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Abstract

An explicit formula for the Skorokhod map Γ0,a on [0, a] for a > 0 is provided and related
to similar formulas in the literature. Specifically, it is shown that on the space D[0,∞) of
right-continuous functions with left limits taking values in R,

Γ0,a(ψ)(t) = ψ(t) −

[(
ψ(0) − a

)+
∧ inf

u∈[0,t]
ψ(u)

]
∨ sup

s∈[0,t]

[
(ψ(s) − a) ∧ inf

u∈[s,t]
ψ(u)

]
.

is the unique function taking values in [0, a] that is obtained from ψ by minimal “pushing”
at the endpoints 0 and a. An application of this result to real-time queues with reneging is
outlined.
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1 Introduction

In 1961 A. V. Skorokhod [10] considered the problem of constructing solutions to stochastic dif-
ferential equations on the half-line R+ with a reflecting boundary condition at 0. His construction
implicitly used properties of a deterministic mapping on the space C[0,∞) of continuous functions
on [0,∞). This mapping was used more explicitly by Anderson and Orey in their study of large
deviations properties of reflected diffusions on a half-space in R

N (see p. 194 of [1]). These authors
exploited the fact that the mapping, which is now called the Skorokhod map and is denoted here
by Γ0, has the explicit representation

Γ0(ψ)(t)
∆
= ψ(t) + max

s∈[0,t]
[−ψ(s)]

+
,

and is consequently Lipschitz continuous (with constant 2). In fact, this formula easily extends to
a mapping on D[0,∞), the space of right-continuous functions with left limits mapping [0,∞) into
R. Given ψ ∈ D[0,∞), define

η(t) = sup
s∈[0,t]

[
− ψ(s)

]+
= − inf

s∈[0,t]

[
ψ(s) ∧ 0

]
(1.1)

and
Γ0(ψ) = ψ + η ∀ψ ∈ D[0,∞). (1.2)

Then Γ0(ψ) is in D[0,∞) and takes values in R+, η is in D[0,∞) and is nondecreasing, and the
pair of functions (Γ0(ψ), η) satisfies the complementarity condition

∫ ∞

0

I{Γ0(ψ)(s)>0} dη(s) = 0, (1.3)

which says that η “pushes” only when Γ0(ψ) is zero. These properties uniquely characterize the
pair of functions (Γ0(ψ), η), and this pair is said to solve the Skorokhod problem for ψ on [0,∞).

Let z < a be a real number. The double Skorokhod map Γz,a is the mapping from D[0,∞) into
itself such that for ψ ∈ D[0,∞), Γz,a(ψ) takes values in [z, a] and has the decomposition

Γz,a(ψ) = ψ + η` − ηu, (1.4)

where η` and ηu are nondecreasing functions in D[0,∞) so that the triple (Γz,a(ψ), η`, ηu) satisfies
the complementarity conditions

∫ ∞

0

I{Γz,a(ψ)(s)>z} dη`(s) = 0,

∫ ∞

0

I{Γz,a(ψ)(s)<a} dηu(s) = 0. (1.5)

The function η` “pushes” only when Γz,a(ψ) is at the lower boundary z, and ηu “pushes” only
when Γz,a(ψ) is at the upper boundary a. Existence and uniqueness of η` and ηu, and hence the
validity of the definition of Γz,a(ψ) for continuous functions ψ as well as step functions in D[0,∞),
follow directly from Tanaka [11], Lemmas 2.1, 2.3 and 2.6. In fact, it is well known that for every
ψ ∈ D[0,∞), there exist unique nondecreasing η` and ηu in D[0,∞) so that Γz,a(ψ) is a function in
D[0,∞) taking values in [z, a] and (1.5) is satisfied (see, e.g., [2], [13]). The triple (Γz,a(ψ), η`, ηu)
is said to solve the Skorokhod problem for ψ on [z, a].

In contrast to the formulas (1.1), (1.2) for the Skorokhod map on [0,∞), no explicit formula for
the Skorokhod map Γz,a was known until recently. Such a formula was provided for Γ0,a by [8] as a
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composition of maps with explicit formulas, and a formula for Γz,a with z 6= 0 can be immediately
obtained by translation. Given φ ∈ D[0,∞), define

Λa(φ)(t)
∆
= φ(t) − sup

s∈[0,t]

[(
φ(s) − a

)+ ∧ inf
u∈[s,t]

φ(u)

]
. (1.6)

It is shown in [8] that
Γ0,a = Λa ◦ Γ0. (1.7)

It has recently come to the attention of the authors of this paper that there are formulas in the
literature for Γ0,a restricted to various subsets of D[0,∞). One of these, equation (15) in Cooper,
Schmidt and Serfozo [3], provides a formula for Γ0,a restricted to the set of bounded-variation
functions in D[0,∞). Although the authors do not discuss its relation to the Skorohod map,
Lemma 5.6 of Ganesh, O’Connell and Wischik [5] give a formula for Γ0,a restricted to a subset
of the bounded-variation functions. Equations (4) and (5) of Toomey [12] give an analogue of
Γ0,a for functions on the integers rather than on [0,∞). Functions defined on the integers can be
regarded as piecewise constant functions in D[0,∞). Therefore, in [3], [5] and [12], the formulas
provided can be interpreted as a definition of Γ0,a on subsets of D[0,∞). In the case of [3], the
subset on which the mapping is defined is dense in D[0,∞) in the Skorokhod metric. Because
the formulas provided by [3], [5] and [12] are Lipschitz continuous in the Skorokhod metric, their
continuous extensions to the closures of the sets on the which they are specified must be given by
the same formulas. A separate argument (see [13]) can be used to show that Γ0,a is also Liptschitz
continuous on D[0,∞). Therefore, these extended formulas must agree with Γ0,a on their domains
of definition. This suggests that all these formulas are closely related. One purpose of this paper is
to work out these relationships. In doing so, we discover another formulation of (1.7) that avoids
the need to compose mappings. In particular, we show that

Γ0,a(ψ)(t) = ψ(t) −
[(
ψ(0) − a

)+ ∧ inf
u∈[0,t]

ψ(u)

]
∨ sup
s∈[0,t]

[
(ψ(s) − a) ∧ inf

u∈[s,t]
ψ(u)

]
(1.8)

for all ψ ∈ D[0,∞).
There is a second purpose for this paper. The derivation of the explicit formula for Γ0,a devel-

oped in [8] was motivated by the analysis of real-time queues with reneging (see [9]). Because the
derivation in [9] is highly technical, we provide here a non-rigorous but more accessible explanation
of that application.

2 Alternative formula for Γ0,a

We begin with the proof of (1.8).

Theorem 2.1 For ψ ∈ D[0,∞), define

Ξa(ψ)(t)
∆
= ψ(t) −

[(
ψ(0) − a

)+ ∧ inf
u∈[0,t]

ψ(u)

]
∨ sup
s∈[0,t]

[(
ψ(s) − a

)
∧ inf
u∈[s,t]

ψ(u)

]
. (2.1)

Then Ξa = Λa ◦ Γ0 = Γ0,a.
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Proof: We show that Ξa = Λa ◦Γ0 and then appeal to (1.7). Let ψ ∈ D[0,∞) be given. We have
immediately from (2.1) that

Ξa(ψ)(0) = ψ(0) −
(
ψ(0) − a

)+ ∧ ψ(0) =





a if ψ(0) ≥ a,
ψ(0) if 0 ≤ ψ(0) ≤ a,
0 if ψ(0) ≤ 0.

which agrees with Λa(0) = Γ0,a(ψ)(0).
Now let t > 0 be fixed. Let us define φ = ψ + η, where η is given by (1.1). In other words,

φ = Γ0(ψ). Let us next define φ = Λa(φ). We must show that φ(t) = Ξa(ψ)(t).

