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the space D [0,∞) of right-continuous functions with left limits taking
values in IR, Γ0,a = Λa ◦ Γ0, where Λa : D [0,∞) → D [0,∞) is defined
by

Λa(φ)(t) = φ(t)− sup
s∈[0,t]

[
(φ(s)− a)+ ∧ inf

u∈[s,t]
φ(u)

]
and Γ0 : D [0,∞) → D [0,∞) is the Skorokhod map on [0,∞). In addi-
tion, properties of Λa are developed and comparison properties of Γ0,a

are established.
AMS 2000 subject classifications: Primary 60G05, 60G17; secondary
60J60, 90B05, 90B22.
Keywords and phrases: Skorokhod map, reflection map, double-sided
reflection map, comparison principle.

1. Introduction

1.1. Background

In 1961 A. V. Skorokhod [11] considered the problem of constructing solu-
tions to stochastic differential equations on the half-line IR+ with a reflecting
boundary condition at 0. His construction implicitly used properties of a de-
terministic mapping on the space C [0,∞) of continuous functions on [0,∞).
This mapping was used more explicitly by Anderson and Orey in their study
of large deviations properties of reflected diffusions on a half-space in IRN

(see p. 194 of [1]), where they exploited the fact that the mapping, which is
now called the Skorokhod map and is denoted here by Γ0, has the explicit
representation

Γ0(ψ)(t) = ψ(t) + sup
s∈[0,t]

[−ψ(s)]+ , ψ ∈ C [0,∞) , (1.1)

and is consequently Lipschitz continuous (with constant 2) with respect to
the uniform norm on C [0,∞). El Karoui and Chaleyat-Maurel [5] used Γ0

in a study of local times.
Given any trajectory ψ in D [0,∞), the space of right-continuous functions

with left limits mapping [0,∞) into IR, Γ0 can be extended using formula
(1.1) to map ψ to a “constrained version” φ = ψ+η of ψ that is restricted to
take values in [0,∞) by the minimal pushing term η(t) .= sups∈[0,t][−ψ(s)]+.
Minimality of η follows from the fact that η increases only at times t
when φ(t) = 0 (see Definition 1.1 below for a precise statement). A multi-
dimensional extension of the Skorokhod map was introduced by Tanaka [13].
Given any right-continuous function with left limits on [0,∞) taking values
in IRN , Tanaka produced a corresponding function taking values in a given
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convex domain by adding a constraining term on the boundary that acts in
the direction normal to the boundary. Tanaka then used the solution to this
Skorokhod problem to construct solutions of stochastic differential equations
with normal reflection. In general, the Skorokhod map is a convenient tool
for constructing processes that are restricted to take values in a certain do-
main by a constraining force that can push only along specified directions
at the boundary. The study of many properties of the constrained or “re-
flected” process then reduces to the study of corresponding properties of the
associated Skorokhod map.

In this paper, we focus on the particular case when the domain is a
bounded interval [0, a] in IR. For functions in D [0,∞), Chaleyat, et. al.
[4] posed and solved a version of the Skorokhod problem, producing func-
tions taking values in [0, a]. However, in [4] the treatment of jumps across
the boundary is different from that of Tanaka and this paper because in
[4] the constrained function really “reflects” such jumps off the boundary,
taking values in the interior of [0, a], rather than being “constrained” to
stay at the boundary. In contrast to [4], in this paper the Skorokhod map
Γ0,a maps a trajectory in D [0,∞) to a trajectory φ̄ in D [0,∞) that is con-
strained to take values in [0, a] by a minimal pushing force η̄ that is allowed
to increase only when φ̄ is at the lower boundary 0 and decrease only when
φ̄ is at the upper boundary a (see Definition 1.2 for a precise description
of the Skorokhod map on [0, a]). Existence and uniqueness of solutions to
this Skorokhod problem for continuous functions as well as step functions
in D [0,∞) follow directly from Tanaka [13], Lemmas 2.1, 2.3 and 2.6. In
fact, it is well-known that solutions to this Skorokhod problem exist for all
functions in D [0,∞) (see, for example, [2]).

In contrast to the Skorokhod map (1.1) on [0,∞), prior to the present
work no explicit formula for the Skorokhod map Γ0,a on [0, a] (sometimes
called the two-sided reflection map) was known. This is provided in Theorem
1.4 below. We then use this formula to establish comparison properties of
Γ0,a (Theorem 1.6). This formula involves a new map, Λa, defined by (1.11).
Properties of Λa are developed in Proposition 1.3 and Corollary 1.5.

The explicit formula for the Skorokhod map on [0,∞) has found applica-
tion in a variety of contexts, including queueing theory and finance (see, for
example, [6], [14] and [7]). More recently, it was used in [3] and [12] to derive
various interesting distributional properties of quantities related to Brown-
ian motion reflected on Brownian motion, a process that arises in the study
of true self-repelling motions. In a similar fashion, the explicit formula for
the Skorokhod map on [0, a] is likely to have several potential applications.
Already in [9] this formula plays a crucial role in the derivation of a diffusion
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approximation for the GI/G/1 queue with earliest-deadline-first service and
reneging by customers who become late. In addition, in [8] the comparison
properties of Theorem 1.6 are used to provide bounds on transaction costs
in an optimal consumption/investment model.

The outline of the paper is as follows. In Section 1.2 we introduce notation
and recall the precise definitions and basic properties of Γ0 and Γ0,a. In
Section 1.3, we state the main results. Properties of Λa are established in
Section 2. Two proofs of Theorem 1.4 are presented in Sections 3 and 4,
respectively. The proof of Theorem 1.6 is given in Section 5. A technical
result is relegated to the appendix.

1.2. Basic Definitions

Let D+ [0,∞), C [0,∞), I [0,∞) and BV [0,∞) denote the subspace of non-
negative, continuous, non-decreasing and bounded variation functions, re-
spectively, in D [0,∞). For f ∈ BV [0,∞), |f |t denotes the total variation
of f on [0, t]. For f ∈ D[0, T ], ||f ||T denotes the supremum norm of f on
[0, T ]. Let IR+ denote the set of non-negative real numbers. Given a, b ∈ IR,
denote a ∧ b .= min{a, b}, a ∨ b .= max{a, b}, and a+ .= a ∨ 0. We denote by
IA the indicator function of a set A.

Definition 1.1. (Skorokhod map on [0,∞)) Given ψ ∈ D [0,∞) there
exists a unique pair of functions (φ, η) ∈ D [0,∞)× I [0,∞) that satisfy the
following two properties:

1. For every t ∈ [0,∞), φ(t) = ψ(t) + η(t) ∈ IR+;
2. η(0−) = 0, η(0) ≥ 0, and∫ ∞

0
1{φ(s)>0}dη(s) = 0. (1.2)

The map Γ0 : D [0,∞) → D+ [0,∞) that takes ψ to the corresponding trajec-
tory φ is referred to as the one-sided reflection map or Skorokhod map on
[0,∞). The pair (φ, η) is said to solve the Skorokhod problem on [0,∞) for
ψ.

Condition (1.2), often referred to as the complementarity condition, stipu-
lates that the constraining term η can increase only at times t when φ(t) = 0.
As mentioned earlier, Γ0, the Skorokhod map on [0,∞), has an explicit rep-
resentation given by (1.1). The condition η(0−) = 0 is a convention by which
we mean that η(0) > 0 implies that η has a jump at zero and, according to
(1.2), we must have φ(0) = 0, in which case η(0) = −ψ(0). This can happen
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only if ψ(0) < 0. In the event that ψ(0) ≥ 0, we have η(0) = 0. In either
case,

η(0) = [−ψ(0)]+. (1.3)

In direct analogy with the Definition 1.1 and the explicit representation
(1.1) for Γ0, it is easy to see that Γa : D [0,∞) → D [0,∞) defined by

Γa(ψ)(t) .= ψ(t)− sup
s∈[0,t]

[ψ(s)− a]+ (1.4)

takes ψ ∈ D [0,∞) to the unique corresponding trajectory φ ∈ D [0,∞)
that satisfies φ(t) ∈ (−∞, a] for t ∈ [0,∞) and is such that η = ψ − φ is
non-decreasing and increases only at times t when φ(t) = a (i.e., such that∫∞
0 1{φ(s)<a}dη(s) = 0). Indeed, it is straightforward to verify that given
a > 0 and ψ ∈ D [0,∞),

Γa(ψ) = a− Γ0(a− ψ). (1.5)

The subject of this paper is the Skorokhod map that constrains a process
in D [0,∞) to remain within [0, a], a map we now define.

Definition 1.2. (Skorokhod map Γ0,a on [0, a]) Let a > 0 be given.
Given ψ ∈ D [0,∞) there exists a unique pair of functions (φ̄, η̄) ∈ D [0,∞)×
BV [0,∞) that satisfy the following two properties:

1. For every t ∈ [0,∞), φ̄(t) = ψ(t) + η̄(t) ∈ [0, a];
2. η̄(0−) = 0 and η̄ has the decomposition η̄ = η̄` − η̄u as the difference

of functions η̄`, η̄u ∈ I [0,∞) satisfying∫ ∞

0
1{φ̄(s)>0}dη̄`(s) = 0 and

∫ ∞

0
1{φ̄(s)<a}dη̄u(s) = 0. (1.6)

We refer to the mapping Γ0,a : D [0,∞) → D[0,∞) that takes ψ to the corre-
sponding φ̄ as the two-sided reflection map or the Skorokhod map on [0, a].
The pair (φ, η̄) is said to solve the Skorokhod problem on [0, a] for ψ.

Similarly to (1.3), the condition η̄(0−) = 0 coupled with the complemen-
tarity conditions (1.6) implies that

η̄(0) = [−ψ(0)]+ − [ψ(0)− a]+. (1.7)

In other words, φ̄(0) = π(ψ(0)), where π : IR→ [0, a] is the projection map

π(x) =


a if x ≥ a,
x if 0 ≤ x ≤ a,
0 if x ≤ 0.

(1.8)
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Furthermore, from the explicit expressions for Γ0 and Γa given in (1.1) and
(1.4) respectively, it is clear (see, e.g., Section 2.3 of [6]) that η̄` and η̄u

satisfy the equations

η̄`(t) = sup
s∈[0,t]

[η̄u(s)−ψ(s)]+ and η̄u(t) = sup
s∈[0,t]

[ψ(s)+ η̄`(s)−a]+. (1.9)

Now consider ψ ∈ D [0,∞) and let η̄ .= Γ0,a(ψ) − ψ, which has the de-
composition η̄ = η̄` − η̄u into the difference of processes in I [0,∞) as in
Definition 1.2. Denote η̃ .= Γ0,a(a−ψ)− a+ψ, which has the corresponding
decomposition η̃ = η̃` − η̃u. In a similar fashion to (1.5), it follows immedi-
ately from the definition that Γ0,a(ψ) = a−Γ0,a(a−ψ) and, moreover, that

η̃` = η̄u and η̃u = η̄`. (1.10)

1.3. Main Results

Our main result provides an explicit representation for the Skorokhod map
Γ0,a on [0, a] in terms of the mapping Λa : D [0,∞) → D [0,∞) defined by

Λa(φ)(t) .= φ(t)− sup
s∈[0,t]

[
(φ(s)− a)+ ∧ inf

u∈[s,t]
φ(u)

]
. (1.11)

We will use the notation

Rt(φ)(s) .=
(
φ(s)− a

)+ ∧ inf
u∈[s,t]

φ(u), (1.12)

in terms of which (1.11) may be written as Λa(φ)(t) .= φ(t)−sups∈[0,t]Rt(φ)(s).
We list properties of Λa and then state our main result as Theorem 1.4.
Proofs are relegated to later sections.

