1

2
(V
z · 
z )(X
z · 
z ),

H4(
z, s, 
q) =

{ −Ũ(ps− 
q · 
z ) if ps− 
q · 
z > 0,
∞ otherwise,

H5(
z, s, 
q,X) = H1(
z, s) +H2(
z, 
q) +H3(
z,X) +H4(
z, s, 
q).

Finally, we set

(B.1) H(
z, s, 
q,X) � min
[
H5(
z, s, 
q,X), B1(
z, s, 
q), B2(
z, s, 
q), S1(
z, s, 
q), S2(
z, s, 
q)

]
.

Using (2.12), we see that the expression (6.16) is H
(

z, ϕ(
z ),∇ϕ(
z ),∇2ϕ(
z )

)
.

Let w be a continuous function defined on D2, and let 
z ∗ be an element of D2. We say
that (
q,X) ∈ R

2 ×S is a second-order superjet of w at 
z ∗ if

(B.2) w(
z ) ≤ w(
z ∗) + 
q · (
z − 
z ∗) +
1

2
X(
z − 
z ∗) · (
z − 
z ∗) + o

(‖
z − 
z ∗‖)
for all 
z in an open neighborhood of 
z ∗, and we say (
q,X) is a second-order subjet if the oppo-
site of inequality (B.2) holds in an open neighborhood of 
z ∗. We denote the set of all second-
order superjets (respectively, subjets) of w at 
z ∗ by J2,+w(
z ∗) (respectively, J2,−w(
z ∗)). As
observed in [7],

J2,+w(
z ∗) =
{(∇ϕ(
z ∗),∇2ϕ(
z ∗)

)
: ϕ ∈ C2(D2), ϕ(
z

∗)=w(
z ∗), ϕ ≥ w on D2

}
,

J2,−w(
z ∗) =
{(∇ϕ(
z ∗),∇2ϕ(
z ∗)

)
: ϕ ∈ C2(D2), ϕ(
z

∗)=w(
z ∗), ϕ ≤ w on D2

}
.(B.3)

We further define

J
2,±
w(
z ∗) �

{
(
q,X) ∈ R

2 ×S : ∃(
zn, 
qn,Xn) ∈ D2 × R
2 ×S such that

(
qn,Xn) ∈ J2,±w(zn) and (
zn, 
qn,Xn) → (
z ∗, 
q,X)
}
.

The conditions of the following theorem are taken as the definition of viscosity subsolution
and supersolution in [7], and Remark 2.3 of [7] shows that these conditions are equivalent to
Definition 6.1 used in this paper.

Theorem B.1. A continuous function w defined on D2 is a viscosity subsolution of (6.15)
if and only if H(
z ∗, w(
z ∗), 
q,X) ≤ 0 for every 
z ∗ ∈ D2 and every (
q,X) ∈ J2,+w(z ∗). The
function w is a viscosity supersolution of (6.15) if and only if H(
z ∗, w(
z ∗), 
q,X) ≥ 0 for every

z ∗ ∈ D2 and every (
q,X) ∈ J2,−w(z ∗).
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Proof of Theorem 6.3. We define the symmetric positive semidefinite matrix

Γ(
z ) =
1

2
(V
z · 
z )

[
z21 z1z2
z1z2 z22

]
and

Γ
1
2 (
z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
V
z · 
z
2
z · 
z

[
z21 z1z2
z1z2 z22

]
if 
z �= 0,

[
0 0
0 0

]
if 
z = 0

so that (Γ
1
2 (
z ))2 = Γ(
z) and H3(
z,X) = −1

2trace(Γ(
z )X). Because (V
z · 
z)/(
z · 
z) is

bounded from above and away from zero and because both z2i (∂/∂zj)
√

(V
z · 
z)/(
z · 
z) and

zizj(∂/∂zj)
√

(V
z · 
z)/(
z · 
z) are bounded on D2 for i, j ∈ {1, 2}, Γ 1
2 is Lipschitz on D2.

For δ > 0, define Oδ �
{
(
z, s, 
q) ⊂ D2 × [0,∞) × R

2 : ps − 
q · 
z ≥ δ
}
and O � ∪δ>0Oδ.