Case I: η(t) = 0.
Because η is nondecreasing, in this case we have η(s) = 0 and φ(s) = ψ(s) for all s ∈ [0, t]. In

particular, ψ is nonnegative on [0, t]. Therefore,
(
ψ(0)−a

)+ ∧ infu∈[0,t] ψ(u) ≥ 0, and, in fact, this

expression is 0 ∨
[(
ψ(0) − a

)
∧ infu∈[0,t] ψ(u)

]
. It follows that

Ξa(ψ)(t) = ψ(t) − 0 ∨ sup
s∈[0,t]

[(
ψ(s) − a

)
∧ inf
u∈[s,t]

ψ(u)

]

= ψ(t) − sup
s∈[0,t]

[(
ψ(s) − a

)+ ∧ inf
u∈[s,t]

ψ(u)

]

= Λa(ψ)(t) = Λa(φ)(t) = φ(t).

Case II: η(t) > 0.
In this case, (1.1) becomes η(t) = − infu∈[0,t] ψ(u). Using ψ = φ− η, we write (2.1) as

Ξa(ψ)(t) = φ(t) −
{
η(t) +

[(
φ(0) − a− η(0)

)+ ∧
(
− η(t)

)]

∨ sup
s∈[0,t]

[(
φ(s) − a− η(s)

)
∧ inf
u∈[s,t]

(
φ(u) − η(u)

]}

= φ(t) −
[(

(φ(0) − a− η(0))+ + η(t)
)
∧ 0
]

∨ sup
s∈[0,t]

[(
φ(s) − a+ η(t) − η(s)

)
∧ inf
u∈[s,t]

(
φ(u) + η(t) − η(u)

)]
.

The term
(
φ(0)−a−η(0)

)+
+η(t) is nonnegative, so

[(
φ(0)−a−η(0)

)+
+η(t)

]
∧0 = 0. Therefore,

Ξa(ψ)(t) = φ(t) − sup
s∈[0,t]

[(
φ(s) − a+ η(t) − η(s)

)
∧ inf
u∈[s,t]

(
φ(u) + η(t) − η(u)

)]+
.

We conclude the proof that this last expression is φ(t)
∆
= Λa(φ)(t) by showing that

[(
φ(s) − a+ η(t) − η(s)

)
∧ inf
u∈[s,t]

(
φ(u) + η(t) − η(u)

)]+
=
(
φ(s) − a

)+ ∧ inf
u∈[s,t]

φ(u). (2.2)

There are two possibilities. The first is that φ(u)
∆
= Γ0(ψ)(u) > 0 for every u ∈ [s, t]. According

to the complementarity condition (1.3), η is constant on [s, t], and the left-hand side of (2.2)

becomes
[(
φ(s) − a

)
∧ infu∈[s,t] φ(u)

]+
, which agrees with the right-hand side.
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The other possibility is that φ(u) = 0 for some u ∈ [s, t]. Define u∗ = sup{u ∈ [s, t] : φ(u) = 0}.
According to the complementarity condition (1.3), either φ(u∗) = 0 and η is constant on [u∗, t] or
else u∗ > s, φ(u∗−) = 0, φ(u∗) > 0, η is constant on [u∗, t], and η is continuous at u∗. In either
case infu∈[s,t](φ(u) + η(t) − η(u)) = 0 and infu∈[s,t] φ(u) = 0, so (2.2) holds with both sides equal
to zero. �

Remark 2.2 If ψ(0) ≤ 0, then
(
ψ(0) − a

)+ ∧ inf
u∈[0,t]

ψ(u) = inf
u∈[0,t]

ψ(u),

and

Ξa(ψ)(t) = ψ(t) − inf
u∈[0,t]

ψ(u) ∨ sup
s∈[0,t]

[
(ψ(s) − a) ∧ inf

u∈[s,t]
ψ(u)

]

= ψ(t) − sup
s∈[0,t]

[((
ψ(s) − a

)
∨ inf
u∈[0,t]

ψ(u)
)
∧
(

inf
u∈[s,t]

ψ(u) ∨ inf
u∈[0,t]

ψ(u)
)]

= ψ(t) − sup
s∈[0,t]

[((
ψ(s) − a

)
∨ inf
u∈[0,t]

ψ(u)
)
∧ inf
u∈[s,t]

ψ(u)

]
. (2.3)

Example 2.3 We provide here an example illustrating the fact that Ξa = Λa ◦ Γ0, and demon-
strating in addition that Ξa 6= Λa. Let a = 1 and

ψ(t) =

{
−2 + t, 0 ≤ t ≤ 4,
6 − t, 4 ≤ t ≤ 6.

(2.4)

For 0 ≤ t ≤ 6, we have infu∈[0,t] ψ(u) = ψ(0) = −2. It is straightforward to compute

sup
s∈[0,t]

[((
ψ(s) − 1

)
∨ (−2)

)
∧ inf
u∈[s,t]

ψ(u)

]
=





−2, 0 ≤ t ≤ 1,
−3 + t, 1 ≤ t ≤ 4,

1, 4 ≤ t ≤ 5,
6 − t, 5 ≤ t ≤ 6.

According to (2.3),

Ξa(ψ)(t) = ψ(t) − sup
s∈[0,t]

[((
ψ(s) − 1

)
∨ (−2)

)
∧ inf
u∈[s,t]

ψ(u)

]
=





t, 0 ≤ t ≤ 1,
1, 1 ≤ t ≤ 4,

5 − t, 4 ≤ t ≤ 5,
0, 5 ≤ t ≤ 6.

We see that Ξa(ψ) 6= Λa(ψ) because

sup
s∈[0,t]

[(
ψ(s) − 1

)+ ∧ inf
u∈[s,t]

ψ(u)

]
=





−2 + t, 0 ≤ t ≤ 2,
0, 2 ≤ t ≤ 3,

−3 + t, 3 ≤ t ≤ 4,
1, 4 ≤ t ≤ 5,

6 − t, 5 ≤ t ≤ 6,

so

Λa(ψ)(t) = ψ(t) − sup
s∈[0,t]

[(
ψ(s) − 1

)+ ∧ inf
u∈[s,t]

ψ(u)

]
=





0, 0 ≤ t ≤ 2,
−2 + t, 2 ≤ t ≤ 3,

1, 3 ≤ t ≤ 4,
5 − t, 4 ≤ t ≤ 5,

0, 5 ≤ t ≤ 6.
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The discrepancy between Ξa(ψ) and Λa(ψ) is due to the fact that ψ can take negative values. If
ψ is nonnegative, then Γ0(ψ) = ψ, and Theorem 2.1 implies Ξa(ψ) = Λa ◦ Γ0(ψ) = Λa(ψ). For ψ
given by (2.4),

φ(t)
∆
= Γ0(ψ)(t) = ψ(t) + 2 =

{
t, 0 ≤ t ≤ 4,
8 − t, 4 ≤ t ≤ 6,

and

sup
s∈[0,t]

[(
φ(s) − 1

)+ ∧ inf
u∈[s,t]

φ(u)

]
=





0, 0 ≤ t ≤ 1,
−1 + t, 1 ≤ t ≤ 4,
3, 4 ≤ t ≤ 5,
8 − t, 5 ≤ t ≤ 6.

Therefore,

Λa(φ)(t) = φ(t) − sup
s∈[0,t]

[(
φ(s) − 1

)+ ∧ inf
u∈[s,t]

φ(u)

]
=





t, 0 ≤ t ≤ 1,
1, 1 ≤ t ≤ 4,
5 − t, 4 ≤ t ≤ 5,
0, 5 ≤ t ≤ 6.