Proposition 1.3. Λa maps D [0,∞) into D [0,∞), C [0,∞) into C [0,∞),
BV [0,∞) into BV [0,∞), and absolutely continuous functions to absolutely
continuous functions.

Theorem 1.4. Given a > 0, let Γ0 and Γ0,a be the Skorokhod maps on
[0,∞) and [0, a] respectively. Then

Γ0,a = Λa ◦ Γ0. (1.13)

Theorem 1.4 allows us to give concise proofs of the Lipschitz continuity of
the map Γ0,a in the uniform, J1 and M1 metrics (Corollary 1.5 below). The
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proof of Corollary 1.5 is in Section 3. Continuity of Γ0 and Γ0,a in the J1 and
M1 metrics is due to [2]. For proofs of the inequalities for Γ0,a in Corollary
1.5 that are different from the proofs in this paper, see Section 14.8 of [14].
Below, d∞ is the uniform metric on [0, T ], d0 is the standard J1 metric on
D[0, T ] (see, e.g., definition (3.2) on p. 79 of [14]), and d1 is the standard
M1 metric on D[0, T ] (see, e.g., definition (3.4) on p. 82 of [14]), while d̄∞,
d̄0 and d̄1 are the corresponding metrics on D[0,∞) (see, e.g., Section 12.9
of [14]).

Corollary 1.5. There exists a constant L such that for all T > 0 and
ψ1, ψ2 ∈ D[0, T ],

di(Λa(ψ1),Λa(ψ2)) ≤ 2di(ψ1, ψ2) for i = 0, 1,∞; (1.14)

di(Γ0,a(ψ1),Γ0,a(ψ2)) ≤ Ldi(ψ1, ψ2) for i = 0, 1,∞. (1.15)

Moreover, the six inequalities above continue to hold for ψ1, ψ2 ∈ D[0,∞) if
d∞, d0 and d1 are replaced by d̄∞, d̄0 and d̄1, respectively.

Lastly, in Theorem 1.6, we state comparison properties of the Skorokhod
map on [0, a]. The proof of this result is presented in Section 5.

Theorem 1.6. Given a > 0, c0, c′0 ∈ IR and ψ,ψ′ ∈ D [0,∞) with ψ(0) =
ψ′(0) = 0, suppose (φ̄, η̄) and (φ̄′, η̄′) solve the Skorokhod problem on [0, a]
for c0 + ψ and c′0 + ψ′, respectively. Moreover, suppose η̄ = η̄` − η̄u is the
decomposition of η̄ into the difference of processes in I [0,∞) satisfying (1.6)
and η̄′` − η̄′u is the corresponding decomposition of η̄′. If there exists ν ∈
I [0,∞) such that ψ = ψ′ + ν, then the following four inequalities hold:

1. η̄` − [c′0 − c0]+ ≤ η̄′` ≤ η̄` + ν + [c0 − c′0]+;
2. η̄′u − [c′0 − c0]+ ≤ η̄u ≤ η̄′u + ν + [c0 − c′0]+;
3. η̄ − [c′0 − c0]+ ≤ η̄′ ≤ η̄ + ν + [c0 − c′0]+;
4. [−[c0 − c′0]+ − ν] ∨ [−a] ≤ φ̄′ − φ̄ ≤ [c0 − c′0]+ ∧ a.

2. Proof of Proposition 1.3

Let φ ∈ D [0,∞) be given. For each θ1 ≥ 0 and ε > 0, there exists θ2 > θ1
such that

sup
s,u∈[θ1,θ2)

∣∣φ(s)− φ(u)
∣∣ ≤ ε. (2.1)

Similarly, for each θ2 > 0 and ε > 0, there exists θ1 ∈ [0, θ2) such that (2.1)
holds. It is straightforward to use this observation and the following lemma
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to verify that Λa(φ) is right-continuous with left-hand limits, i.e., that Λa

maps D [0,∞) into D [0,∞).

Lemma 2.1. Let φ ∈ D [0,∞) be given and assume that (2.1) is satisfied for
given 0 ≤ θ1 < θ2 and ε. Then supt1,t2∈[θ1,θ2)

∣∣Λa(φ)(t1)− Λa(φ)(t2)
∣∣ ≤ 2ε.

Proof. From the definition (1.12) of Rt, we see that for any t ≥ 0,(
φ(t)− a

)+ ∧ φ(t) ≤ sup
s∈[0,t]

Rt(φ)(s) ≤ φ(t). (2.2)

Let t1, t2 be in [θ1, θ2) with t1 ≤ t2. Then Rt2(φ)(s) ≤ Rt1(φ)(s). Under
condition (2.1),

sup
s∈(t1,t2]

Rt2(φ)(s) ≤ sup
s∈(t1,t2]

(
φ(s)− a

)+ ≤
(
φ(t1)− a

)+ + ε.

Therefore

sup
s∈[0,t2]

Rt2(φ)(s) = sup
s∈[0,t1]

Rt2(φ)(s) ∨ sup
s∈(t1,t2]

Rt2(φ)(s)

≤ sup
s∈[0,t1]

Rt1(φ)(s) ∨
[(
φ(t1)− a

)+ + ε
]

≤ sup
s∈[0,t1]

Rt1(φ)(s) + ε,

which implies

Λa(φ)(t2) = φ(t2)− sups∈[0,t2]Rt2(φ)(s)
≥ φ(t1)− ε− sups∈[0,t1]Rt1(φ)(s)− ε

= Λa(φ)(t1)− 2ε.

The second inequality in (2.2) and inequality (2.1) imply

sup
s∈[0,t1]

Rt1(φ)(s)− ε ≤ sup
s∈[0,t1]

Rt1(φ)(s) ∧
(
φ(t1)− ε

)
≤ sup

s∈[0,t1]

[
Rt1(φ)(s) ∧ inf

s∈(t1,t2]
φ(u)

]
= sup

s∈[0,t1]
Rt2(φ)(s)

≤ sup
s∈[0,t2]

Rt2(φ)(s).

From this we conclude that

Λa(φ)(t2) = φ(t2)− sups∈[0,t2]Rt2(φ)(s)
≤ φ(t1) + ε− sups∈[0,t1]Rt1(φ)(s) + ε

= Λa(φ)(t1) + 2ε.
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Remark 2.2. The proof of Lemma 2.1 shows that if in place of (2.1) we have
a bound ε on the oscillation of φ over a closed interval, i.e., sups,u∈[θ1,θ2]

∣∣φ(s)−
φ(u)

∣∣ ≤ ε, then supt1,t2∈[θ1,θ2]

∣∣Λa(φ)(t1) − Λa(φ)(t2)
∣∣ ≤ 2ε. Therefore, Λa

maps C [0,∞) to C [0,∞).

Corollary 2.3. Λa maps absolutely continuous functions to absolutely con-
tinuous functions.

Proof. Suppose φ ∈ D [0,∞) is absolutely continuous. We fix an arbitrary
T > 0. By the definition of absolutely continuity, there exists a function
vφ : (0,∞) → (0,∞) such that for every ε > 0 and every set of non-
overlapping intervals (sj , tj), j = 1, . . . , J , contained in [0, T ],

J∑
j=1

(tj − sj) < vφ(ε) ⇒
J∑

j=1

|φ(tj)− φ(sj)| < ε. (2.3)

Define the function vΛa(φ) : (0,∞) → (0,∞) by vΛa(φ)(ε)
.= vφ(ε/2) for ε > 0.

We claim that (2.3) holds with φ replaced everywhere by Λa(φ), thus showing
that Λa(φ) is absolutely continuous. For the proof of the claim, fix ε > 0
and consider any set of non-overlapping intervals (sj , tj), j = 1, . . . , J , such
that

∑J
j=1(tj − sj) < vΛa(φ)(ε). For j = 1, . . . , J , choose sj ≤ sj ≤ tj ≤ tj

such that |φ(tj) − φ(sj)| = maxu,r∈[sj ,tj ] |φ(r) − φ(u)|. Remark 2.2 implies
that Λa(φ) ∈ C [0,∞) and

J∑
j=1

|Λa(φ)(tj)− Λa(φ)(sj)| ≤
J∑

j=1

max
u,r∈[sj ,tj ]

|Λa(φ)(r)− Λa(φ)(u)|

≤ 2
J∑

j=1

max
u,r∈[sj ,tj ]

|φ(r)− φ(u)|

= 2
J∑

j=1

|φ(tj)− φ(sj)|

≤ ε,

where the last inequality is a consequence of (2.3) and the fact that
∑J

j=1(tj−
sj) < vΛ(φ)(ε) = vφ(ε/2).

To complete the proof of Proposition 1.3, it remains only to show that Λa

maps BV [0,∞) to BV [0,∞). We do not use this fact in the present paper,
and hence can use any results in the remainder of the paper to establish
it. According to Theorem 4.4 below, the function Cφ given by (3.28) has
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bounded variation. If φ also has bounded variation, then Λa(φ) = φ − Cφ

does as well.

3. First Proof of Theorem 1.4

The first proof of Theorem 1.4 requires Lemmas 3.1, 3.4 and 3.5 below. For
these lemmas, ψ is an arbitrary element in D [0,∞) and

φ
.= Γ0(ψ), η

.= φ− ψ, φ̄
.= Λa(φ), η̄

.= φ̄− ψ. (3.1)

For simplicity, we denote Rt(φ)(s) of (1.12) simply as Rt(s).

Lemma 3.1. For ψ ∈ D [0,∞),

0 ≤ (Λa ◦ Γ0)(ψ) ≤ Γ0(ψ) ∧ a. (3.2)

In particular, for t ∈ [0,∞),

Γ0(ψ)(t) = 0 ⇒ (Λa ◦ Γ0)(ψ)(t) = 0. (3.3)

Proof. We use the notation (3.1). Inequalities (2.2) imply φ̄(t) = φ(t) −
sups∈[0,t]Rt(s) ≥ 0 and

φ̄(t) = φ(t)− sup
s∈[0,t]

Rt(s) ≤ φ(t)−
[(
φ(t)− a

)+ ∧ φ(t)
]

= φ(t) ∧ a.

We now derive some relations that will be used in the proofs of Lemmas
3.4 and 3.5. Indeed, from (1.11), (1.12) and the definitions of η and η̄ we
obtain the equalities

η̄(t)− η(t) = φ̄(t)− φ(t) = − sup
s∈[0,t]

Rt(s) (3.4)

and

η̄(t−)− η(t−) = − lim
r↑t

sup
s∈[0,r]

Rr(s) = − sup
s∈[0,t)

[
(φ(s)− a)+ ∧ inf

u∈[s,t)
φ(u)

]
.

(3.5)
Moreover, for ε > 0

η(t+ ε)− η̄(t+ ε) = sup
s∈[0,t+ε]

Rt+ε(s). (3.6)
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Since for t ∈ [0,∞), s ∈ [0, t] and ε > 0 we have

Rt+ε(s) = (φ(s)− a)+ ∧ inf
u∈[s,t+ε]

φ(u) = Rt(s) ∧ inf
u∈(t,t+ε]

φ(u),

the right-hand side of (3.6) can be rewritten as

sup
s∈[0,t+ε]

Rt+ε(s) =

[(
sup

s∈[0,t]
Rt(s)

)
∧ inf

u∈(t,t+ε]
φ(u)

]
∨
[

sup
s∈(t,t+ε]

Rt+ε(s)

]
.