On each Oδ, H4 is Lipschitz continuous.
We prove the comparison w+ ≥ w− on D2 by contradiction. Recall that D2 is compact, w

is continuous, and on ∂D2, w
+ ≥ w− = 0. Assume that w+ ≥ w− does not hold everywhere

on D2. Let 
z
0 ∈ D2 be a point where δ1 > 0, the maximum of w− −w+ over D2, is achieved.

We use the variable doubling technique, penalizing the doubling. In particular, we maximize
w−(
z )− w+(
ζ ))− η

2‖
z − 
ζ‖2 over D2 ×D2 for each parameter η > 0. To this end, we define

Mη � max
(�z,�ζ )∈D2×D2

{
w−(
z )− w+(
ζ )− η

2
‖
z − 
ζ‖2

}
,

and we denote by (
z η, 
ζη) a point where the maximum is attained. This maximum satisfies
Mη ≥ w−(
z 0) − w+(
z 0) = δ1 > 0. From Lemma 3.1 of [7] (see Proposition 3.7 of [7] for the
proof), we have

(B.4) lim
η→∞ η‖
z η − 
ζη‖2 = 0.

Using the fact that w− = 0 on ∂D2, we choose a compact set K ⊂ D2 so that w− < δ1
on D2 \ K. But w−(
z η) ≥ Mη ≥ δ1, and thus 
z η is in K for every η > 0. Using (B.4) and

enlarging K if necessary, we can further guarantee that 
ζη is also in K for all sufficiently large
η. Finally, for all 
z ∈ K the quantity 1 − λ1|z1| − λ2|z2| is uniformly positive and bounded.
By assumption, w+ is strictly positive on K. Therefore, we have for some δ2 > 0 that for all
sufficiently large η,

(B.5)
pw+(
ζη)

1− λ1|ζη1 | − λ2|ζη2 |
≥ δ2.

We now apply Theorem 3.2 of [7] in the manner discussed in [7] immediately following the
theorem. We conclude that S contains matrices Xη and Yη such that

(B.6)
(
η(
z η − 
ζη),Xη

) ∈ J2,+
w−(
z η),

(
η(
z η − 
ζη),Yη

) ∈ J
2,−
w+(
ζ η)
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and

(B.7) −3η

[
I 0
0 I

]
≤
[
Xη 0
0 −Yη

]
≤ 3η

[
I −I
−I I

]
,

where I is the 2× 2 identity matrix. From Theorem B.1, relation (B.6), and the continuity of
H, it follows that

(B.8) H
(

z η, w−(
z η), η(
z η − 
ζη),Xη

) ≤ 0 ≤ H
(

ζη, w+(
ζη), η(
z η − 
ζη),Yη

)
.

We next argue that for η sufficiently large,

(B.9)
(

ζη, w+(
ζη), η(
z η − 
ζη)

) ∈ Oδ2 .

We fix η for which (B.5) holds and use the second membership in (B.6) to choose a sequence
(
ζη,n, 
q η,n,Yη,n) converging to (
ζη, η(
z η − 
ζη),Yη) and such that (
q η,n,Yη,n) ∈ J2,−w+(
ζη,n)
for every n. Equation (B.3) implies that for each n there exists a function ϕη,n ∈ C2(D2) such
that ϕη,n(
ζη,n) = w+(
ζη,n), ϕη,n ≤ w+ on D2, 
q

η,n = ∇ϕη,n(
ζη,n), and Yη,n = ∇2ϕη,n(
ζη,n).
Because w+ is a viscosity supersolution of (6.15), Definition 6.1 implies that Biϕ

η,n(
ζη,n) ≥ 0
and Siϕ

η,n(
ζη,n) ≥ 0 for i = 1, 2. Multiplying either the inequality B1ϕ
η,n(
ζη,n) ≥ 0 or

S1ϕ
η,n(
ζη,n) ≥ 0 by |ζη,n1 |, depending on whether ζη,n1 is positive or negative, we obtain

(B.10) λ1|ζη,n1 |pϕη,n(
ζη,n)− ϕη,n
1 (
ζη,n)ζη,n1 − λ1|ζη,n1 |∇ϕη,n(
ζη,n) · 
ζη,n ≥ 0.

Multiplying either the inequality B2ϕ
η,n(
ζη,n) ≥ 0 or S2ϕ

η,n(
ζη,n) ≥ 0 by |ζη,n2 |, depending on
whether ζη,n2 is positive or negative, we similarly obtain

(B.11) λ2|ζη,n2 |pϕη,n(
ζη,n)− ϕη,n
2 (
ζη,n)ζη,n2 − λ2|ζη,n2 |∇ϕη,n(
ζη,n) · 
ζη,n ≥ 0.