This illustrates the result Ξa(ψ) = Λa ◦ Γ0(ψ) = Λa(φ) of Theorem 2.1. �

3 The formula of Cooper, Schmidt and Serfozo [3]

Following Cooper, Schmidt and Serfozo [3], we let H be a signed measure on the Borel subsets
of R+ whose total variation on each compact interval is finite. The function t 7→ H(0, t] is right-
continuous with left limits and is of bounded variation. We denote this function by H(0, · ]. Let a
be a positive number, and let x ∈ [−a, 0] be given. Cooper et. al. [3] (equation [15]) define

X(t)
∆
= sup
s∈[0,t]

inf
u∈[s,t]

[
xI{s=u=0} +H(u, t] − aI{s=u>0}

]
(3.1)

and show that X = Γ−a,0
(
x+H(0, · ]

)
. In particular, X(0) = x.

Negating (3.1), we obtain

−X(t) = − sup
s∈[0,t]

inf
u∈[s,t]

[
xI{s=u=0} +H(u, t] − aI{s=u>0}

]
, (3.2)

and the result in [3] implies that

−X = Γ0,a

(
− x−H(0, · ]

)
. (3.3)

In particular, −X(0) = −x.
To relate (3.2) to Ξa, we let ψ be a bounded variation function in D[0,∞). We can then define

the signed measure H by
H(u, t] = ψ(u) − ψ(t), 0 ≤ u ≤ t. (3.4)

The number −x in (3.3) must be taken to be in the interval [0, a]. We define −x in terms of ψ by

−x = Γ0,a(ψ)(0) =
[
ψ(0)

]+ ∧ a. (3.5)

It is then easily verified that

x+ ψ(0) =
(
ψ(0) − a

)+ ∧ ψ(0). (3.6)
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With the choices of H and −x given by (3.4) and (3.5), (3.2) becomes

−X(t) = − sup
s∈[0,t]

inf
u∈[s,t]

[
xI{s=u=0} + ψ(u) − ψ(t) − aI{s=u>0}

]

= ψ(t) − inf
u∈[0,t]

[
xI{u=0} + ψ(u)

]
∨ sup
s∈(0,t]

inf
u∈[s,t]

[
ψ(u) − aI{s=u}

]

= ψ(t) −
[(
x+ ψ(0)

)
∧ inf
u∈(0,t]

ψ(u)

]
∨ sup
s∈(0,t]

[(
ψ(s) − a

)
∧ inf
u∈(s,t]

ψ(u)

]

= ψ(t) −
[(
ψ(0) − a

)+ ∧ ψ(0) ∧ inf
u∈(0,t]

ψ(u)

]
∨ sup
s∈(0,t]

[(
ψ(s) − a

)
∧ inf
u∈(s,t]

ψ(u)

]

= ψ(t) −
[(
ψ(0) − a

)+ ∧ inf
u∈[0,t]

ψ(u)

]
∨ sup
s∈(0,t]

[(
ψ(s) − a

)
∧ inf
u∈(s,t]

ψ(u)

]
. (3.7)

Because ψ is right continuous, for 0 ≤ s ≤ t,
(
ψ(s) − a

)
∧ inf
u∈(s,t]

ψ(u) =
(
ψ(s) − a

)
∧ inf
u∈[s,t]

ψ(u),

where we adopt the convention that infu∈(t,t] ψ(u) = ∞ to handle the case s = t. Furthermore,
this expression is right-continuous in s. Therefore, for t > 0,

sup
s∈(0,t]

[(
ψ(s) − a

)
∧ inf
u∈(s,t]

ψ(u)

]
= sup
s∈[0,t]

[(
ψ(s) − a

)
∧ inf
u∈[s,t]

ψ(u)

]
.

We thus conclude from (3.7) that

−X(t) = ψ(t) −
[(
ψ(0) − a

)+ ∧ inf
u∈[0,t]

ψ(u)

]
∨ sup
s∈[0,t]

[(
ψ(s) − a

)
∧ inf
u∈[s,t]

ψ(u)

]
= Ξa(ψ)(t). (3.8)

To deal with the case that t = 0, it is easily verified that

Ξa(ψ)(0) = ψ(0)−(ψ(0)−a)+∧ψ(0) =
[
ψ(0)

]+∧a = Γ0,a(ψ)(0) = Λa ◦Γ0(ψ)(0) = −X(0). (3.9)

�

4 The formula of Ganesh, O’Connell and Wischik [5]

Section 5.7 of [5] records the size of a finite-buffer queue at time zero under the assumption that
the queue was empty at time −t, where t > 0. The buffer size of the queue is a, a positive number.
We adjust the formula in [5] by relabeling time; our queue is empty at time zero and we record its
size at time t. In [5], the arrivals and departures take place at discrete times, so the cumulative
arrivals, the cumulative offered service, and the so-called netput, the difference between cumulative
arrivals and cumulative offered service, is piecewise continuous and of bounded variation. (Offered
service is service received, unless the queue is empty, in which case offered service is wasted.) We
call the netput process ψ. The queue length is then Γ0,a(ψ).

We thus begin with a bounded-variation function ψ ∈ D[0,∞) satisfying ψ(0) = 0. Following
[5], we define

M(s, t)
∆
= infu∈[s,t]

(
ψ(t) − ψ(u)

)
= ψ(t) − supu∈[s,t] ψ(u),

N(s, t)
∆
= supu∈[s,t]

(
ψ(t) − ψ(u)

)
= ψ(t) − infu∈[s,t] ψ(u).
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We note that like ψ itself, M(s, t) and N(s, t) are right-continuous with left-hand limits in s. Here
and elsewhere, we adopt the notational conventions

sup
u∈[s−,t]

ψ(u)
∆
= lim

v↑s
sup
u∈[v,t]

ψ(u), inf
u∈[s−,t]

ψ(u)
∆
= lim

v↑s
inf

u∈[v,t]
ψ(u), (4.1)

We shall also use the notation (s−, t] ∆
= [s, t] and 0− = 0.

Lemma 4.1 For all t ≥ 0,

sup
s∈[0,t]

[
N(s, t) ∧

(
M(s, t) + a

)]
≤ inf
s∈[0,t]

[
N(s, t) ∨

(
M(s, t) + a

)]
. (4.2)

Proof: For t ≥ 0,

sup
s∈[0,t]

[
N(s, t) ∧

(
M(s, t) + a

)]
= ψ(t) + sup

s∈[0,t]

[
− inf
u∈[s,t]

ψ(u) ∧
(
a− sup

u∈[s,t]

ψ(u)
)
]

= ψ(t) − inf
s∈[0,t]

[
inf

u∈[s,t]
ψ(u) ∨ sup

u∈[s,t]

(
ψ(u) − a

)
]
. (4.3)

The infimum over s ∈ [0, t] in the last line of (4.3) is either attained by some s1 ∈ [0, t], or else
there is an s1 in (0, t] for which the infimum is (in the notation (4.1))

inf
u∈[s1−,t]

ψ(u) ∨ sup
u∈[s1−,t]

(
ψ(u) − a

)
.

In the former case, we let s′1 denote s1; in the latter case, s′1 denotes s1−. Capturing both cases,
we say that s′1 ∈ [0, t] satisfies

inf
u∈[s′1,t]

ψ(u) ∨ sup
u∈[s′1,t]

(
ψ(u) − a

)
= inf
s∈[0,t]

[
inf

u∈[s,t]
ψ(u) ∨ sup

u∈[s,t]

(
ψ(u) − a

)
]
.