(3.7)

Definition 3.2. For a function f ∈ D [0,∞), we say that t is a point of
increase of f if there exists a sequence sn ↓ 0 such that f(t+ sn)− f(t) > 0
for every n or if f(t)− f(t−) > 0, and we say that t is a point of decrease
of f if t is a point of increase of −f . We say that f is flat on a set A ⊂ IR
if for every t ∈ A, f(t) = f(t−) and there exists ε > 0 such that f(s) = f(t)
for every s ∈ [t, t+ ε).

Remark 3.3. Let f ∈ D [0,∞) be given. It is straightforward to verify
that the left-continuous function t 7→ f(t−) is nonincreasing on an interval
[θ1, θ2) if and only if the right-continuous function t 7→ f(t) has no point of
increase in the interval, and similarly, t 7→ f(t−) is nondecreasing on [θ1, θ2)
if and only if t 7→ f(t) has no point of decrease in the interval. If t 7→ f(t) is
flat on an interval [θ1, θ2), then t 7→ f(t−) is constant there.

Lemma 3.4. Given t ∈ [0,∞), suppose

Rt(t) < sup
s∈[0,t]

Rt(s). (3.8)

Then t is not a point of decrease of η̄. Moreover, if t is a point of increase
of η̄, then φ̄(t) = 0.

Proof. Fix t ∈ [0,∞). Since φ(t) = Γ0(ψ)(t) ≥ 0 by the definition of Γ0, it
follows that Rt(t) = (φ(t) − a)+ ∧ φ(t) = (φ(t) − a)+. Thus condition (3.8)
along with the definition (1.12) of Rt imply that

0 ≤ Rt(t) = (φ(t)−a)+ < sup
s∈[0,t]

Rt(s) = sup
s∈[0,t)

[
(φ(s)− a)+ ∧ inf

u∈[s,t)
φ(u)

]
∧φ(t),

(3.9)
which in particular implies φ(t) > 0. The right continuity of φ then guaran-
tees the existence of δ > 0 such that

0 < inf
s∈[t,t+δ]

φ(s) and sup
s∈[t,t+δ]

(φ(s)− a)+ < sup
s∈[0,t]

Rt(s).
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The first inequality in the last display, when combined with the complemen-
tarity condition (1.2), ensures that

η(t+ ε) = η(t) for every ε ∈ [0, δ], (3.10)

while the second inequality shows that for every ε ∈ [0, δ]

sups∈[t,t+ε]Rt+ε(s) = sups∈[t,t+ε]

[
(φ(s)− a)+ ∧ infu∈[s,t+ε] φ(u)

]
≤ sups∈[t,t+ε] (φ(s)− a)+

< sups∈[0,t]Rt(s).
(3.11)

Combining the last two displays with (3.4), (3.6), (3.10) and (3.7), for ε ∈
[0, δ] we obtain

η̄(t+ ε)− η̄(t)
= η(t+ ε)− η(t)− sups∈[0,t+ε]Rt+ε(s) + sups∈[0,t]Rt(s)
= sups∈[0,t]Rt(s)− sups∈[0,t+ε]Rt+ε(s)
= sups∈[0,t]Rt(s)

−
[(

sups∈[0,t]Rt(s)
)
∧ infu∈[t,t+ε] φ(u)

]
∨
[
sups∈[t,t+ε]Rt+ε(s)

]
.

(3.12)
When combined with (3.11), this yields the inequality

η̄(t+ε)− η̄(t) ≥ sup
s∈[0,t]

Rt(s)−
[

sup
s∈[0,t]

Rt(s)

]
∨
[

sup
s∈[t,t+ε]

Rt+ε(s)

]
= 0. (3.13)

We now consider two cases, based on the two values that sups∈[0,t]Rt(s)
can attain, as dictated by (3.9).
Case 1.

sup
s∈[0,t]

Rt(s) = sup
s∈[0,t)

[
(φ(s)− a)+ ∧ inf

u∈[s,t)
φ(u)

]
< φ(t). (3.14)

In this case, due to the right continuity of φ, by choosing δ > 0 smaller if
necessary we can ensure that for every ε ∈ [0, δ],

sup
s∈[0,t]

Rt(s) < inf
u∈[t,t+ε]

φ(u).

Along with (3.11) and (3.12), this implies that η̄(t+ ε)− η̄(t) = 0 for every
ε ∈ [0, δ]. Furthermore, (3.4) and (3.5), together with (3.14) and the fact
that η is nondecreasing, dictate that

η̄(t)− η̄(t−) = η(t)− η(t−) ≥ 0. (3.15)
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Thus t is not a point of decrease of η̄, and the only way t can be a point of
increase of η̄ is for η̄(t)− η̄(t−) to be strictly positive. But

η̄(t)− η̄(t−) > 0 ⇒ η(t)− η(t−) > 0 ⇒ φ(t) = 0 ⇒ φ̄(t) = 0, (3.16)

where the second implication uses the complementarity condition (1.2) and
the third implication follows from property (3.3) of Lemma 3.1.
Case 2.

sup
s∈[0,t]

Rt(s) = φ(t) ≤ sup
s∈[0,t)

[
(φ(s)− a)+ ∧ inf

u∈[s,t)
φ(u)

]
.

In this case, φ̄(t) = φ(t)− sups∈[0,t]Rt(s) = 0. Furthermore, (3.4), (3.5) and
the fact that η ∈ I [0,∞) show that

η̄(t)− η̄(t−) ≥ η(t)− η(t−) ≥ 0.

Thus, recalling (3.13), we have established the inequalities

η̄(t)− η̄(t−) ≥ 0 and η̄(t+ ε)− η̄(t) ≥ 0 for every ε ∈ [0, δ].

Since the equality φ̄(t) = 0 always holds in the second case, it also holds
when t is a point of increase of η̄. This concludes the proof of the lemma.

Lemma 3.5. Given t ∈ [0,∞), suppose that

Rt(t) = sup
s∈[0,t]

Rt(s). (3.17)

Then the following two relations are satisfied:

1. If φ(t) ∈ [0, a), then t is not a point of decrease of η̄. Moreover, if t is
a point of increase of η̄, then φ̄(t) = 0.

2. If φ(t) ∈ [a,∞), then φ̄(t) = a and t is not a point of increase of η̄.

Proof. Fix t ∈ [0,∞). Since φ(t) ≥ 0 we have Rt(t) = (φ(t)− a)+ ∧
φ(t) = (φ(t)− a)+, and therefore condition (3.17) is equivalent to the re-
lation sups∈[0,t]Rt(s) = (φ(t)− a)+. In the proof of the lemma we consider
the two cases separately. In both cases we will make use of the fact that

sups∈[0,t]Rt(s)
= sups∈[0,t)

[
(φ(s)− a)+ ∧ infu∈[s,t) φ(u) ∧ φ(t)

]
∨ [(φ(t)− a)+ ∧ φ(t)]

=
[
sups∈[0,t)

[
(φ(s)− a)+ ∧ infu∈[s,t) φ(u)

]
∨ (φ(t)− a)+

]
∧ φ(t).

(3.18)
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Case 1: φ(t) ∈ [0, a). In this case sups∈[0,t]Rt(s) = 0 and so (3.4) and (3.5)
together imply that

η̄(t)− η̄(t−) = η(t)− η(t−) + sup
s∈[0,t)

[
(φ(s)− a)+ ∧ inf

u∈[s,t)
φ(u)

]
≥ 0, (3.19)

where the inequality follows because η ∈ I [0,∞) and φ takes values in
[0,∞). Substitute the equality (φ(t)− a)+ = 0 into (3.18) to obtain

sup
s∈[0,t]

Rt(s) = sup
s∈[0,t)

[
(φ(s)− a)+ ∧ inf

u∈[s,t)
φ(u)

]
∧ φ(t). (3.20)

If φ(t) > 0 then the complementarity condition (1.2) implies η(t)−η(t−) = 0,
and furthermore the last display shows that

sup
s∈[0,t]

Rt(s) = 0 ⇒ sup
s∈[0,t)

[
(φ(s)− a)+ ∧ inf

u∈[s,t)
φ(u)

]
= 0.

When combined with (3.19), this shows that if φ(t) ∈ (0, a), then η̄(t) −
η̄(t−) = 0. On the other hand, if φ(t) = 0 then φ̄(t) = 0 by (3.3) of Lemma
3.1. Therefore, η̄(t)− η̄(t−) > 0 implies φ̄(t) = 0.

Now, due to (3.4), sups∈[0,t]Rt(s) = 0 also implies that

φ̄(t) = φ(t) and η̄(t) = η(t). (3.21)

Moreover since φ(t) ∈ [0, a), the right-continuity of φ guarantees the exis-
tence of δ > 0 such that φ(s) ∈ [0, a) for all s ∈ [t, t + δ]. This implies that
for every ε ∈ [0, δ],

sup
s∈[t,t+ε]

Rt+ε(s) = sup
s∈[t,t+ε]

[
(φ(s)− a)+ ∧ inf

u∈[s,t+ε]
φ(s)

]
= 0,

which in turn implies that

0 ≤ sup
s∈[0,t+ε]

Rt+ε(s) = sup
s∈[0,t]

Rt+ε(s) ≤ sup
s∈[0,t]

Rt(s) = 0.

When substituted into (3.4) and (3.6), the last display along with the fact
that η is non-decreasing show that for ε ∈ [0, δ],

η̄(t+ ε)− η̄(t) = η(t+ ε)− η(t) ≥ 0. (3.22)

When combined with (3.19), this shows that t is not a point of decrease of
η̄. Furthermore, suppose there exists a sequence sn ↓ 0 such that η̄(t+ sn)−
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η̄(t) > 0 for every n ∈ IN . Then (3.22) implies that η(t + sn) − η(t) > 0
(for all sufficiently large n such that sn < δ) and so the complementarity
condition (1.2) implies φ(t) = 0 which, due to (3.21), in turn implies that
φ̄(t) = 0. This completes the proof of the first property of the lemma.
Case 2: φ(t) ∈ [a,∞). In this case (φ(t)− a)+ = φ(t)− a < φ(t) and so

0 ≤ sup
s∈[0,t]

Rt(s) = Rt(t) = (φ(t)− a)+ ∧ φ(t) = φ(t)− a < φ(t). (3.23)

This shows that φ̄(t) = φ(t)−sups∈[0,t]Rt(s) = a. Since φ is right-continuous,
(3.23) ensures the existence of δ > 0 such that

0 ≤ sup
s∈[0,t]

Rt(s) ≤ sup
s∈[t,t+δ]

(φ(s)− a)+ < inf
u∈[t,t+δ]

φ(u). (3.24)

When combined with (3.7), the inequalities in the last display show that for
every ε ∈ [0, δ],

sups∈[0,t+ε]Rt+ε(s)

=
[
sups∈[0,t]Rt(s)

]
∨
[
sups∈(t,t+ε]Rt+ε(s)

]
=
[
sups∈[0,t]Rt(s)

]
∨
[
sups∈(t,t+ε]

(
(φ(s)− a)+ ∧ infu∈[s,t+ε] φ(u)

)]
=
[
sups∈[0,t]Rt(s)

]
∨
[
sups∈(t,t+ε] (φ(s)− a)+

]
.

From the inequalities in (3.24), it also follows that φ(u) > 0 for every u ∈
[t, t+ δ]. Thus by the complementarity condition (1.2) we must have

η(t+ ε) = η(t) for every ε ∈ [0, δ].

