Errata for
Stochastic Calculus for Finance II
Continuous-Time Models
September 2006

Page 6, lines 1, 3 and 7 from bottom. Replace $A_{n,m}$ by $S_{n,m}$.

Page 21, line 12. After “Borel measurable.” insert the sentence

Throughout this text, without further mention every function we consider is assumed to be Borel measurable.

Page 21, last line. Move the equation

$$\int_{\mathbb{R}} f(x) \, dL(x) = \int_{\mathbb{R}} f^+(x) \, dL(x) - \int_{\mathbb{R}} f^-(x) \, dL(x),$$

to the top of page 22.

Page 22, first line. This page should begin with the equation

$$\int_{\mathbb{R}} f(x) \, dL(x) = \int_{\mathbb{R}} f^+(x) \, dL(x) - \int_{\mathbb{R}} f^-(x) \, dL(x),$$

moved from the bottom of page 21.

Page 21, last line. Move the text “Theorem 1.3.8(i) may be restated as:” to the top of page 23.

Page 23, first line. This page should begin with the text “Theorem 1.3.8(i) may be restated as:” moved from the bottom of page 22.

Page 36, line 6. Replace $\tilde{E}Z$ by EZ.

Page 47, line 4. Replace $\tilde{P}(A \bar{\omega})$ by $\tilde{P}(A(\omega, \epsilon))$.

Page 55, line 2. Change “Figure 1.2.2” to “Example 1.2.2.”

Page 70, line 9. Replace “sub-σ algebra” by “sub-σ-algebra.”

Page 72, line 12. After “Chapter 2” insert “of Volume I.”

Page 73, lines 1 and 2 from bottom. The equation should be

$$g(x) = \mathbb{E} f \left(x, \frac{\rho \sigma_2 x + W}{\sigma_1} \right)$$

$$= \frac{1}{\sigma_3 \sqrt{2\pi}} \int_{-\infty}^{\infty} f \left(x, \frac{\rho \sigma_2 x + w}{\sigma_1} \right) \exp \left\{ -\frac{(w - \mu_3)^2}{2\sigma_3^2} \right\} \, dw.$$

Page 78, line 14. Change “Example 2.2.8” to “Example 2.2.10.”

Page 80, line 5. Remove the text “Let X be a random variable.”

Page 93, line 14. The left-hand side of the equation should be $\log S_n(t)$.

Page 102, line 1. Change the sentence to, “We usually work with functions that have continuous derivatives, and their quadratic variations are zero.”
Page 105, last line. On the right-hand side of the inequality, $W(k)$ should be $W(t_k)$.

Page 113, equation (3.7.4). There are two places where the exponent αm should be αt. The equation should be

$$\mathbb{E} e^{-\alpha \tau_m} = \int_0^\infty e^{-\alpha t} f_{\tau_m}(t) \, dt = \int_0^\infty \frac{|m|}{t\sqrt{2\pi t}} e^{-\alpha t - \frac{m^2}{2t}} \, dt \text{ for all } \alpha > 0. \tag{3.7.4}$$

Page 116, line 12. The equation should be

$$f_{\tau_m}(t) = \frac{|m|}{t\sqrt{2\pi t}} e^{-\frac{m^2}{2t}}.$$

Page 118, line 1. Change m to n. The text should be “... as the number n of partition points”

Page 119, line 16. Change $h(y)$ to $f(y)$, so the equation is $g(x) = \int_0^\infty f(y) p(\tau, x, y) \, dy$.

Pages 122 and 123, Exercise 3.9. Replace with the following exercise:

Exercise 3.9 (Laplace transform of first passage density; solution provided by Kaiping Chen and Ji Li). Let $m > 0$ be given and define

$$f(t) = \frac{m}{t\sqrt{2\pi t}} \exp\left\{ - \frac{m^2}{2t} \right\}.$$

According to (3.7.3) in Theorem 3.7.1, $f(t)$ is the density of the first passage time

$$\tau_m = \min\{t \geq 0; W(t) = m\},$$

where W is a Brownian motion without drift. Let

$$g(\alpha) = \int_0^\infty e^{-\alpha t} f(t) \, dt, \quad \alpha > 0,$$

be the Laplace transform of the density $f(t)$. This problem verifies directly, without resort to the probabilistic arguments of this chapter, that

$$g(\alpha) = e^{-m\sqrt{2\pi\alpha}}, \quad \alpha > 0,$$

which is the formula derived in Theorem 3.6.2.