Continuing in this way, we observe that if s′1 = s1, then there is an s∗ ∈ [s1, t] that attains
infu∈[s1,t] ψ(u) or else there is an s∗ ∈ (s1, t] for which the infimum is ψ(s∗−). If s′1 = s1−, then
either there is an s∗ ∈ [s1, t] that attains inf [s1−,t] ψ(u) or else there is s∗ ∈ [s1, t] for which the
infimum is ψ(s∗−). If ψ(s∗) = infu∈[s′1,t]

ψ(u), we set s′∗ = s∗; if ψ(s∗−) = infu∈[s′1,t]
ψ(u), s′∗

denotes s∗−. Capturing all these cases, we say that s′∗ ∈ [s′1, t] satisfies ψ(s′∗) = infu∈[s′1,t]
ψ(u).

With these conventions, we have

inf
s∈[0,t]

[
inf

u∈[s,t]
ψ(u) ∨ sup

u∈[s,t]

(
ψ(u) − a

)
]

= inf
u∈[s′1,t]

ψ(u) ∨ sup
u∈[s′1,t]

(
ψ(u) − a

)

≥ ψ(s′∗) ∨ sup
u∈[s′

∗
,t]

(
ψ(u) − a

)

≥ inf
s∈[0,t]

[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)
]
.

The reverse inequality

inf
s∈[0,t]

[
inf

u∈[s,t]
ψ(u) ∨ sup

u∈[s,t]

(
ψ(u) − a

)
]
≤ inf
s∈[0,t]

[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)
]
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obviously holds. Returning to (4.3), we see that

sup
s∈[0,t]

[
N(s, t) ∧

(
M(s, t) + a

)]
= ψ(t) − inf

s∈[0,t]

[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)
]
. (4.4)

An analogous argument shows that

inf
s∈[0,t]

[
N(s, t) ∨

(
M(s, t) + a

)]
= ψ(t) − sup

s∈[0,t]

[(
ψ(s) − a

)
∧ inf
u∈[s,t]

ψ(u)

]
. (4.5)

Now choose s3 ∈ [0, t], where s3 attains the infimum on the right-hand side of (4.4) (in which
case we write s′3 = s3) or if no such s3 exists, then choose s3 ∈ (0, t], where s3− attains the
infimum on the right-hand side of (4.4) (in which case we write s′3 = s3−). Let s′4 be defined
analogously in connection with the supremum on the right-hand side of (4.5). If s′3 ≤ s′4 (this
means either that s3 < s4 or else that s3 = s4 and it is not the case that s′3 = s3, s′4 = s4−), we
have supu∈[s′3,t]

(
ψ(u) − a

)
≥ ψ(s′4) − a, and so

inf
s∈[0,t]

[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)
]

= ψ(s′3) ∨ sup
u∈[s′3,t]

(
ψ(u) − a

)

≥
(
ψ(s′4) − a

)
∧ inf
u∈[s′4,t]

ψ(u)

= sup
s∈[0,t]

[(
ψ(s) − a

)
∧ inf
u∈[s,t]

ψ(u)

]
. (4.6)

Relation (4.2) follows from (4.4) and (4.5). On the other hand, if s′3 ≥ s′4, then ψ(s′3) ≥
infu∈[s′4,t]

ψ(u), and again relation (4.6) and hence relation (4.2) hold. �

For x ∈ R and α ≤ β, define [x]βα = (x∨ α) ∧ β. On a subset of bounded-variation functions in
D[0,∞) whose initial condition is zero, in [5] a mapping Φa is defined by the formula

Φa(ψ)(t)
∆
=
[
ψ(t)

]infs∈[0,t][N(s,t)∨(M(s,t)+a)]

sups∈[0,t][N(s,t)∧(M(s,t)+a)]
. (4.7)

According to this definition and relations (4.4) and (4.5),

Φa(ψ)(t)

=

(
ψ(t) ∨ sup

s∈[0,t]

[
N(s, t) ∧

(
M(s, t) ∧ a

)]
)

∧ inf
s∈[0,t]

[
N(s, t) ∨

(
M(s, t) + a

)]

=

{
ψ(t) ∨

(
ψ(t) − inf

s∈[0,t]

[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)
])}

∧
(
ψ(t) − sup

s∈[0,t]

[(
ψ(s) − a

)
∧ inf
u∈[s,t]

ψ(u)

])

= ψ(t) −
(

0 ∧ inf
s∈[0,t]

[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)
])

∨ sup
s∈[0,t]

[(
ψ(s) − a

)
∧ inf
u∈[s,t]

ψ(u)

]
. (4.8)
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Theorem 4.2 Let ψ ∈ D[0,∞) satisfy ψ(0) = 0. Then Φa(ψ) = Ξa(ψ), where Ξa(ψ) is given by
(2.1).

Proof: According to (4.8),

ψ(t) − Φa(ψ)(t) =
(
0 ∧A(t)) ∨B(t),

where

A(t) = inf
s∈[0,t]

[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)
]
, B(t) = sup

s∈[0,t]

[(
ψ(s) − a

)
∧ inf
u∈[s,t]

ψ(u)

]
.

Using ψ(0) = 0, we obtain from equation (2.1) that

ψ(t) − Ξa(ψ)(t) = C(t) ∨B(t),

where
C(t) = inf

s∈[0,t]
ψ(s).

To prove the theorem, we must show that
(
0 ∧A(t)

)
∨B(t) = C(t) ∨B(t). (4.9)

Clearly, A(t) ≥ C(t), and because ψ(0) = 0, we have also 0 ≥ C(t). It follows that
(
0∧A(t)

)
≥

C(t), and thus (
0 ∧A(t)

)
∨B(t) ≥ C(t) ∨B(t). (4.10)

If A(t) = C(t), then 0 ∧ A(t) = C(t) and so equality holds in (4.10). To complete the proof, we
establish the implication

A(t) > C(t) =⇒ A(t) ≤ B(t). (4.11)

If A(t) > C(t), (4.11) will imply
(
0 ∧ A(t)

)
∨ B(t) ≤ B(t) ≤ C(t) ∨B(t), and we have the reverse

of (4.10).
Assume

A(t) > C(t). (4.12)

Using the notation developed for Lemma 4.1, we choose s1 ∈ [0, t] so that ψ(s1) = C(t) or s1 ∈ (0, t]
so that ψ(s1−) = C(t). We use s′1 to denote s1 in the former case and s1− in the latter case. We
capture both cases by the equation

ψ(s′1) = C(t) ≤ ψ(s) ∀s ∈ [0, t]. (4.13)

We next define

s2
∆
= sup

{
s ∈ [0, t]

∣∣∣∣∣

[
ψ(s) ∨ sup

u∈[s,t]

(
ψ(u) − a

)
]
∧
[
ψ(s−) ∨ sup

u∈[s−,t]

(
ψ(u) − a

)
]

= A(t)

}
.