The last two displays along with (3.4) and (3.6) show that for every ε ∈ [0, δ],

η̄(t+ ε)− η̄(t)

= sups∈[0,t]Rt(s)− sups∈[0,t+ε]Rt+ε(s)

= sups∈[0,t]Rt(s)−
[
sups∈[0,t]Rt(s)

]
∨
[
sups∈[t,t+ε] (φ(s)− a)+

]
≤ 0.

(3.25)
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Now observe that due to relation (3.2) of Lemma 3.1, φ̄(t) = a implies
that φ(t) ≥ a > 0 and hence the complementarity condition (1.2) dictates
that η(t)− η(t−) = 0. Together with (3.4) and (3.5) this yields the equation

η̄(t)− η̄(t−) = sup
s∈[0,t)

[
(φ(s)− a)+ ∧ inf

u∈[s,t)
φ(u)

]
− sup

s∈[0,t]
Rt(s).

From the second line of (3.18), we have

sup
s∈[0,t)

[
(φ(s)− a)+ ∧ inf

u∈[s,t)
φ(u)

]
∧ φ(t) ≤ sup

s∈[0,t]
Rt(s),

but since sups∈[0,t]Rt(s) = φ(t)− a < φ(t), we must in fact have

sup
s∈[0,t)

[
(φ(s)− a)+ ∧ inf

u∈[s,t)
φ(u)

]
≤ sup

s∈[0,t]
Rt(s).

This shows that
η̄(t)− η̄(t−) ≤ 0.

Along with (3.25), this establishes the second property and the proof of the
lemma is complete.

Proof of Theorem 1.4. Using the notation (3.1), define τ0
.= 0,

σ0
.= min{t ≥ τ0|φ̄(t) = a}, (3.26)

and for k = 1, 2, . . . , let

τk
.= min{t ≥ σk−1|φ̄(t) = 0} and σk

.= min{t ≥ τk|φ̄ = a}. (3.27)

The minima in (3.26) and (3.27) are obtained (or are +∞) because of the
right-continuity of φ̄. Let P .= ∪∞k=0[τk, σk) and N .= ∪∞k=0[σk, τk+1). Be-
cause φ̄ ∈ D [0,∞), we have τk ↑ ∞ and σk ↑ ∞ as k → ∞. Indeed, if
this were not the case, then there would exist a number θ < ∞ such that
τk ↑ θ and σk ↑ θ, in which case lims↑θ φ̄(s) would not exist. Therefore,
P ∪N = [0,∞).

We define two functions η̄` and η̄u inD [0,∞), specifying their left-continuous
versions by the formulas

η̄`(t−) .=
∞∑

k=0
[η̄(t ∧ σk−)− η̄(t ∧ τk−)] ,

η̄u(t−) .= −
∞∑

k=1
[η̄(t ∧ τk−)− η̄(t ∧ σk−1−)] .
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Then the function t 7→ η̄`(t−), and hence also the function t 7→ η̄`(t),
captures the jumps of η̄ at the times τ1, τ2, . . . but not the jumps of η̄
at σ0, σ1, . . . . Furthermore, η̄`(0) = 0 if σ0 = τ0, whereas η̄`(0) = η̄(0)
if σ0 > τ0. In fact, η̄` is flat on N . Similarly, η̄u is flat on P. Finally,
η̄(t−) = η̄`(t−)− η̄u(t−), and hence η̄ = η̄` − η̄u.

For t ∈ [0,∞), Lemmas 3.4 and 3.5 together imply that t is a point of
increase of η̄ only if φ̄(t) = 0 and t is a point of decrease of η̄ only if φ̄(t) = a.
The fact that φ̄(t) < a for t ∈ P implies that η̄ has no point of decrease
in each of the intervals [τk, σk). According to Remark 3.3, η̄(·−) and hence
also η̄`, is nondecreasing on each of the intervals [τk, σk). Being flat on N ,
η̄` must in fact be nondecreasing on all of [0,∞). Similarly, since φ̄(t) > 0
for t ∈ N , it follows that η̄(·−), and therefore −η̄u, is nonincreasing on the
components of N . Being flat on P, η̄u must be nondecreasing on all of [0,∞).

The first equation in (1.6) follows from the fact that the points of increase
t of η̄` are the points of increase of η̄, and φ̄(t) = 0 at all of these. Similarly,
the points of increase t of η̄u are the points of decrease of η̄, and φ̄(t) = a
at all of these. Therefore, the second equation in (1.6) also holds.

We now present the proof of Corollary 1.5. Recall the definition of Rt(φ)
given in (1.12). For φ ∈ D [0,∞), it will be convenient to introduce the
function Cφ ∈ D [0,∞) defined by

Cφ(t) .= sup
s∈[0,t]

[Rt(φ)(s)] = sup
s∈[0,t]

[(
φ(s)− a)+ ∧ inf

u∈[s,t]
φ(u)

]
for t ∈ [0,∞).

(3.28)
Note that then Λ(φ) = φ− Cφ for every φ ∈ D [0,∞).

Proof of Corollary 1.5. We first prove (1.14) for i = ∞. For φ1, φ2 ∈
D[0, T ], we have

||Λa(φ1)− Λa(φ2)||T ≤ ||φ1 − φ2||T + ||Cφ1 − Cφ2 ||T . (3.29)

For t ∈ [0, T ], because (a1 ∧ b1)− (a2 ∧ b2) ≤ (a1 − a2) ∨ (b1 − b2), we have

Cφ1(t)− Cφ2(t)
≤ sups∈[0,t] [Rt(φ1)(s)−Rt(φ2)(s)]
≤ sups∈[0,t]

[
|(φ1(s)− a)+ − (φ2(s)− a)+| ∨

∣∣∣infu∈[s,t] φ1(u)− infu∈[s,t] φ2(u)
∣∣∣]

≤ sups∈[0,t]

[
|φ1(s)− φ2(s)| ∨ supu∈[s,t] |φ1(u)− φ2(u)|

]
≤ ||φ1 − φ2||T .
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Taking the supremum over t ∈ [0, T ] and interchanging φ1 and φ2, we get∣∣∣∣∣∣Cφ1 − Cφ2

∣∣∣∣∣∣
T
≤ ||φ1 − φ2||T . (3.30)

From (3.29) and (3.30), we obtain (1.14) for i = ∞.
Now let M be the class of strictly increasing continuous functions λ of

[0, T ] onto itself. Then for any λ ∈M, the scaling property

Λa(φ ◦ λ) = Λa(φ) ◦ λ (3.31)

is easily deduced directly from the definition of Λa. Moreover, by the defini-
tion of d0, given any φ1, φ2 ∈ D[0, T ], φ1 6= φ2, for every δ > 0 there exists
λ ∈M (possibly depending on δ) such that

sup
t∈[0,T ]

|λ(t)− t| ≤ d0(φ1, φ2) + δ[1 ∧ d0(φ1, φ2)]

and
sup

t∈[0,T ]
|φ1(t)− φ2(λ(t))| ≤ d0(φ1, φ2) + δ[1 ∧ d0(φ1, φ2)].

The scaling property (3.31) along with (1.14) for i = ∞ implies that

sup
t∈[0,T ]

|Λa(φ1)(t)− Λa(φ2)(λt)| ≤ 2(d0(φ1, φ2) + δ[1 ∧ d0(φ1, φ2)]).

Since this is true for all δ > 0, by the definition of d0 this implies that

d0(Λa(φ1),Λa(φ2)) ≤ 2d0(φ1, φ2),

which is the inequality (1.14) for i = 0. Clearly, (1.14) holds also in the case
i = 0, φ1 = φ2 ∈ D[0, T ].

We now prove (1.14) for i = 1. For a given φ ∈ D[0, T ], let φ(0−) .= φ(0)
and let

Gφ = {(t, z) ∈ [0, T ]× IR : z ∈ [φ(t−) ∧ φ(t), φ(t−) ∨ φ(t)]}

be the graph of φ ordered by the following relation: (t1, z1) ≤ (t2, z2) if either
t1 < t2 or t1 = t2 and |φ(t1−) − z1| ≤ |φ(t1−) − z2|. Let Π(φ) be the set
of all parametric representations of Gφ, i.e., continuous nondecreasing (in
the order relation just defined) functions (r, g) mapping [0, 1] onto Gφ. For
φ1, φ2 ∈ D[0, T ],

d1(φ1, φ2) .= inf{||r1 − r2||T ∨ ||g1 − g2||T : (ri, gi) ∈ Π(φi), i = 1, 2}.
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We show in Lemma A.1 in Appendix A that if (r, g) ∈ Π(φ), then (r,Λa(g)) ∈
Π(Λa(φ)). Therefore,

d1(Λa(φ1),Λa(φ2))
≤ inf{||r1 − r2||T ∨ ||Λa(g1)− Λa(g2)||T : (ri, gi) ∈ Π(φi), i = 1, 2}
≤ 2d1(φ1, φ2),

where the last inequality follows from (1.14) for i = ∞. We have proved
(1.14).

It is well-known (see, for example, Lemma 13.5.1 and Theorem 13.5.1 of
[14]) that for any T <∞ and ψ1, ψ2 ∈ D[0, T ]

di(Γ0(ψ1),Γ0(ψ2)) ≤ 2di(ψ1, ψ2) (3.32)

for i = 0, 1,∞. The representation Γ0,a = Λa ◦ Γ0 stated in (1.13), along
with (1.14) and (3.32) then implies that (1.15) holds with L = 4.

By the argument in Theorem 12.9.4 in [14], the validity of (1.14) and
(1.15) on D[0, T ] for every T > 0 implies the same bound on D[0,∞).

Remarks. Example 13.5.1 in [14] shows that the bound in (3.32) with i = ∞
is tight. Similarly, the bound (1.14) for i = ∞ is tight. To see this, let us
consider φ1, φ2 ∈ D[0, 1] defined by φ1 = 2I[0,1], φ2 = 3I[0,1/2) + I[1/2,1].
With a = 2 we have Λa(φ1) = φ1, Λa(φ2) = 2I[0,1/2), ||φ1 − φ2||1 = 1 and
||Λa(φ1)−Λa(φ2)||1 = 2. However, Theorem 14.8.1 in [14] shows that (1.15)
for i = ∞ (and thus also for i = 0, 1) actually holds with L = 2. Clearly, the
bound (1.15) with L = 2 is tight, because the bound (3.32) is tight.

4. Second Proof of Theorem 1.4

A more complex, but perhaps more intuitive way of constructing φ̄ .= Λa(φ)
from φ

.= Γ0(ψ) is to first create two increasing sequences of times {σk}∞k=0

and {τk}∞k=1 so that on each interval of the form [σk−1, τk), there is only
pushing of φ from above and on each interval of the form [τk, σk), there is
only pushing of φ from below. In this section we execute that construction
and thereby obtain a decomposition (4.24) below of the bounded variation
process Cφ defined by (3.28) into the difference of two nondecreasing pro-
cesses. We provide this alternate proof of Theorem 1.4 in order to illuminate
the nature of the process Cφ. For this construction, we assume that φ is in
D+ [0,∞). We have in mind that φ = Γ0(ψ) for some ψ ∈ D [0,∞).