Summing (B.10) and (B.11) and rearranging terms, we obtain

pw+(
ζη,n)− qη,n · 
ζη,n ≥ pw+(
ζη,n)

1− λ1|ζη,n1 | − λ2|ζη,n2 | .

Passing to the limit and using (B.5) we conclude that

(B.12) pw+(
ζη)− η(
z η − 
ζη) · 
ζη ≥ pw+(
ζη)

1− λ1|ζη1 | − λ2|ζη2 |
≥ δ2,

which is (B.9). We further conclude from (B.4) and (B.12) that

pw+(
ζη)− η(
z η − 
ζη) · 
z η ≥ δ2
2

for all η sufficiently large. In other words, for sufficiently large η,

(B.13)
(

z η, w+(
ζη), η(
z η − 
ζη)

) ∈ Oδ2/2.

We verify at the end of this proof that H satisfies the following two conditions.



TWO FUTURES WITH TRANSACTION COSTS 83

Condition 1. There exists γ > 0 such that

γ(s− t) ≤ H(
z, s, 
q,X)−H(
z, t, 
q,X) ∀s ≥ t and (
z, s, 
q), (
z, t, 
q) ∈ D2 × R×R
2,X ∈ S.

Condition 2. For each δ > 0 and bounded set C ⊂ R, there exists a function ω : [0,∞] →
[0,∞] with ω(0+) = 0 such that

H(
ζ, s, η(
z − 
ζ ),Y)−H(
z, s, η(
z − 
ζ ),X) ≤ ω
(
η‖
z − 
ζ‖2 + ‖
z − 
ζ‖), s ∈ C,(


z, s, η(
z − 
ζ )
) ∈ Oδ,

(

ζ, s, η(
z − 
ζ )

) ∈ Oδ, and X,Y ∈ S satisfying (B.7).

Using Condition 1 in the second inequality below, using (B.8) in the fourth inequality,
and using (B.9) and (B.13) to justify the use of Condition 2 in the fourth inequality, we write

γδ1 ≤ γ
(
w−(
z η)−w+(
ζη)

)
≤ H

(

z η, w−(
z η), η(
z η − 
ζη),Xη

)−H
(

z η, w+(
ζη), η(
z η − 
ζη),Xη

)
=
[
H
(

z η, w−(
z η), η(
z η − 
ζη),Xη

)−H
(

ζη, w+(
ζη), η(
z η − 
ζη),Yη

)]
+
[
H
(

ζη, w+(
ζη), η(
z η − 
ζη),Yη

)−H
(

z η, w+(
ζη), η(
z η − 
ζη),Xη

)]
≤ ω

(
η‖
z η − 
ζη‖2 + ‖
z η − 
ζη‖).

We now let η → ∞ and use (B.4) to obtain a contradiction. We conclude that w− ≤ w+

everywhere on D2.
It thus suffices to show that H = min[H5, B1, B2, S1, S2] satisfies Conditions 1 and 2,

and for that, it suffices to show that each function H5, B1, B2, S1, and S2 satisfies these
conditions. We consider first B1, for which Condition 1 is clearly satisfied because B1(
z, s, 
q)−
B1(
z, t, 
q) = λ1p(s − t). Furthermore, B1

(

ζ, s, η(
z − 
ζ )

) − B1

(

z, s, η(
z − 
ζ )

)
= λ1η‖
z − 
ζ‖2

for all (
ζ, s, η(
z − 
ζ )) and (
z, s, η(
z − 
ζ )) in D2 × R × R
2, and thus B1 satisfies Condition 2.