Either s2 ∈ [0, t] and ψ(s2) ∨ supu∈[s2,t]

(
ψ(u) − a

)
= A(t), in which case we denote s2 by s′2, or

else s2 ∈ (0, t], ψ(s2) ∨ supu∈[s2,t]

(
ψ(u) − a) > A(t), and ψ(s2−) ∨ supu∈[s2−,t]

(
ψ(u) − a

)
= A(t),

in which case we denote s2− by s′2. We capture both cases by the equation

ψ(s′2) ∨ sup
u∈[s′2,t]

(
ψ(u) − a

)
= A(t). (4.14)
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We cannot have s′2 < s′1 (which means s2 < s1 or s2 = s1, s′2 = s2−, s′1 = s1), for then we
would have, using (4.13) and the definition of A(t),

A(t) ≤ ψ(s′1) ∨ sup
u∈[s′1,t]

(
ψ(u) − a

)
≤ ψ(s′2) ∨ sup

u∈[s′2,t]

(
ψ(u) − a

)
= A(t),

a contradiction to the maximality property of s′2. Therefore, s′2 ≥ s′1.
We must have

ψ(s) ≥ ψ(s′2) ∀s ∈ [s2, t]. (4.15)

If this were not the case, then we would have ψ(s) < ψ(s′2) for some s ∈ (s′2, t], and then

A(t) ≤ ψ(s) ∨ sup
u∈[s,t]

(
ψ(u) − a

)
≤ ψ(s′2) ∨ sup

u∈[s′2,t]

(
ψ(u) − a

)
= A(t),

which also contradicts the maximality property of s′2.

Case I: A(t) = supu∈[s′2,t]

(
ψ(u) − a

)
≥ ψ(s′2).

Define
u2

∆
= sup

{
u ∈ [s2, t]

∣∣ (ψ(u) − a
)
∨
(
ψ(u−) − a

)
= A(t)

}
.

Then either ψ(u2) − a = A(t) or else u2 > 0, ψ(u2) − a < A(t), ψ(u2−) − a = A(t). Let
us consider first the case that ψ(u2) − a = A(t), in which case we denote u2 by u′2. There
cannot exist u3 ∈ (u2, t] for which ψ(u3) < A(t), for if such a u3 were to exist, we would have
ψ(u3) ∨ supu∈[u3,t]

(
ψ(u) − a

)
< A(t). Therefore,

ψ(u) ≥ A(t) ∀u ∈ [u2, t]. (4.16)

Let us next consider the case that u2 > 0, ψ(u2) − a < A(t) and ψ(u2−) − a = A(t), in which
case we denote u2− by u′2. There cannot exist u3 ∈ [u2, t] such that ψ(u3) < A(t), for if such a u3

were to exist, we would again have ψ(u3)∨ supu∈[u3,t]

(
ψ(u)−a

)
< A(t). Once again, (4.16) holds.

From (4.16) and the fact that ψ(u′2) − a = A(t), we have immediately

B(t) ≥
(
ψ(u′2) − a

)
∧ inf
u∈[u′

2,t]
ψ(u) = A(t).

This completes the proof of (4.11) in Case I.

Case II: A(t) = ψ(s′2) > supu∈[s′2,t]

(
ψ(u) − a

)
.

Define
u1

∆
= sup

{
u ∈ [s1, s2]

∣∣ (ψ(u) − a
)
∨
(
ψ(u−) − a

)
≥ ψ(s′2)

}
.

If no such u1 were to exist, then we would have
(
ψ(u)−a

)
∨
(
ψ(u−)−a

)
< ψ(s′2) for all u ∈ [s1, s2],

in which case we would have from (4.12), (4.13), and the case assumption that

ψ(s′1) ∨ sup
u∈[s′1,t]

(
ψ(u) − a

)
= ψ(s′1) ∨ sup

u∈[s′1,s2]

(
ψ(u) − a

)
∨ sup
u∈[s2,t]

(
ψ(u) − a

)
< ψ(s′2).

But according to the definition of A(t), it is dominated by the left-hand side of this expression.
We have a contradiction to the case assumption, which shows that u1 ∈ [s1, s2] is well defined.

If ψ(u1)−a ≥ ψ(s′2), we denote u1 by u′1. If this is not the case, then u1 > 0, ψ(u1)−a < ψ(s′2),
ψ(u1−) − a = ψ(s′2), and we denote u1− by u′1. We capture both cases by the equation

ψ(u′1) − a ≥ ψ(s′2) = A(t). (4.17)
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The maximality property of u′1 implies that

sup
u∈(u′

1,s2]

ψ(u) − a < ψ(s′2).

If ψ(u3) < ψ(s′2) for some u3 ∈ (u′1, s2], then we would have

A(t) ≤ ψ(u3) ∨ sup
u∈[u3,t]

(
ψ(u) − a

)
< ψ(s′2),

a contradiction to the case assumption. Therefore,

ψ(u) ≥ ψ(s′2) ∀u ∈ (u′1, s2]. (4.18)

It follow that

B(t) ≥
(
ψ(u′1) − a

)
∧ inf
u∈[u′

1,t]
ψ(u)

≥
(
ψ(u′1) − a

)
∧ ψ(u′1) ∧ inf

u∈(u′

1,s2]
ψ(u) ∧ inf

u∈[s2,t]
ψ(u),

and each of these terms dominates ψ(s′2) = A(t) by (4.17), (4.18), and (4.15). This completes the
proof of (4.11) in Case II, and thus completes the proof of Theorem 4.2. �

5 The formula of Toomey [12]

Toomey [12] records the size of a finite-buffer queue at time −k under the assumption that the
queue was of size qm at time −m < −k. The buffer size of the queue is a, a positive number, and
qm is assumed to be in [0, a]. There are two formulas, (4) and (5), in [12], each obtained from the
other by reversing the spatial axis. We deal with (5), mapping −m into time zero and mapping
−k into time t > 0 and writing the formula for piecewise constant functions in D[0,∞) rather than
functions defined on the integers.

The netput process, cumulative arrivals minus offered service, over the time interval −k to −m
is denoted Ukm by [12] and by ψ(t) − ψ(0) here. We take ψ(0) = qm ∈ [0, a], the initial queue
length. In our notation, formula (5) in [12] is

inf
s∈(0,t]

sup
u∈(s,t]

[(
a+ ψ(t) − ψ(s)

)
∨
(
ψ(t) − ψ(u)

)]

∧ sup
u∈(0,t]

[(
qm + ψ(t) − ψ(0)

)
∨
(
ψ(t) − ψ(u)

)]

= ψ(t) − sup
s∈(0,t]

inf
u∈(s,t]

[(
ψ(s) − a) ∧ ψ(u)

]
∨ inf
u∈(0,t]

[0 ∧ ψ(u)] .

Because ψ is right-continuous and (ψ(0) − a)+ = 0, this expression can be rewritten as

ψ(t) − sup
s∈[0,t]

[(
ψ(s) − a

)
∧ inf
u∈[s,t]

ψ(u)

]
∨
[(
ψ(0) − a

)+ ∧ inf
u∈[0,t]

ψ(u)

]
,

which is Ξa(ψ)(t) given by (2.1).

13



6 Application to real-time queues with reneging

6.1 Heavy-traffic convergence

Consider a sequence of single station queueing systems indexed by the positive integers. In the n-th
system, the the interarrival times are a sequence of positive, independent, identically distributed

random variables u
(n)
1 , u

(n)
2 , . . . and the service times are likewise a sequence of positive, indepen-

dent, identically distributed random variables v
(n)
1 , v

(n)
2 , . . . . The arrival rate in the n-th system

is λ(n) = 1/Eu
(n)
i , the service rate is µ(n) = 1/Ev

(n)
i , and the traffic intensity is ρ(n) ∆

= λ(n)/µ(n).
We assume that λ(n) has a positive limit λ as n → ∞, µ(n) also has a positive limit µ as n → ∞,

u
(n)
i has a limiting positive variance α2 as n→ ∞, and v

(n)
i has a limiting variance β2 as n→ ∞.