For φ ∈ D+ [0,∞) and a > 0, we set τ0
.= 0,

σ0
.= min

{
t ≥ 0

∣∣φ(t)− a ≥ 0
}
, (4.1)
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and for k ≥ 1, we set

τk
.= min

{
t ≥ σk−1

∣∣∣∣∣ sup
s∈[σk−1,t]

φ(s)− a ≥ φ(t)

}
, (4.2)

σk
.= min

{
t ≥ τk

∣∣∣∣∣φ(t)− a ≥ inf
u∈[τk,t]

φ(u)

}
. (4.3)

When φ and φ̄ are related by (3.1), the stopping times σk and τk, k = 0, 1, . . .
coincide with the stopping times σk and τk, k = 0, 1, . . . of (3.26) and (3.27);
see Remark 4.5 below. The minima in (4.1)–(4.3) over t are obtained (or are
+∞) because of the right-continuity of φ. In particular, for k ≥ 1,

sup
s∈[σk−1,u]

φ(s)− a < φ(u) ∀u ∈ [σk−1, τk), (4.4)

sup
s∈[σk−1,τk]

φ(s)− a ≥ φ(τk), (4.5)

φ(s)− a < inf
u∈[τk,s]

φ(u) ∀s ∈ [τk, σk), (4.6)

φ(σk)− a ≥ inf
u∈[τk,σk]

φ(u). (4.7)

Furthermore,
φ(σ0)− a ≥ 0. (4.8)

We have 0 = τ0 ≤ σ0 < τ1 < σ1 < τ2 < σ2 < · · · .

Proposition 4.1. As k →∞, we have τk ↑ ∞ and σk ↑ ∞.

Proof. Assume the proposition is false. Then there is a number θ <∞ such
that τk ↑ θ and σk ↑ θ. Relation (4.5) implies the existence of ρk ∈ [σk−1, τk]
such that φ(ρk) ≥ φ(τk) + a

2 . Since ρk ↑ θ, φ does not have a left-hand limit
at θ. This contradicts the membership of φ in D+ [0,∞).

Proposition 4.2. For k ≥ 1, Cφ(t) = sups∈[σk−1,t]

(
φ(s) − a

)+ for all t ∈
[σk−1, τk).

Proof. Let t ∈ (σk−1, τk) and ρ ∈ (σk−1, t] be given. Let {ρn}∞n=1 be a
sequence in (σk−1, ρ) satisfying ρn ↑ ρ. By definition, Cφ(t) ≥

(
φ(ρn) −

a
)+ ∧ infu∈[ρn,t] φ(u), and letting n→∞, we obtain

Cφ(t) ≥
(
φ(ρ−)− a

)+ ∧ φ(ρ−) ∧ inf
u∈[ρ,t]

φ(u), σk−1 < ρ ≤ t < τk. (4.9)

Now let t ∈ [σk−1, τk) be given. Then there exists ρt such that either

ρt ∈ [σk−1, t] and sup
s∈[σk−1,t]

φ(s) = φ(ρt), (4.10)
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or else
ρt ∈ (σk−1, t] and sup

s∈[σk−1,t]
φ(s) = φ(ρt−). (4.11)

If (4.11) is the case, which can happen only if t > σk−1, then for u ∈ [ρt, t],
(4.4) implies

φ(ρt−)− a =
(
φ(ρt−)− a) ∧ sup

s∈[σk−1,u]

(
φ(s)− a

)
≤ φ(ρt−) ∧ φ(u),

which yields φ(ρt−)− a ≤ φ(ρt−) ∧ infu∈[ρt,t] φ(u). This inequality together
with (4.9) and (4.11) shows that

Cφ(t) ≥
(
φ(ρt−)− a

)+ = sup
s∈[σk−1,t]

(
φ(s)− a

)+
. (4.12)

If, on the other hand, (4.10) is the case, then (4.4) implies

φ(ρt)− a = sup
s∈[σk−1,u]

φ(s)− a < φ(u) ∀u ∈ [ρt, t],

and hence φ(ρt)− a ≤ infu∈[ρt,t] φ(u). This shows that

Cφ(t) ≥
(
φ(ρt)− a

)+ ∧ inf
u∈[ρt,t]

φ(u) =
(
φ(ρt)− a

)+ = sup
s∈[σk−1,t]

(
φ(s)− a

)+
.

We again have the lower bound (4.12).
To obtain the reverse of inequality (4.12), we consider separately the cases

k = 1 and k ≥ 2. If k = 1, then (φ(s)− a)+ = 0 for s ∈ [0, σ0) and

Cφ(t) .= sup
s∈[0,t]

[(
φ(s)− a

)+ ∧ inf
u∈[s,t]

φ(u)

]
≤ sup

s∈[σ0,t]

(
φ(s)− a

)+
,

as desired. If k ≥ 2, we may write Cφ(t) = S1 ∨ S2 ∨ S3, where

S1 = sup
s∈[0,τk−1]

[(
φ(s)− a

)+ ∧ inf
u∈[s,t]

φ(u)

]
, (4.13)

S2 = sup
s∈(τk−1,σk−1)

[(
φ(s)− a

)+ ∧ inf
u∈[s,t]

φ(u)

]
, (4.14)

S3 = sup
s∈[σk−1,t]

[(
φ(s)− a

)+ ∧ inf
u∈[s,t]

φ(u)

]
. (4.15)
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We show that each of the terms Si is dominated by sups∈[σk−1,t]

(
φ(s)−a

)+.
For S3, this is obvious. For S1, we use (4.7) and the fact that t ≥ σk−1 to
write

S1 ≤ sup
s∈[0,τk−1]

inf
u∈[s,t]

φ(u) ≤ inf
u∈[τk−1,σk−1]

φ(u) ≤ φ(σk−1)−a ≤ sup
s∈[σk−1,t]

(
φ(s)−a

)+
.

(4.16)
Finally, for s ∈ (τk−1, σk−1), (4.6) implies φ(s) − a < infu∈[τk−1,s] φ(u), and
hence

S2 ≤ sup
s∈(τk−1,σk−1)

[
inf

u∈[τk−1,s]
φ(u) ∧ inf

u∈[s,t]
φ(u)

]
= inf

u∈[τk−1,t]
φ(u) ≤ inf

u∈[τk−1,σk−1]
φ(u).

We conclude as in (4.16).

Proposition 4.3. We have Cφ(t) = 0 for t ∈ [0, σ0). For k ≥ 1, Cφ(t) =
infu∈[τk,t] φ(u) for all t ∈ [τk, σk).

Proof. It is obvious from (3.28) that Cφ(t) = 0 for t ∈ [0, σ0). Now let k ≥ 1
and t ∈ [τk, σk) be given. By definition,

Cφ(t) = sup
s∈[0,τk]

[(
φ(s)− a

)+ ∧ inf
u∈[s,t]

φ(u)

]
∨ sup

s∈[τk,t]

[(
φ(s)− a

)+ ∧ inf
u∈[s,t]

φ(u)

]
.

(4.17)
It is obvious that

sup
s∈[0,τk]

[(
φ(s)− a

)+ ∧ inf
u∈[s,t]

φ(u)

]
≤ sup

s∈[0,τk]
inf

u∈[s,t]
φ(u) = inf

u∈[τk,t]
φ(u).

In addition, (4.6) implies

sups∈[τk,t]

[(
φ(s)− a

)+ ∧ infu∈[s,t] φ(u)
]

≤ sups∈[τk,t]

[
infu∈[τk,s] φ(u) ∧ infu∈[s,t] φ(u)

]
= infu∈[τk,t] φ(u).

We have obtained the upper bound

Cφ(t) ≤ inf
u∈[τk,t]

φ(u). (4.18)

For the reverse inequality, we observe that there exists ρ such that either

ρ ∈ [σk−1, τk] and sup
s∈[σk−1,τk]

φ(s) = φ(ρ), (4.19)
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or else
ρ ∈ (σk−1, τk] and sup

s∈[σk−1,τk]
φ(s) = φ(ρ−). (4.20)

In either case, we have from (4.4) that for u ∈ [ρ, τk),

φ(u) > sup
s∈[σk−1,u]

φ(s)− a = sup
s∈[σk−1,τk]

φ(s)− a,

and hence, by (4.5),

inf
u∈[ρ,τk)

φ(u) ≥ sup
s∈[σk−1,τk]

φ(s)− a ≥ φ(τk). (4.21)

In the case (4.19), we write

Cφ(t) ≥
(
φ(ρ)− a

)+ ∧ inf
u∈[ρ,τk)

φ(u) ∧ inf
u∈[τk,t]

φ(u)

and use (4.19), (4.5), and (4.21) to conclude that

Cφ(t) ≥ inf
u∈[τk,t]

φ(u). (4.22)

In the case (4.20), we choose a sequence {ρn}∞n=1 in (σk−1, ρ) with ρn ↑ ρ
and write

Cφ(t) ≥
(
φ(ρn)− a

)+ ∧ inf
u∈[ρn,τk)

φ(u) ∧ inf
u∈[τk,t]

φ(u). (4.23)

Letting n→∞, we obtain

Cφ(t) ≥
(
φ(ρ−)− a

)+ ∧ φ(ρ−) ∧ inf
u∈[ρ,τk)

φ(u) ∧ inf
u∈[τk,t]

φ(u)

≥
(
φ(ρ−)− a

)+ ∧ inf
u∈[ρ,τk)

φ(u) ∧ inf
u∈[τk,t]

φ(u).

We now use (4.20), (4.5), and (4.21) to conclude (4.22).

In summary, Propositions 4.2 and 4.3 imply that Cφ(t) given by (3.28)
has the form

Cφ(t) =


0, 0 ≤ t < σ0,

sups∈[σk−1,t]

(
φ(s)− a

)+
, σk−1 ≤ t < τk, k ≥ 1,

infu∈[τk,t] φ(u), τk ≤ t < σk, k ≥ 1.
(4.24)
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From (4.24), (4.5), and (4.7), we see that for k ≥ 1,

Cφ(τk−) = sup
s∈[σk−1,τk)

(
φ(s)− a

)+ ≥ φ(τk) = Cφ(τk), (4.25)

Cφ(σk−) = inf
u∈[τk,σk)

φ(u) ≤ φ(σk)− a = Cφ(σk). (4.26)

We define Cφ(0−) = 0 and we have

Cφ(σ0−) = 0 ≤ Cφ(σ0) = φ(σ0)− a. (4.27)

In particular, Cφ is increasing on each interval [σk−1, τk), with a possible
upward jump at σk−1, and Cφ is decreasing on each interval [τk, σk), with a
possible downward jump at τk.

Theorem 4.4. Let φ ∈ D+ [0,∞) be given, define Cφ by (3.28), and set
φ̄ = φ−Cφ. Then Cφ ∈ BV [0,∞), φ̄ ∈ D [0,∞), and φ̄ takes values only in
[0, a]. Furthermore,

|Cφ|(t) =
∫ t

0
1{φ̄(s)=0 or φ̄(s)=a}d|Cφ|(s), (4.28)

Cφ(t) = −
∫ t

0
1{φ̄(s)=0}d|Cφ|(s) +

∫ t

0
1{φ̄(s)=a}d|Cφ|(s). (4.29)

Proof. From (4.24) we see that Cφ ∈ BV [0,∞). From its definition (3.28),
we see that Cφ further satisfies (φ− a)+ ≤ Cφ ≤ φ, and hence

0 ≤ φ̄ ≤ a ∧ φ. (4.30)

Furthermore, (4.25)–(4.27) show that

φ̄(τk) = 0, φ̄(σk−1) = a, k ≥ 1. (4.31)

Since Cφ = 0 on [0, σ0), we only need to consider t ≥ σ0 in what follows.
Define the set

A
.= {t ≥ σ0 : φ̄(t) ∈ (0, a)}. (4.32)

We show below that
∫
A d|Cφ| = 0, so that (4.28) holds. We further show

that for t ≥ σ0,

φ̄(t) = 0 ⇒ t ∈ [τk, σk) for some k, (4.33)

whereas
φ̄(t) = a ⇒ t ∈ [σk−1, τk) for some k. (4.34)
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We can then conclude that Cφ does not increase on {t ≥ 0|φ̄(t) = 0} (the
positive variation of Cφ assigns zero measure to this set) and Cφ does not
decrease on the set {t ≥ 0|φ̄(t) = a} (the negative variation of Cφ assigns
zero measure to this set). This together with (4.28) will imply (4.29).