Similar calculations show that B2, S1, and S2 satisfy Conditions 1 and 2.
The function H5 is the sum of the four functions H1, H2, H3, and H4. Of these four, only

H1 and H4 are functions of s, and H4 is increasing in s because Ũ is decreasing. Therefore,
for s ≥ t,

H5(
z, s, 
q,X)−H5(
z, t, 
q,X) = H1(
z, s)−H1(
z, t) +H4(
z, s, 
q)−H4(
z, t, 
q)

≥ (1− p)A(s− t),

and hence H5 satisfies Condition 1.
We turn to the verification of Condition 2 for H5, which we do by verifying Condition 2

for H1, H2, H3, and H4. We have the bound

H1(
ζ, s)−H1(
z, s) =
1

2
p(1− p)s

[
V(
ζ − 
θ ) · (
ζ − 
θ )−V(
z − 
θ ) · (
z − 
θ )

]
=

1

2
p(1− p)s

[
V(
ζ − 
θ ) · (
ζ − 
θ )−V(
ζ − 
θ ) · (
z − 
θ )

]
+

1

2
p(1− p)s

[
V(
z − 
θ ) · (
ζ − 
θ )−V(
z − 
θ ) · (
z − 
θ )

]
≤ 1

2
p(1− p)s‖V‖(‖
ζ − 
θ‖+ ‖
z − 
θ‖)‖
ζ − 
z‖

≤ Constant× ‖
ζ − 
z‖
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because 
ζ and 
z are in the compact set D2 and s is in the bounded set C. The argument that
H2 satisfies

H2

(

ζ, η(
z − 
ζ )

) −H2

(

z, η(
z − 
ζ )

) ≤ Constant× (η‖
z − 
ζ ‖2 + ‖
z − 
ζ ‖)
is only slightly more complicated and is omitted.

Turning to H3, we have

H3(
ζ,Y)−H3(
z,X) =
1

2
trace

(
Γ(
z )X− Γ(
ζ )Y

)
=

1

2
trace

(
Γ

1
2 (
z )XΓ

1
2 (
z )− Γ

1
2 (
ζ )YΓ

1
2 (
ζ )

)
because trace(AB) = trace(BA) for square matrices A and B. But when X and Y satisfy
(B.7), the second inequality in (B.7) implies that[

3ηI −X −3ηI
−3ηI 3ηI +Y

]
is positive semidefinite, which implies in turn that for every pair of two-dimensional vectors

v and 
w,

(B.14) 0 ≤
[
3ηI −X −3ηI
−3ηI 3ηI+Y

] [

v

w

]
·
[

v

w

]
= 3η‖
v − 
w‖2 − (X
v · 
v −Y 
w · 
w).

We first apply inequality (B.14) with 
v equal to the first column (which is also the first row)

of Γ
1
2 (
z ) and 
w equal to the first column (which is also the first row) of Γ

1
2 (
ζ ) to conclude

that the (1, 1) entry of Γ
1
2 (
z )XΓ

1
2 (
z )− Γ

1
2 (
ζ )YΓ

1
2 (
ζ ) is dominated by 3ηL‖
z − 
ζ ‖2, where

L is the constant associated with the Lipschitz continuity of Γ
1
2 (·). We next apply (B.14)

with 
v equal to the second column of Γ
1
2 (
z ) and 
w equal to the second column of Γ

1
2 (
ζ ) to

conclude that the (2, 2) entry of Γ
1
2 (
z )XΓ

1
2 (
z )−Γ

1
2 (
ζ )YΓ

1
2 (
ζ ) is dominated by 3ηL‖
z−
ζ ‖2.

Summing these two equalities, we see that

H3(
ζ,Y)−H3(
z,X) =
1

2
trace

(
Γ

1
2 (
z )XΓ

1
2 (
z )− Γ

1
2 (
z )YΓ

1
2 (
ζ )

) ≤ 3ηL‖
z − 
ζ ‖2

whenever X and Y satisfy (B.7). In other words, H3 satisfies Condition 2.

Finally, assume (
ζ, s, η(
z − 
ζ )) and (
z, s, η(
z − 
ζ )) are in Oδ. The mean-value theorem
implies

H4

(

ζ, s, η(
z − 
ζ )

) −H4

(

z, s, η(
z − 
ζ )

)
= Ũ

(
ps− η
z · (
z − 
ζ )

)− Ũ
(
ps− η
ζ · (
z − 
ζ )

)
= −Ũ ′(ξ)η‖
z − 
ζ ‖2,

where ξ is between ps−η
z ·(
z−
ζ ) and ps−η
ζ ·(
z−
ζ ). Both these quantities are greater than
or equal to δ, and hence ξ ≥ δ. Since Ũ ′ is negative and increasing, 0 < −Ũ ′(ξ) ≤ −Ũ ′(δ),
and consequently H4 satisfies Condition 2.
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