We make the heavy traffic assumption

ρ(n) = 1 − γ√
n

(6.1)

for some nonzero constant γ. This implies λ = µ.
For the n-th system, the customer arrival times are

S
(n)
k

∆
=

k∑

i=1

u
(n)
i

and the customer arrival process is

A(n)(t)
∆
= max

{
k
∣∣∣S(n)
k ≤ t

}
.

The work arrival process is

V (n)(k)
∆
=

k∑

j=1

v
(n)
j .

The netput process

N (n)(t)
∆
= V (n)

(
A(n)(t)

)
− t

represents the work that would be present in queue at time t if the server were never idle between
times 0 and t. We are taking the queue to be empty at time zero. However, the queue may be
idle prior to time t, and thus the work that is actually present at time t is given by the workload
process

W (n) ∆
= Γ0(N (n)), (6.2)

where Γ0 is defined by (1.2). The idleness process

I(t)
∆
= − inf

s∈[0,t]
N (n)(s)

plays the role of η of (1.1).
The scaled workload process is

Ŵ (n)(t)
∆
=

1√
n
W (n)(nt), t ≥ 0. (6.3)
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It is well known that the following heavy traffic convergence result holds under assumption (6.1)
and the Lindeberg condition

lim
n→∞

E

[(
u

(n)
j − (λ(n))−1

)2

I{∣∣∣u(n)
j

−(λ(n))−1
∣∣∣>c√n

}
]

= lim
n→∞

E

[(
v
(n)
j − (µ(n))−1

)2

I{∣∣∣v(n)
j

−(µ(n))−1
∣∣∣>c√n

}
]

= 0 ∀c > 0.

Theorem 6.1 (Kingman [7], Iglehart and Whitt [6]) As n→ ∞,

Ŵ (n) ⇒W ∗, (6.4)

where W ∗ is a Brownian motion with drift −γ and variance per unit time λ(α2 + β2), reflected at

the origin so as to always be nonnegative. More precisely, define N ∗(t)
∆
= −γt+

√
λ(α2 + β2)B(t),

where B is a standard Brownian motion. Then

W ∗ ∆
= Γ0(N∗). (6.5)

6.2 Lead times

In real-time queues, customer deadlines are taken into account. We introduce a sequence of lead

times, which are positive, independent and identically distributed random variables L
(n)
1 , L

(n)
2 , . . . .

Customer k arrives in system n at time S
(n)
k with deadline S

(n)
k +L

(n)
k . The lead time of customer

k, which is the time until the customer’s deadline elapses, is L
(n)
k upon arrival of customer k and

then decreases at rate one thereafter, becoming negative when the customer becomes late.
Under the heavy traffic assumption (6.1), delay in the n-th system will be of order

√
n, so the

lead times must also be of order
√
n to avoid trivialities. We assume therefore that there is a

cumulative distribution function G independent of n such that

P

{
L

(n)
j√
n

≤ y

}
= G(y). (6.6)

For technical reasons, we also assume that there exists a finite y∗ for which G(y∗) = 1 and G(y) < 1
for y < y∗, i.e., we cannot have a lead time in the n-th system larger than

√
n y∗ but we can have

lead times equal to or at least arbitrarily close to
√
n y∗.

We serve the customers using the earliest deadline first (EDF) protocol. The customer in service
may be preempted by the arrival of a more urgent customer. When service eventually resumes on
the preempted customer, the service begins where it left off, i.e., the work already done on that
customer is not lost. We wish to determine the heavy traffic limit of the distribution of the lead
times of customers in queue.

We define two measure-valued processes, W (n) and V(n), by specifying for every Borel subset
B of R that

W(n)(t)(B)
∆
=

{
Work associated with customers in
queue at time t with lead times in B

}
, (6.7)

V(n)(t)(B)
∆
=





Work associated with customers arrived
by time t with lead times in B, whether
or not still present at time t



 . (6.8)
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We define the frontier to be

F (n)(t)
∆
=





Largest lead time of any customer who has ever been in
service, whether or not that customer is still present, or√
n y∗ − t if this quantity is larger than the former one



 . (6.9)

We also define the scaled measure-valued workload process, scaled measure-valued work arrival
process, and scaled frontier, respectively:

Ŵ(n)(t)(B)
∆
=

1√
n
W(n)(nt)(

√
nB), (6.10)

V̂(n)(t)(B)
∆
=

1√
n
V(n)(nt)(

√
nB), (6.11)

F̂ (n)(t)
∆
=

1√
n
F (n)(nt). (6.12)

At time t > 0, work whose lead time is less or equal to F (n)(t) receives priority. However,
the arrival rate of work in this category is less than the full arrival rate, since F (n)(t) <

√
n y∗.

Therefore, this work is not in heavy traffic, which leads to the following result, proved in [4].

Lemma 6.2 (Crushing) As n→ ∞, Ŵ(n)(−∞, F̂ (n)] ⇒ 0.

Lemma 6.2 says that in order to understand the limiting distribution of lead times, it is enough
to consider only work whose lead time exceeds F (n). However, this work has never been in service,
so we can restrict attention to the measure-valued work arrival process V (n) rather than the more
complicated measure-valued workload process W (n). The following limit for the scaled version of
this process is obtained in [4].

Theorem 6.3 For all y ∈ R,

V̂(n)(·)(y,∞) ⇒ H(y)
∆
=

∫ ∞

y

(
1 −G(x)

)
dx. (6.13)

In fact, the convergence in (6.13) is weak convergence of a sequence of measure-valued processes
to a measure on R, not just weak convergence of a real-valued process for each fixed y.

Theorem 6.3 can be explained by the following heuristic. To have scaled lead time x at scaled
time t, a customer must have entered the system scaled time units s earlier with scaled lead time
x + s. Given that a customer arrives at scaled time t − s, the density at time t for the lead time
at x of this customer is G′(x+ s). We must integrate this density over all possible values of s ≥ 0
and multiply by the limiting arrival rate λ of customers to obtain the density of customers with
scaled lead time x at scaled time t, which is therefore

λ

∫ ∞

0

G′(x+ s) ds = λ
(
G(∞) −G(x)) = λ

(
1 −G(x)

)
.

The limiting work brought by each customer is 1/µ = 1/λ. Therefore, to find the density of
work (as opposed to customers) with scaled lead time x at scaled time t, we divide the expression
above by λ. Finally, to obtain the amount of work in (y,∞) at time t, we integrate the resulting
expression from y to ∞ and obtain H(y) defined in (6.13).
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The limiting scaled work in the system is W ∗ defined by (6.5), and according to Lemma 6.2, as

n→ ∞, this work is increasingly concentrated to the right of the frontier F̂ (n). One can use these
observations to show that F̂ (n) has a limit, and this limit must be F ∗ = H−1(W ∗) so that

lim
n→∞

V̂(n)(t)
(
F (n)(t),∞

)
= H

(
F ∗(t)

)
= W ∗(t).

In the limit, arrived work to the right of the frontier accounts for all work in the system. We
summarize with the principal conclusions from [4].

Theorem 6.4 As n→ ∞,

F̂ (n) ⇒ F ∗ ∆
= H−1(W ∗), (6.14)

Ŵ(n)(·)(y,∞) ⇒ H(y ∨ F ∗) ∀y ∈ R. (6.15)

The convergence in (6.15) is weak convergence of a sequence of measure-valued processes to a
measure-valued process. In other words, the density of the limit of the measure-valued workload
processes Ŵ(n)(t) is

(
1 −G(x)

)
I{x≥F∗(t)}, which is the density of the limit of V (n)(t) truncated at

the random process F ∗(t).