We first establish (4.33) and (4.34). Suppose t ∈ [σk−1, τk) for some k.
Then (4.4) and either (4.7) or (4.8) imply

φ(t) > sup
s∈[σk−1,t]

φ(s)− a ≥ φ(σk−1)− a ≥ 0.

From this and (4.24) we have

Cφ(t) = sup
s∈[σk−1,t]

(
φ(s)− a

)+ = sup
s∈[σk−1,t]

φ(s)− a < φ(t).

Therefore, φ̄(t) = φ(t) − Cφ(t) > 0. This is the contrapositive of (4.33).
Similarly, suppose t ∈ [τk, σk) for some k. Then (4.24) and (4.6) imply
Cφ(t) = infu∈[τk,t] φ(u) > φ(t) − a, so that φ̄(t) = φ(t) − Cφ(t) < a. This is
the contrapositive of (4.34).

We next show that
∫
A d|Cφ| = 0. For t ∈ A, define

α(t) .= inf
{
s ∈ [σ0, t]

∣∣(s, t] ⊂ A
}
, β(t) .= sup

{
s ∈ [t,∞)

∣∣[t, s) ∈ A}.
Because of the right-continuity of φ̄, we have β(t) /∈ A, whereas α(t) might
or might not be in A. We also have α(t) ≤ t < β(t), and so the open interval
(α(t), β(t)) is nonempty. It follows that A is the countable union of such
disjoint open intervals together with a countable set of left endpoints, i.e.,

A =
(
∪i∈I (αi, βi)

)
∪ {αj |j ∈ J},

where I is a countable index set and J ⊂ I.
As a first step in showing

∫
A d|Cφ| = 0, we show that if j ∈ J , so αj ∈ A,

then Cφ is continuous at αj . From (4.31) we see that αj is in the interior of
an interval of the form (τk, σk) or of the form (σk−1, τk). By the definition of
αj , there is a sequence of points {γn}∞n=1 in (0, αj) ∩Ac such that γn ↑ αj .

We consider first the case that φ̄(γn) = a, or equivalently, Cφ(γn) =
φ(γn) − a, for infinitely many values of n. From (4.34), we see that γn ∈
[σk−1, τk) for some k. By choosing n sufficiently large, we may assume that
k does not depend on n and αj ∈ (σk−1, τk). We have

a = φ(γn)− Cφ(γn) = φ(γn)− sups∈[σk−1,γn]

(
φ(s)− a

)+
≤ φ(γn)−

(
φ(γn)− a

)+ = φ(γn) ∧ a ≤ a.
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Therefore, the above inequalities must be equalities and we conclude that

0 ≤ φ(γn)− a = Cφ(γn) = sup
s∈[σk−1,γn]

(
φ(s)− a

)+
.

Letting n→∞, we see that

0 ≤ φ(αj−)− a = Cφ(αj−) = sup
s∈[σk−1,αj)

(
φ(s)− a

)+
.

On the other hand, Cφ(αj) = sups∈[σk−1,αj ]

(
φ(s) − a

)+. This shows that
Cφ(αj) ≥ Cφ(αj−). Furthermore, Cφ(αj) > Cφ(αj−) implies Cφ(αj) =
φ(αj)− a. But in this case, φ̄(αj) = a. This contradicts the membership of
αj in A and establishes the continuity of Cφ at αj .

If φ̄(γn) = a does not hold for infinitely many values of n, then φ̄(γn) = 0,
or equivalently, Cφ(γn) = φ(γn), must hold for infinitely many values of n.
From (4.33), we see that γn ∈ [τk, σk) for some k. By choosing n sufficiently
large, we may assume that k does not depend on n and αj ∈ (τk, σk). We
have

0 = φ(γn)− Cφ(γn) = φ(γn)− inf
u∈[τk,γn]

φ(u) ≥ 0.

Therefore, the above inequality must be an equality and we conclude that

φ(γn) = Cφ(γn) = inf
u∈[τk,γn]

φ(u).

Letting n→∞, we see that

φ(αj−) = Cφ(αj−) = inf
u∈[τk,αj)

φ(u).

On the other hand, Cφ(αj) = infu∈[τk,αj ] φ(u). This shows that Cφ(αj) ≤
Cφ(αj−). Furthermore, Cφ(αj) < Cφ(αj−) implies Cφ(αj) = φ(αj). But in
this case, φ̄(αj) = 0. This contradicts the membership of αj in A, which
establishes the continuity of Cφ at αj .

To establish
∫
A d|Cφ| = 0, it remains only to show that

∫
(αi,βi)

d|Cφ| = 0
for every i ∈ I. Because φ is strictly between 0 and a on (αi, βi), (4.31)
shows that (αi, βi) must be entirely contained in an interval of the form
(τk, σk) or of the form (σk−1, τk). We consider the latter case; the former
case is analogous. It suffices to show that Cφ is constant on [ai, bi] whenever
αi < ai < bi < βi, where

Cφ(t) = sup
s∈[σk−1,t]

(
φ(s)− a

)+ ∀t ∈ (αi, βi).
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Define
ρ = inf

{
t ∈ [ai, bi]

∣∣Cφ(t) > Cφ(ai)
}
.

Assume ρ < ∞. Because Cφ is right-continuous, we must have Cφ(t) =
Cφ(ai) for all t ∈ [ai, ρ) and either Cφ(ρ) = φ(ρ) − a > C(ai) or else
Cφ(ρ) = φ(ρ) − a = Cφ(ai). In either case, φ̄(ρ) = a, contradicting the
definition of A. Therefore, ρ = ∞ and Cφ is constant on [ai, bi].

Remark 4.5. The stopping times σk, τk, k = 0, 1, . . . , of (4.1)–(4.2) coincide
with the stopping times σk, τk, k = 0, 1, . . . , of (3.26) and (3.27). Indeed, for
k ≥ 1, the contrapositive of (4.33) dictates that φ̄(t) > 0 for t ∈ [σk−1, τk).
Moreover, according to (4.25), φ̄(τk) = φ(τk)− Cφ(τk) = 0, and so

τk = min{t ≥ σk−1|φ̄(t) = 0}. (4.35)

Similarly, the contrapositive of (4.34) dictates that φ̄(t) < a for t ∈ [τk, σk),
and according to (4.26), φ̄(σk) = φ(σk)− Cφ(σk) = a, so

σk = min{t ≥ τk|φ̄(t) = a}. (4.36)

Finally, for 0 ≤ t < σ0, (4.24) implies φ̄(t) = φ(t), so φ̄(t) < a. According to
(4.27), φ̄(σ0) = φ(σ)− Cφ(σ0) = a, so

σ0 = min{t ≥ 0|φ̄(t) = a}. (4.37)

Equations (4.35)–(4.37) coincide with (3.26), (3.27).

Second proof of Theorem 1.4. Let ψ ∈ D [0,∞) be given and define
φ = Γ0(ψ). Then η

.= φ− ψ ∈ I [0,∞) satisfies (see (1.2))

η(t) =
∫ t

0
1{φ(s)=0}dη(s),

∫ t

0
1{φ(s)>0}dη(s) = 0 ∀t ≥ 0. (4.38)

With Cφ defined by (3.28), set

φ̄ = Λa(φ) = φ− Cφ = ψ + η − Cφ.

Theorem 4.4 implies η − Cφ ∈ BV [0,∞), φ̄ ∈ D [0,∞), and φ̄ takes values
only in [0, a]. It remains to show that for all t ≥ 0,

|η − Cφ|(t) =
∫ t

0
1{φ̄(s)=0 or φ̄(s)=a}d|η − Cφ|(s), (4.39)

η(t)− Cφ(t) =
∫ t

0
1{φ̄(s)=0}d|η − Cφ|(s)−

∫ t

0
1{φ̄(s)=a}d|η − Cφ|(s).(4.40)

Because {s|φ(s) = 0} ⊂ {s|φ̄(s) = 0} (see (4.30)) and Cφ is decreasing on
this set (see (4.29)), (4.38) implies |η−Cφ| = η+ |Cφ|. Equations (4.39) and
(4.40) follow from (4.38), (4.28), and (4.29).
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5. Comparison Properties of the Double Reflection Map

In this section we present the proof of Theorem 1.6. We first establish some
preliminary results that may be of independent interest. In the proofs we
make repeated use of the elementary inequalities [b1 + b2]+ ≤ b+1 + b+2 and
[b1 − b2]+ ≥ b+1 − b+2 for b1, b2 ∈ IR, without explicit reference.

Lemma 5.1. Given c0, c
′
0 ∈ IR and ψ,ψ′ ∈ D [0,∞) with ψ(0) = ψ′(0) = 0,

suppose (φ, η) and (φ′, η′) solve the Skorokhod problem on [0,∞) for c0 + ψ
and c′0+ψ′, respectively. If there exists ν ∈ I [0,∞) such that ψ′ ≤ ψ ≤ ψ′+ν,
then the following two properties are satisfied:

1. η − [c′0 − c0]+ ≤ η′ ≤ η + ν + [c0 − c′0]+;
2. φ′ − ν − [c′0 − c0]+ ≤ φ ≤ φ′ + ν + [c0 − c′0]+.

Moreover, if ψ = ψ′ + ν then

φ′ − [c′0 − c0]+ ≤ φ ≤ φ′ + ν + [c0 − c′0]+. (5.1)

Proof. Using the explicit representations for η and η′ that follow from (1.1),
along with the fact that ν ∈ I [0,∞) and ψ ≤ ψ′ + ν, we see that for every
t ∈ [0,∞),

η(t) = sups∈[0,t][−c0 − ψ(s)]+ ≥ sups∈[0,t][−c′0 − ψ′(s)− ν(s)− c0 + c′0]+.
≥ sups∈[0,t][−c′0 − ψ′(s)− ν(t)− c0 + c′0]+.
≥ sups∈[0,t][−c′0 − ψ′(s)]+ − [ν(t) + c0 − c′0]+

≥ η′(t)− ν(t)− [c0 − c′0]+.

Likewise, (1.1) and the fact that ψ ≥ ψ′ shows that for every t ∈ [0,∞),

η′(t) = sups∈[0,t] [−c′0 − ψ′(s)]+ ≥ sups∈[0,t][−c0 − ψ(s)− (c′0 − c0)]+

≥ sups∈[0,t][−c0 − ψ(s)]+ − [c′0 − c0]+

= η(t)− [c′0 − c0]+.
(5.2)

When combined, the last two relations establish property 1. Moreover, the
first relation and the fact that η′ = −c′0 − ψ′ + φ′ also implies that

φ = ψ+c0+η ≥ ψ+c0−c′0−ψ′+φ′−ν−[c0−c′0]+ = φ′+ψ−ψ′−ν−[c′0−c0]+,

which is no less than φ′ − ν − [c′0 − c0]+ if ψ′ ≤ ψ ≤ ψ′ + ν and is no less
than φ′ − [c′0 − c0]+ if ψ = ψ′ + ν. On the other hand the second relation,
(5.2), shows that

φ = c0+ψ+η ≤ c′0+ψ′+η′+c0−c′0+[c′0−c0]++ψ−ψ′ = φ′+[c0−c′0]++ψ−ψ′.