(i) For positive numbers a and b, define

$$I(a, b) = \int_0^\infty \exp\left\{ -a^2 x^2 - \frac{b^2}{x^2} \right\} \, dx.$$

Make the change of variable $y = b/(ax)$ to show that

$$I(a, b) = \frac{b}{a} \int_0^\infty \frac{1}{y^2} \exp\left\{ -a^2 y^2 - \frac{b^2}{y^2} \right\} \, dy$$

$$= \frac{b}{a} \int_0^\infty \frac{1}{x^2} \exp\left\{ -a^2 x^2 - \frac{b^2}{x^2} \right\} \, dx.$$
(ii) Sum the two equations for $I(a, b)$ in part (i) and divide by 2 to obtain

$$I(a, b) = \frac{1}{2a} \int_{0}^{\infty} \left(a + \frac{b}{x^{2}} \right) \exp \left\{ -ax^{2} - \frac{b^{2}}{x^{2}} \right\} dx.$$

Make the change of variable $t = ax - b/x$ and show that

$$I(a, b) = \frac{\sqrt{\pi}}{2a} e^{-2ab}.$$

(Hint: Consider the normal density with mean zero and variance $1/2$.)

(iii) Make the change of variable $x = t^{-1/2}$ in the definition of $g(\alpha)$ and conclude from (ii) that

$$g(\alpha) = \frac{2m}{\sqrt{2\pi}} I(m/\sqrt{2}, \sqrt{\alpha}) = e^{-m\sqrt{2\alpha}}.$$

Page 141, line 5 from bottom. Change f_{xx} to f_{tt}. The line should be

$$+ f_{tx}(t, W(t)) \, dt \, dW(t) + \frac{1}{2} f_{tt}(t, W(t)) \, dt \, dt.$$

Page 144, line 6 from bottom. Change $0 \cdot \int_{0}^{L} |\Theta(u)|^2 \, du = 0$ to $0 \cdot \int_{0}^{L} |\Theta(u)| \, du = 0$.

Page 146, line 12. Change (4.4.19) to (4.4.21).

Page 162, line 10 from bottom. Change $f(t, S(0))$ to $f(0, S(0))$.

Page 162, line 9 from bottom. Change text to “... set up a static hedge, which is a hedge that does not trade....”

Page 170, line 7. Insert $\frac{1}{2}$ before f_{yy}. The line should be

$$\frac{1}{2} f_{xx} \, dM_1 \, dM_1 + f_{xy} \, dM_1 \, dM_2 + \frac{1}{2} f_{yy} \, dM_2 \, dM_2.$$

Page 187, line 11 from bottom. Change $\int_{0}^{T} \Delta^2(t) \, dW(t)$ to $\int_{0}^{T} \Delta(t) \, dW(t)$.

Page 187, line 8 from bottom. There is a dt missing in the integral. The line should be

$$\int_{0}^{T} \Delta^2(t) \, dt < \infty \text{ almost surely.}$$

Page 196, equation (4.10.20). The partial derivatives should be with respect to x, not s. The equation should be

$$c_t(t, S(t)) + rS(t)c_x(t, S(t)) + \frac{1}{2} \sigma^2 S(t)c_{xx}(t, S(t)) = rc(t, S(t)).$$

(4.10.20)

Page 200, line 1. A dt is missing in the equation. It should be $dB_i(t) \, dB_k(t) = \rho_{ik}(t) \, dt$.

Page 201, line 9. A dt is missing in the equation. It should be $dB_1(t) \, dB_2(t) = \rho(t) \, dt$.
Page 202, equation (4.10.32). E should be E.