6.3 Reneging

We modify the real-time queueing system of the previous subsection by assuming that customers
renege when they become late, i.e., a customer whose lead time reaches zero disappears from the
queue never to return. This system has the same customer arrival process A(n), work arrival process
V (n), and netput process N (n) as the system without reneging. However, its workload process,

denoted W
(n)
R , is less than or equal to the workload process W (n) of (6.2). For the reneging system,

we scale the workload process to obtain (cf. (6.3))

Ŵ
(n)
R (t) =

1√
n
W

(n)
R (nt), t ≥ 0.

For the reneging system, we define the measure-valued workload process (cf. (6.7))

W(n)
R (t)(B) =

{
Work associated with customers in the reneg-
ing system at time t with lead times in B

}

and the scaled measure-valued workload process (cf. (6.10))

Ŵ(n)
R (t)(B) =

1√
n
W(n)
R (nt)(

√
nB).

Here B is an arbitrary Borel subset of R. The measure-valued work arrival process V (n) and scaled
measure-valued work arrival process V̂(n) for the reneging system are the same as for the non-
reneging system; these are given by (6.8) and (6.11). For the reneging system, the frontier is (cf.
(6.9))

F
(n)
R (t)

∆
=





Largest lead time of any customer who has ever been in service in
the reneging system, whether or not that customer is still present,
or

√
n y∗ − t if this quantity is larger than the former one



 .
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Because the reneging system serves customers that have not yet been in service in the non-reneging

system, we have F (n) ≤ F
(n)
R . The scaled frontier for the reneging system is (cf. (6.12))

F̂
(n)
R (t) =

1√
n
F

(n)
R (t).

Recall the definition (1.6) of Λa and the reflected Brownian motion W ∗ of (6.5). The principal
result of [9] is the following.

Theorem 6.5 As n→ ∞,

Ŵ
(n)
R ⇒W ∗

R

∆
= ΛH(0)(W

∗), (6.16)

which is a Brownian motion with drift −γ and variance per unit time λ(α2 + β2), doubly reflected
to stay in the interval

[
0, H(0)

]
. As n→ ∞,

F̂
(n)
R ⇒ F ∗

R

∆
= H−1(W ∗

R), (6.17)

Ŵ(n)
R (·)(y,∞) ⇒ H(y ∨ F ∗

R) ∀y ∈ R. (6.18)

We sketch the proof of Theorem 6.5. For this we introduce M, the set of finite measures on the
Borel subsets of R. We endow M with the topology of weak convergence. We denote by DM[0,∞)
the set of functions from [0,∞) to M that are right-continuous and have left limits. We further
define a mapping Λ: DM[0,∞) → DM[0,∞) by

Λ(µ)(t)(−∞, y]
∆
=

(
µ(t)(−∞, y] − sup

s∈[0,t]

[
µ(s)(−∞, 0] ∧ inf

u∈[s,t]
µ(u)(R)

])+

. (6.19)

Consideration of (6.19) reveals that Λ(µ)(t) is the measure on R that agrees with µ(t) except that
it has all mass removed to the left of some point, no mass removed to the right of that point,
and perhaps some of the mass removed at that point if there is a point mass there. The point in
question is the supremum of those y for which

µ(t)(−∞, y] ≤ sup
s∈[0,t]

[
µ(s)(−∞, 0] ∧ inf

u∈[s,t]
µ(u)(R)

]
.

The total amount of mass removed is almost the largest amount of “lateness” prior to time t, by
which we mean sups∈[0,t] µ(s)(−∞, 0], but this is tempered by the fact that at some time between
t and the prior time s when this maximal lateness was obtained, the system may have become
empty. For example, if there is an s1 ∈ [0, t] and a u1 ∈ [s1, t] such that

sup
s∈[0,t]

[
µ(s)(−∞, 0] ∧ inf

u∈[s,t]
µ(u)(R)

]
= µ(s1)(−∞, 0] ∧ inf

u∈[s1,t]
µ(u)(R) = µ(u1)(R),

then

Λ(µ)(u1)(R) =

(
µ(u1)(R) − sup

s∈[0,u1]

[
µ(s)(−∞, 0] ∧ inf

u∈[s,u1]
µ(u)(R)

])+

= 0;

the system is empty at time u1 and rather than subtracting mass µ(s1)(−∞, 0] from µ(t) to obtain
Λ(µ)(t), we subtract only µ(u1)(R), the amount removed at time u1 in order to create the empty
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system. We conclude the paper with the detailed Example 6.7 of the operation of Λ on a path of
W(n).

Unlike Λa of (1.6), which maps real-valued functions to real-valued function, Λ maps measure-
valued functions to measure-valued functions. To obtain a real-valued process, we define

U (n)(t)
∆
= Λ(W(n))(t),

U (n)(t)
∆
= U (n)(R)(t)

=

(
W (n)(t) − sup

s∈[0,t]

[
W(n)(s)(−∞, 0] ∧ inf

u∈[s,t]
W (n)(u)

])+

.

Scaling these relations, we obtain

Û (n)(t)
∆
=

1√
n
U (n)(nt)

=

(
Ŵ (n)(t) − sup

s∈[0,t]

[
Ŵ(n)(s)(−∞, 0] ∧ inf

u∈[s,t]
Ŵ (n)(u)

])+

. (6.20)

Note that the processes Ŵ (n)(·) = Ŵ(n)(·)(R) and Ŵ(n) appearing in (6.20) are for the non-
reneging system. We take the limit as n → ∞. Although Λ is not continuous on the set of all
measure-valued processes, it is continuous on the set of processes that can result as the limit of
W(n). Therefore, we can use Theorems 6.1 and 6.4 and the continuous mapping theorem to obtain

Û (n)(t) ⇒
(
W ∗(t) − sup

s∈[0,t]

[(
W ∗(s) −H(0 ∨ F ∗(s)

)
∧ inf
u∈[s,t]

W ∗(u)

])+

, (6.21)

where we have used the fact that

Ŵ(n)(s)(−∞, 0] = Ŵ(n)(s)(R) − Ŵ(n)(s)(0,∞) ⇒W ∗(s) −H
(
0 ∨ F ∗(s)

)
.

Because H is nonincreasing,

H
(
0 ∨ F ∗(s)

)
= H(0) ∧H

(
F ∗(s)

)
= H(0) ∧W ∗(s).

Therefore,

W ∗(s) −H
(
0 ∨ F ∗(s)

)
= W ∗(s) −

(
H(0) ∧W ∗(s)

)
=
(
W ∗(s) −H(0)

)+
.

Making this substitution in (6.21), we see that

Û (n) ⇒ ΛH(0)(W
∗). (6.22)

In conclusion, we have defined

Û (n)(t) = Λ(Ŵ(n))(t)(R) ∀t ≥ 0, (6.23)

taken the limit as n→ ∞, and obtained (6.22).

The following lemma implies that the processes Û (n) and Ŵ
(n)
R have the same limit. In partic-

ular, (6.22) yields (6.16).

19



Lemma 6.6 Let D(n)(t) denote the work that arrives to the reneging system that has lead time
upon arrival less than or equal to the frontier at the time of arrival and that ultimately reneges.
Define D̂(n)(t) = 1√

n
D(n)(nt). Then

0 ≤ Û (n) − Ŵ
(n)
R ≤ D̂(n) ⇒ 0, (6.24)

where the limit in (6.24) is taken as n→ ∞.

Just as with the non-reneging system, as n→ ∞, work in the reneging system concentrates to

the right of the frontier F̂
(n)
R . The remainder of the argument follows as in the derivation of (6.14)

and (6.15). We know that the limiting scaled work in the system is W ∗
R, that this work must be

concentrated to the right of the limiting frontier, and that work to the right of the frontier has
never been is service and hence is just the work that has arrived. The limit of arrived work is given
by Theorem 6.3, and (6.17) and (6.18) follow.