Together, the last two displays establish property 2 and (5.1).
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The representation (1.13) for Γ0,a as the composition of Λa and Γ0, allows
us to easily deduce the following corollary from Lemma 5.1.

Corollary 5.2. Given a > 0, c0, c′0 ∈ IR and ψ,ψ′ ∈ D [0,∞) with ψ(0) =
ψ′(0) = 0, suppose (φ̄, η̄) and (φ̄′, η̄′) solve the Skorokhod problem on [0, a]
for c0 + ψ and c′0 + ψ′, respectively. If ψ = ψ′ + ν, where ν ∈ I [0,∞), then
the following two properties hold:

1. η̄ − 2[c′0 − c0]+ ≤ η̄′ ≤ η̄ + 2ν + 2[c0 − c′0]+;
2. [−|c′0 − c0| − ν] ∨ [−a] ≤ φ̄′ − φ̄ ≤ [|c′0 − c0|+ ν] ∧ a.

Proof. Let C = Cφ be the function defined in (3.28) and let C ′ = Cφ′ . From
the first inequality in (5.1) of Lemma 5.1, it follows that

C ′(t) = sups∈[0,t][(φ′(s)− a)+ ∧ infu∈[s,t] φ
′(u)]

≤ sups∈[0,t][(φ(s)− a+ [c′0 − c0]+)+ ∧ infu∈[s,t] (φ(u) + [c′0 − c0]+)]
≤ sups∈[0,t][(φ(s)− a)+ ∧ infu∈[s,t] φ(u)] + [c′0 − c0]+

= C(t) + [c′0 − c0]+.

Similarly, the second inequality in (5.1) along with the fact that ν is non-
decreasing implies that C ′(t) is equal to

sups∈[0,t][(φ′(s)− a)+ ∧ infu∈[s,t] φ
′(u)]

≥ sups∈[0,t][(φ(s)− a− ν(t)− [c0 − c′0]+)+ ∧ infu∈[s,t](φ(u)− ν(t)− [c0 − c′0]+)]
≥ sups∈[0,t][(φ(s)− a)+ ∧ infu∈[s,t] φ(u)]− ν(t)− [c0 − c′0]+

= C(t)− ν(t)− [c0 − c′0]+.

Let η = Γ0(c0 +ψ)− c0−ψ and, likewise, let η′ = Γ0(c′0 +ψ′)− c′0−ψ′, and
note that due to the representation for Γ0,a in (1.13), the definition (1.11)
of Λa and the definitions of C,C ′, we can write η̄ = η −C and η̄′ = η′ −C ′.
The last two displays, together with property 1 of Lemma 5.1, then show
that

η̄ = η − C ≤ η′ + [c′0 − c0]+ − C ′ + [c′0 − c0]+ = η̄′ + 2[c′0 − c0]+

and

η̄ = η−C ≥ η′− ν − [c0 − c′0]+ −C ′− ν − [c0 − c′0]+ = η̄′− 2ν − 2[c0 − c′0]+,

which establishes the first property of the corollary. The second property
follows from the first property, the fact that φ̄′, φ̄ ∈ [0, a] and the relation

φ̄′ − φ̄ = c′0 + ψ′ + η̄′ − c0 − ψ − η̄ = c′0 − c0 − ν + η̄′ − η̄. (5.3)

imsart ver. 2005/10/19 file: DoubleReflectionMar23_06.tex date: March 24, 2006



/Explicit Formula for the Skorokhod Map 30

We introduce the family of shift operators Tr : D [0,∞) → D [0,∞),
r ∈ [0,∞), defined by

[Trf ](t) = f(r + t)− f(r) for t ∈ [0,∞).

We shall also make use of the well-known (and easily verified) fact that if
φ = Γ(ψ), where Γ is either the one-sided reflection map at zero or a, or the
two-sided reflection map on [0, a], then for every α > 0,

φ(α+ s) = Γ(φ(α) + Tαψ)(s). (5.4)

Remark 5.3. The first and second inequalities in Corollary 5.2 can be
strengthened to the inequalities

−[c′0 − c0]+ ≤ η̄′ − η̄ ≤ [c0 − c′0]+ + ν (5.5)

and
[−[c0 − c′0]+ − ν] ∨ [−a] ≤ φ̄′ − φ̄ ≤ [c′0 − c0]+ ∧ a, (5.6)

which are both easily seen to be tight. Since φ̄(t), φ̄′(t) ∈ [0, a] for all t ∈
[0,∞), in order to establish (5.6), it suffices to show that

−[c0 − c′0]+ − ν(t) ≤ φ̄′(t)− φ̄(t) ≤ [c′0 − c0]+ for t ∈ [0,∞). (5.7)

We use the projection operator π of (1.8). This operator is monotone and
Lipschitz with Lipschitz constant 1.

First suppose c0 ≥ c′0. Then, due to the monotonicity property of the
projection operator π and the Lipschitz continuity of Γ0,a, Lemma 4.2 of
[10] shows that the upper bound φ̄′ − φ̄ ≤ 0 = [c′0 − c0]+ in (5.7) holds,
while the lower bound in (5.7) follows from the first inequality in part 2 of
Corollary 5.2.

Now suppose c0 < c′0. Define

τ
.= inf{t ≥ 0 : φ̄(t) ≥ φ̄′(t)}.

The fact that φ̄(0) = π(c0) ≤ π(c′0) = φ̄′(0) and φ̄(t), φ̄′(t) ∈ [0, a] imply
φ̄(t) < a and φ̄′(t) > 0 for t ∈ [0, τ). (It could happen that π(c0) = π(c′0),
and then τ = 0 and all assertions concerning t ∈ [0, τ) are vacuously true.)
Definitions 1.1, 1.2 and relation (1.4) then show that for t ∈ [0, τ), φ̄(t) =
Γ0(c0 +ψ)(t) and φ̄′(t) = Γa(c′0 +ψ′)(t). Therefore for t ∈ [0, τ), c0 +ψ(t) ≤
φ̄(t) < φ̄′(t) ≤ c′0 + ψ′(t), which in turn implies that

−ν(t) ≤ 0 ≤ φ̄′(t)− φ̄(t) ≤ c′0 − c0 + ψ′(t)− ψ(t) ≤ c′0 − c0 for t ∈ [0, τ).
(5.8)
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This shows that (5.7) is satisfied for t ∈ [0, τ). In particular, this implies that
φ̄′(τ−) ≥ φ̄(τ−) − ν(τ−). By the monotonicity property of the projection
operator π, we have

φ̄′(τ) = π
(
φ̄′(τ−) + ψ′(τ)− ψ′(τ−)

)
≥ π

(
φ̄(τ−)− ν(τ−) + ψ(τ)− ψ(τ−)− (ν(τ)− ν(τ−))

)
≥ π

(
φ̄(τ−) + ψ(τ)− ψ(τ−)

)
− ν(τ)

= φ̄(τ)− ν(τ),

(5.9)

where the explicit definition of π is used to obtain the second inequality.
Now for s ∈ [0,∞), φ̄(τ +s) = Γ0,a(φ̄(τ)+Tτψ)(s) and, likewise, φ̄′(τ +s) =
Γ0,a(φ̄′(τ)+Tτψ

′)(s). Since φ̄(τ) ≥ φ̄′(τ) due to the right-continuity of φ̄, φ̄′,
we can apply (5.7) (with c0, c

′
0, ψ, ψ′ and ν replaced by φ̄(τ), φ̄′(τ), Tτψ,

Tτψ
′ and Tτν), and use (5.9) to obtain for s ∈ [0,∞),

−ν(τ+s) ≤ −[φ̄(τ)−φ̄′(τ)]+−Tτν(s) ≤ φ̄′(τ+s)−φ̄(τ+s) ≤ [φ̄′(τ)−φ̄(τ)]+ = 0,

which shows that (5.7) also holds for t ∈ [τ,∞).
We have established (5.7), and hence (5.6). The inequality (5.5) can be

deduced from (5.6) using the basic relation

η̄′−η̄ = φ̄′−φ̄−(c′0−c0)−(ψ′−ψ) = φ̄′−φ̄−(c′0−c0)+ν.

Although Corollary 5.2 provides bounds on the difference between the
net constraining terms η̄ and η̄′, it is often desirable to compare the indi-
vidual constraining terms at the upper and lower barriers. Such bounds are
provided in Theorem 1.6. To establish these bounds, we recall that if (φ̄, η̄)
solves the Skorokhod problem on [0, a] for ψ ∈ D [0,∞), and if η̄ admits the
decomposition η̄ = η̄` − η̄u that satisfies (1.9), then for any t ∈ [0,∞),

η̄`(t)− η̄`(t−) = sup
s∈[0,t]

[η̄u(s)− ψ(s)]+ − sup
s∈[0,t)

[η̄u(s)− ψ(s)]+

= [η̄u(t)− ψ(t)− η̄`(t−)]+

= [−φ̄(t−)− ψ(t) + ψ(t−) + η̄u(t)− η̄u(t−)]+.(5.10)

Proof of Theorem 1.6. Define

α
.= inf

{
t > 0 : η̄`(t) + ν(t) + [c0 − c′0]+ < η̄′`(t) or η̄u(t) + [c′0 − c0]+ < η̄′u(t)

}
,

with α
.= ∞ if the infimum is over the empty set. Then the definition of α

dictates that the following two relations are satisfied for s ∈ [0, α):

η̄′`(s) ≤ η̄`(s) + ν(s) + [c0 − c′0]+; (5.11)

imsart ver. 2005/10/19 file: DoubleReflectionMar23_06.tex date: March 24, 2006



/Explicit Formula for the Skorokhod Map 32

η̄′u(s) ≤ η̄u(s) + [c′0 − c0]+. (5.12)

Suppose α <∞. Then we claim (and prove below) that it is also true that

η̄′`(α) ≤ η̄`(α) + ν(α) + [c0 − c′0]+ (5.13)

and
η̄′u(α) ≤ η̄u(α) + [c′0 − c0]+. (5.14)

To see why the claim is true, first note that since ν, η̄` and η̄u are non-
decreasing, it is clear from (5.11) that if η̄′` is continuous at α, then (5.13)
holds. Likewise, if η̄′u is continuous at α, then (5.12) implies that (5.14) is
satisfied. Now suppose η̄′`(α)− η̄′`(α−) > 0. Then the complementarity con-
ditions in (1.6) show that φ̄′(α) = 0 and η̄′u(α−) = η̄′u(α). Hence, (5.10)
applied to η̄′` implies that

η̄′`(α) = η̄′`(α−)− φ̄′(α−)− ψ′(α) + ψ′(α−).

Making the further substitutions η̄′`(α−)−φ̄′(α−)+ψ′(α−) = −c′0+ η̄′u(α−),
ψ = ψ′ + ν and then η̄u(α−) = c0 + ψ(α−) + η̄`(α−)− φ̄(α−) into the last
display, we obtain

η̄′`(α) = −c′0 + η̄′u(α−)− ψ′(α)
= −c′0 + η̄′u(α−)− ψ(α) + ν(α)
= −c′0 + c0 + ψ(α−) + η̄`(α−)− φ̄(α−)− ψ(α) + ν(α) + η̄′u(α−)− η̄u(α−).