Page 203, last two lines. The label (4.10.39) should be on the last line, not the next-to-last line.

Page 207, line 13 from bottom. The line should be “level K before time T are those for which $L_K(T) > 0$.”

Page 222, line 11. $\bar{E} \int_0^T \Theta^2(u)Z^2(u) du < \infty$ should be $E \int_0^T \Theta^2(u)Z^2(u) du < \infty$.

Page 224, lines 15–16. “Observeed” should be “observed.”

Page 246, line 14. The line should be “or borrowing at the interest rate R as necessary, satisfies...” The interest rate R should be capitalized.

Page 250, line 7 from bottom. And \exp is missing. The equation should be

$$E \exp \left\{ \frac{1}{2} \int_0^T \Theta^2(u) du \right\} < \infty.$$

Page 253, line 6. $dS(t)$ is missing on the right-hand side. The equation should be

$$dS(t) = r(t)S(t) dt + \sigma(t)S(t) d\tilde{W}(t).$$

Page 253, line 10. E should be \bar{E} on the right-hand side of the equation.

Page 253, line 11 from bottom. The right-hand side of the equation should be

$$BSM \left(T, S(0); K, \frac{1}{T} \int_0^T r(t) dt, \sqrt{\frac{1}{T} \int_0^T \sigma^2(t) dt} \right).$$

Page 254, line 8 from bottom. $d\tilde{B}(u)$ on the right-hand side of the equation should be $d\tilde{W}(u)$.

Page 265, lines 9, 11 and 14 from bottom. $\alpha(u)$ should be $a(u)$.

Page 266, line 3 $\alpha(u)$ should be $a(u)$.

Page 291, equation (6.9.47). $\beta(t,y)$ should be $\beta(T,y)$.

Page 292, line 10. There is a du missing. The line should be

$$\frac{1}{2} \int_t^T \int_0^b \gamma^2(u,y)p(t,u,x,y)h^y_u(y)dydu.$$

Page 324, line 5 from bottom. The first $S(t)$ should be $dS(t)$. The line should be

$$e^{r(T-t)} \gamma(t)(dS(t) - rS(t) dt).$$

Page 325, line 11. A dt is missing. The equation in the middle of the line should be $d\gamma(t) = -\frac{T}{c} e^{-r(T-t)} dt$.

Page 326, line 2. “Exlain” should be “explain.”

Page 331, lines 7, 10, and 12. Replace “lookback call” by “lookback option” in three places.
Page 343, line 9 from bottom. Replace “and an H on the second toss” by “and a T on the second toss.”

Page 348, last line. There is a t missing on the right-hand side. The equation should be

$$S(t) = x \exp \left\{ \sigma \widetilde{W}(t) + \left(r - \frac{1}{2} \sigma^2 \right) t \right\}.$$

Page 353, equation (8.3.21). $\mathbb{I}_{\{S(t) < L^*\}}$ should be $\mathbb{I}_{\{S(t) < L_*\}}$. The $*$ should be a subscript on L, not a superscript.

Page 354, lines 5 and 6 from bottom. $S(t) < L^*$ should be $S(t) < L_*$ in two places. The $*$ should be a subscript on L, not a superscript.

Page 360, equation (8.4.15). This should be an inequality. It should be

$$e^{-rt} v(t, x) \geq \mathbb{E} \left[e^{-r\tau} (K - S(\tau)) \right| S(t) = x].$$

Page 360, line 2 from bottom. Change “for any $\tau \in \mathcal{T}_t, T$” to “for every $\tau \in \mathcal{T}_t, T$.”

Page 361, line 9 from bottom. Remove “nonnegative.” The sentence should be “Let $h(x)$ be a convex function of $x \geq 0$ satisfying $h(0) = 0$.

Page 365, equation (8.5.17). $c_n(t, x)$ on the left-hand side of the equation should be $c_n(T, x)$.