We do not attempt to prove Lemma 6.6 here. Instead, we illustrate it with the following
example.

Example 6.7 Consider a system realization in which

u
(n)
1 = 1, v

(n)
1 = 4, L

(n)
1 = 3, S

(n)
1 = 1,

u
(n)
2 = 1, v

(n)
2 = 4, L

(n)
2 = 5, S

(n)
2 = 2,

u
(n)
3 = 3, v

(n)
3 = 2, L

(n)
3 = 1, S

(n)
3 = 5,

u
(n)
4 = 2, v

(n)
4 = 1, L

(n)
4 = 4, S

(n)
4 = 7,

u
(n)
5 = 2, v

(n)
5 = 1, L

(n)
5 = 1, S

(n)
5 = 9.

Then using δs to denote a unit of mass at the point s, we have

W(n)(t) =





0, 0 ≤ t < 1,
(5 − t)δ4−t, 1 ≤ t < 2,
(5 − t)δ4−t + 4δ7−t, 2 ≤ t < 5,
(7 − t)δ6−t + 4δ7−t, 5 ≤ t < 7,
(11 − t)δ7−t + δ11−t, 7 ≤ t < 9,
2δ−2 + δ1 + δ2, t = 9.

The measure W(n)(t) is shown for integer values of t ranging between 1 and 9 in Figure 1.
We have W (n)(u) ≥ 4 for all u ∈ [2, 8] and hence

K(n)(t)
∆
= sup

s∈[0,t]

[
W(n)(s)(−∞, 0] ∧ inf

u∈[s,t]
W (n)(u)

]

= sup
s∈[0,t]

W(n)(s)(−∞, 0]

=





0, 0 ≤ t < 4,
1, 4 ≤ t < 7,
4, 7 ≤ t ≤ 8.
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t = 10

4δ3

t = 20

3δ2

4δ5

t = 30

2δ1

4δ4

t = 40

δ0

4δ3

t = 50

2δ1

4δ2

t = 60

δ0

4δ1

t = 70

4δ0

δ4

t = 80

3δ−1

δ3

t = 90

2δ−2

δ1 δ2

Figure 1: Evolution of W(n)

However, for 8 ≤ t < 9, we have W (n)(t) = 12 − t ≤ 4. For t in this range, the supremum in the
definition of K(n)(t) is attained at s = 7, and

K(n)(t) = W(n)(7)(−∞, 0] ∧ inf
u∈[7,t]

W (n) = 4 ∧ (12 − t) = 12 − t.

For t = 9, we have W (n)(9) = 4 6= 12 − t. Nonetheless, the supremum in the definition of K (n)(9)
is still attained at s = 7. Indeed,

K(n)(9) = W(n)(u)(−∞, 0] ∧ inf
u∈[7,9]

W (n)(u) = 4 ∧
[

inf
u∈[7,9)

(12 − t) ∧ 4

]
= 3.

In summary,

K(n)(t) =





0, 0 ≤ t < 4,
1, 4 ≤ t < 7,
4, 7 ≤ t ≤ 8,
12 − t, 8 ≤ t ≤ 9.

The measure U (n)(t) is obtained by subtracting massK(n)(t) from the measure W(n)(t), working
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t = 10

4δ3

t = 20

3δ2

4δ5

t = 30

2δ1

4δ4

t = 40

4δ3

t = 50

δ1

4δ2

t = 60

4δ1

t = 70

δ4

t = 80 t = 90

δ2

Figure 2: Evolution of U (n)

from left to right. This results in the formula

U (n)(t) =





0, 0 ≤ t < 1,
(5 − t)δ4−t, 1 ≤ t < 2,
(5 − t)δ4−t + 4δ7−t, 2 ≤ t < 4,
(8 − t)δ7−t, 4 ≤ t < 5,
(6 − t)δ6−t + 4δ7−t, 5 ≤ t < 6,
(10 − t)δ7−t, 6 ≤ t < 7,
(8 − t)δ11−t, 7 ≤ t < 8,
0, 8 ≤ t < 9,
δ2, t = 9.

The measure U (n)(t) is shown for integer values of t ranging between 1 and 9 in Figure 2. The
total mass in the U (n) system is

U (n)(t) =





0, 0 ≤ t < 1,
5 − t, 1 ≤ t < 2,
9 − t, 2 ≤ t < 4,
8 − t, 4 ≤ t < 5,
10 − t, 5 ≤ t < 7,
8 − t, 7 ≤ t < 8,
0, 8 ≤ t < 9,
1, t = 9.
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t = 10

4δ3

t = 20

3δ2

4δ5

t = 30

2δ1

4δ4

t = 40

4δ3

t = 50

2δ1

3δ2

t = 60

3δ1

t = 70

δ4

t = 80 t = 90

δ1

Figure 3: Evolution of the reneging system W (n)
R

This total mass path has jumps ∆U (n)(1) = 4, ∆U (n)(2) = 4, ∆U (n)(4) = −1, ∆U (n)(5) = 2,
∆U (n)(7) = −2 (the result of an arrival of mass 1 and the deletion of mass −3), and U (n)(9) = 1.

We see that arriving mass to U (n) is not always placed at the lead time of the arriving customer.

In particular, U (n)(5−) = 3δ2, but U (n)(5) = δ1 + 4δ2. The mass v
(n)
3 = 2 arriving at time 5 is

distributed with one unit at L
(n)
3 = 1 and one unit at 2. Furthermore, the mass v

(n)
5 = 1 arriving

at time t = 9, which begins a new busy period for U (n), is placed at 2 rather than at L
(n)
5 = 1.

Because of the failures of U (n) to place all arriving masses at their lead times, the reneging

system measure W(n)
R (t) is not U (n)(t) for 5 ≤ t < 7 and t = 9. The full formula for the reneging

system is

W(n)
R (t) =





0, 0 ≤ t < 1,
(5 − t)δ4−t, 1 ≤ t < 2,
(5 − t)δ4−t + 4δ7−t, 2 ≤ t < 4,
(8 − t)δ7−t, 4 ≤ t < 5,
(7 − t)δ6−t + 3δ7−t, 5 ≤ t < 6,
(9 − t)δ7−t, 6 ≤ t < 7,
(8 − t)δ11−t, 7 ≤ t < 8,
0, 8 ≤ t < 9,
δ1, t = 9.

The measure W(n)
R (t) is shown for integer values of t ranging between 1 and 9 in Figure 3.

Beginning at time t = 4, the reneging system begins serving the customer with lead time 3,
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and thus by time t = 5, this customer, whose lead time is now 2, requires only three remaining
units of service. The customer arriving at time t = 5 with lead time 1 brings an additional two
units of work. At time t = 5, the reneging system thus has five units of work, which agrees with
U (n)(5) = 5, but the mass in the reneging system is not distributed according to the measure
U (n)(5). At time t = 6, an additional unit of work is deleted from the reneging system but not

from the U (n) system, and so W
(n)
R (6) = 3, whereas U (n)(6) = 4. This discrepancy is due to the

deletion in the reneging system at time 6 of the customer who arrived at time t = 5, a customer
who upon arrival was more urgent than the customer in service in the reneging system. The work
associated with this customer upon arrival is counted in the process D(n) in Lemma 6.6.

Lemma 6.6 asserts that we always have W
(n)
R (t) ≤ U (n)(t), and the inequality can be strict due

to work that preempts the customer in service in the reneging system, but the difference between

W
(n)
R (t) and U (n)(t) is never more than the amount of such work deleted by the reneging system

up to time t. �
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