Page 396, line 10 from bottom. $\mathbb{P}\{S(T, T) > K\}$ should be $\mathbb{P}\{S(T, T) > K\}.$

Page 400, line 9 from bottom. $\tilde{W}_1(t)$ and $\tilde{W}_2(t)$ should be $\tilde{W}^{(N)}_1(t)$ and $\tilde{W}^{(N)}_2(t)$.

Page 403, equation (10.1.1). The lower limit of summation should be $i = 1$. The equation should be

$$\sum_{i=1}^{j} C_i B(0, T_i).$$

Page 406, equation (10.2.2). The left-hand side of the equation should be $dX_2(t)$, not $dX_1(t)$.

Page 412, line 6 from bottom. λ should be λ_1, so the expression is $C'_1 + \lambda_1 C_1 + \lambda_2 C_2 - \delta_1$.

Page 416, equation (10.2.34). A dt is missing. The equation should be

$$dY(t) = -AY(t) dt + d\tilde{W}(t).$$

Page 429, line 7. A dt is missing. The line should be

$$\sigma(t, T) \sigma^{\ast}(t, T) dt + \sigma(t, T) \left[\Theta(t) dt + dW(t) \right].$$

Page 437, line 13 from bottom. Replace T by $T + \delta$. The line should be “Let $0 \leq t \leq T + \delta$ and $\delta > 0$ be given.”
Page 453, equation (10.7.4). The equation should be
\[C'_1 = -\lambda_1 C_1 - \frac{1}{2} C_1^2 - \sigma_{21} C_1 C_2 - \frac{1}{2} (\sigma_{21}^2 + \beta) C_2^2 + \delta_1. \] (10.7.4)

Page 454, line 9. There is a missing comma. The text should be “model parameters $\lambda_1 > 0$, $\lambda_2 > 0$, λ_{21}, δ_1, and δ_2,...”

Page 457, equation (10.7.18). C_1 should be C_j. The equation should be
\[\tilde{W}_j^T(t) = \int_0^t C_j(T - u) du + \tilde{W}_j(t), \quad j = 1, 2. \] (10.7.18)

Page 457, line 14. The second $Y_1(T)$ should be $Y_2(T)$. The equation should be
\[X = -C_1(T - T)Y_1(T) - C_2(T - T)Y_2(T) - A(T - T). \]

Page 470, lines 5 and 12 from bottom. Change “moment generating” to “moment-generating.”

Page 470. The last line should be
\[= \mathbb{P}\{N(t) = 0\} + \sum_{k=1}^{\infty} \mathbb{E}\left[\exp\left\{ u \sum_{i=1}^{k} Y_i \right\} \mid N(t) = k \right] \mathbb{P}\{N(t) = k\}. \]

Page 520, line 8 from bottom. The line should be
\[+ \int_0^t e^{-ru} t \left[\sum_{m=1}^{M} \tilde{p}(y_m) c(u, (y_m + 1)S(u)) - c(u, S(u)) \right] du. \]

Page 521, line 15. $y + 1$ should be $y_m + 1$, so the line is
\[-e^{-rt} t \left[\sum_{m=1}^{M} \tilde{p}(y_m) c(t, (y_m + 1)S(t-)) - c(t, S(t-)) \right] dt. \] (11.7.36)

Page 521, line 11 from bottom. The lower limit of summation should be $m = 1$, so the equation is $N(t) = \sum_{m=1}^{M} N_m(t)$.

Page 521, line 10 from bottom. The lower limit in the sum should be $m = 1$, so the sum is $\sum_{m=1}^{M} \tilde{p}(y_m) c(t, (y_m + 1)S(t-))$. There is a left parenthesis missing before the y in the integrand of the integral; the integral should be $\int_{-\infty}^{\infty} c(t, (y + 1)S(t-)) f(y) dy$. Put a period at the end of the line.

Page 522, line 3. The λ in $\tilde{\beta}\lambda t$ at the end should be $\tilde{\lambda}$. The line should be
\[= e^{-rt} \left[\Gamma(t) \sigma S(t) d\tilde{W}(t) + \Gamma(t-) S(t-) dQ(t) - \tilde{\beta}\lambda t \right]. \]