Taking limits as s ↑ α in (5.12) yields the inequality η̄′u(α−) − η̄u(α−) ≤
[c′0 − c0]+. When substituted into the last display, this shows that

η̄′`(α) ≤ −c′0 + c0 + ψ(α−) + η̄`(α−)− φ̄(α−)− ψ(α) + ν(α) + [c′0 − c0]+

= ψ(α−) + η̄`(α−)− φ̄(α−)− ψ(α) + ν(α) + [c0 − c′0]+.
(5.15)

Since η̄u(α)− η̄u(α−) ≥ 0, (5.10) implies that

η̄`(α) = η̄`(α−) + [−φ̄(α−)− ψ(α) + ψ(α−) + η̄u(α)− η̄u(α−)]+

≥ η̄`(α−)− φ̄(α−)− ψ(α) + ψ(α−).

When substituted into (5.15) this yields (5.13). The proof of the remaining
fact that (5.14) continues to hold even if η̄′u(α) − η̄′u(α−) > 0 is exactly
analogous and is thus omitted.

Having established (5.13) and (5.14), we note from the definition of α
that there must exist a sequence {sn} with sn ↓ 0 as n→∞ such that one
of the following two cases holds:

(i) η̄′`(α+ sn) > η̄`(α+ sn) + ν(α+ sn) + [c0 − c′0]+ ∀n ∈ IN ; (5.16)
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(ii) η̄′u(α+ sn) > η̄u(α+ sn) + [c′0 − c0]+ ∀n ∈ IN. (5.17)

First, suppose that Case (i) holds. Then due to (5.16), the fact that sn ↓ 0
and the right continuity of η̄′`, η̄` and ν, it follows that η̄′`(α) ≥ η̄`(α)+ν(α)+
[c0 − c′0]+. When combined with (5.13), this yields the equality

η̄′`(α) = η̄`(α) + ν(α) + [c0 − c′0]+. (5.18)

We now show that in this case φ̄(α) = φ̄′(α) = 0. First, combining (5.18),
(5.16) and the fact that η̄` +ν is non-decreasing, we have η̄′`(α+sn) > η̄′`(α)
for every n ∈ IN . Since sn ↓ 0, the first complementarity condition in (1.6)
ensures that φ̄′(α) = 0. Along with (5.14), (5.18) and the relations φ̄′(α) = 0
and ψ = ψ′ + ν, this implies that

φ̄(α) = φ̄(α)− φ̄′(α) = c0 − c′0 + ν(α) + η̄`(α)− η̄′`(α) + η̄′u(α)− η̄u(α)
≤ c0 − c′0 − [c0 − c′0]+ + [c′0 − c0]+

= 0.

Since φ̄ ∈ [0, a], this implies φ̄(α) = 0.
The right continuity of φ̄ and φ̄′ then ensures the existence of ε > 0 such

that for every s ∈ [0, ε], φ̄(α + s) < a and φ̄′(α + s) < a. Hence, due to the
complementarity conditions (1.6), property (5.4) and the definitions of Γ0

and Γ0,a, for s ∈ [0, ε] we can write

φ̄(α+ s) = Γ0(φ̄(α) + Tαψ)(s) = Γ0(Tαψ)(s);
φ̄′(α+ s) = Γ0(φ̄′(α) + Tαψ

′)(s) = Γ0(Tαψ
′)(s);

Tαη̄`(s) = Tαη̄(s) = Γ0(Tαψ)(s)− Tαψ(s);
Tαη̄

′
`(s) = Tαη̄

′(s) = Γ0(Tαψ
′)(s)− Tαψ

′(s).

Since Tαψ = Tαψ
′ + Tαν and φ̄(α) = φ̄′(α) = 0, property 1 of Lemma 5.1

(replacing c0 and c′0 by 0 and ψ′ and ψ by Tαψ
′ and Tαψ, respectively) shows

that for every s ∈ [0, ε],

η̄′`(α+s)−η̄′`(α) = Tαη̄
′
`(s) ≤ Tαη̄`(s)+Tαν(s) = η̄`(α+s)−η̄`(α)+ν(α+s)−ν(α).

When combined with (5.18) this yields the inequality

η̄′`(α+ s) ≤ η̄`(α+ s) + ν(α+ s) + [c0 − c′0]+ for s ∈ [0, ε],

which contradicts (5.16) and so Case (i) does not hold.
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Thus we have shown that there does not exist any sequence {sn} with
sn ↓ 0 that satisfies (5.16). Together with (5.11) and (5.13), this means that
there must exist δ > 0 such that

η̄′`(s) ≤ η̄`(s) + ν(s) + [c0 − c′0]+ for s ∈ [0, α+ δ].

Combining (1.9) with the above inequality we then obtain for t ∈ [0, α+ δ],

η̄′u(t) = sup
s∈[0,t]

[
c′0 + ψ′(s) + η̄′`(s)− a

]+
= sup

s∈[0,t]
[c′0 + ψ(s)− ν(s) + η̄′`(s)− a]+

≤ sup
s∈[0,t]

[c0 + ψ(s) + η̄`(s)− a+ c′0 − c0 + [c0 − c′0]+]+

≤ sups∈[0,t][c0 + ψ(s) + η̄`(s)− a]+ + [c′0 − c0]+.
= η̄u(t) + [c′0 − c0]+.

However this contradicts (5.17) and so we conclude that neither Case (i)
nor Case (ii) holds, which in turn contradicts the fact that α < ∞. Thus
α = ∞ or, in other words, the second inequality in property 1 and the first
equality in property 2 of the theorem are satisfied.

Applying the result just proved above with ψ,ψ′, c0, c′0 replaced by−ψ′,−ψ, a−
c′0, a− c0 respectively, and invoking (1.10), it follows that β = ∞, where

β
.= inf

{
t > 0 : η̄′u(t) + ν(t) + [c0 − c′0]+ < η̄u(t) or η̄′`(t) + [c′0 − c0]+ < η̄`(t)

}
.

This completes the proof of the first two properties of the theorem. The
third and fourth properties are the content of Remark 5.3.
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Appendix A: Transformation of graph parametrizations under
Λa

Lemma A.1. Let φ ∈ D[0, T ] be given. For (r, g) ∈ Π(φ), we have (r,Λa(g)) ∈
Π(Λa(φ)).

Proof. Since the mapping (r, g) is continuous, by Proposition 1.3 the map
(r,Λa(g)) is also continuous. We will show that for every s ∈ [0, 1], (r(s),Λa(g(s))) ∈
GΛa(φ). Fix t ∈ [0, T ]. We consider two cases.

Case 1. φ(t) = φ(t−).
Consider s ∈ [0, 1] such that r(s) = t. We want to show that eq1

Λa(g)(s) = Λa(φ)(t), (A.1)
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which clearly implies (r(s),Λa(g)(s)) ∈ GΛa(φ). In the case under consider-
ation, u-phi

g(s) = φ(t) (A.2)

and (A.1) is equivalent to eq2

sup
s′∈[0,s]

[(
g(s′)− a

)+ ∧ inf
s′′∈[s′,s]

g(s′′)

]
= sup

t′∈[0,t]

[(
φ(t′)− a

)+ ∧ inf
t′′∈[t′,t]

φ(t′′)

]
.

(A.3)
The inequality eq2.5

sup
s′∈[0,s]

[(
g(s′)− a

)+ ∧ inf
s′′∈[s′,s]

g(s′′)

]
≥ sup

t′∈[0,t]

[(
φ(t′)− a

)+ ∧ inf
t′′∈[t′,t]

φ(t′′)

]
(A.4)

follows from (A.2) and the monotonicity of (r, g), together with the fact that
the graph of (r(s′), g(s′)), s′ ∈ [0, s], consists of the graph of (t′, φ(t′)), t′ ∈
[0, t], and the vertical segments t′ × [φ(t′−)∧ φ(t′), φ(t′−)∨ φ(t′)], t′ ∈ [0, t].
To prove the opposite inequality, let s0 ∈ [0, s] attain the supremum on the
left-hand side of (A.3). Let t0 = r(s0) and let [b, c] = r−1(t0). We want to
show that s0 may be chosen to be either b or c (in other words, that the
supremum is attained at one of the endpoints of [b, c]). This is obvious if
φ(t0) = φ(t0−), since then g ≡ φ(t0) on [b, c]. If φ(t0−) < φ(t0), then by the
case assumption, t0 < t and s0 ≤ c < s. In this case, g increases on [b, c]
and the supremum on the left-hand side of (A.3) is attained at c. Thus, if
φ(t0−) ≤ φ(t0), we have

sup
s′∈[0,s]

[(
g(s′)− a

)+ ∧ inf
s′′∈[s′,s]

g(s′′)

]
=

(
g(c)− a

)+ ∧ inf
s′′∈[c,s]

g(s′′)

=
(
φ(t0)− a

)+ ∧ inf
t′′∈[t0,t]

φ(t′′)

≤ sup
t′∈[0,t]

[(
φ(t′)− a

)+ ∧ inf
t′′∈[t′,t]

φ(t′′)

]
.

On the other hand, if φ(t0−) > φ(t0), we again have t0 < t and s0 ≤ c < s,
but now g decreases on [b, c] and the supremum on the left-hand side of
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(A.3) is attained at b. In this case

sup
s′∈[0,s]

[(
g(s′)− a

)+ ∧ inf
s′′∈[s′,s]

g(s′′)

]
=

(
g(b)− a

)+ ∧ inf
s′′∈[b,s]

g(s′′)

=
(
φ(t0−)− a

)+ ∧ φ(t0−) ∧ inf
t′′∈[t0,t]

φ(t′′)

≤ sup
t′∈[0,t]

[(
φ(t′)− a

)+ ∧ inf
t′′∈[t′,t]

φ(t′′)

]
.

Thus, regardless of the relationship between φ(t0) and φ(t0−), (A.3) holds.

Case 2. φ(t) 6= φ(t−).
Let [b, c] = r−1(t), φ′ = φ − (φ(t) − φ(t−))I[t,T ], g′(s) = g(s) −

(
g(s ∧

c) − g(s ∧ b)
)
. Then g′ = g on [0, b], φ′ = φ on [0, t) and φ′(t) = φ(t−).

This in turn shows that Λa(g′)(b) = Λa(g)(b), Λa(φ′)(t) = Λa(φ)(t−) and
(r, g′) ∈ Π(φ′) on [0, t]. Since φ′(t) = φ′(t−), we can apply (A.1) to conclude
that Λa(g)(b) = Λa(g′)(b) = Λa(φ′)(t) = Λa(φ)(t−). For t′ > t such that
φ(t′) = φ(t′−) and s′ ∈ [0, 1] such that r(s′) = t′ we have, again by (A.1),
Λa(g)(s′) = Λa(φ)(t′). Taking t′ ↓ t, we get Λa(g)(c) = Λa(φ)(t). Finally,
Λa(g)(s) moves continuously and monotonically from Λa(g)(b) to Λa(g)(c) as
s increases over [b, c]. Hence, for s ∈ [b, c], (r(s),Λa(g)(s)) = (t,Λa(g)(s)) ∈
GΛa(φ).

Conclusion.
We have shown that the map (r,Λa(g)) takes values in GΛa(φ). If Λa(φ)
is discontinuous at t ∈ (0, T ], then φ is also discontinuous at t. The Case 2
analysis shows that when φ is discontinuous at t, the function Λa(g) traverses
the the vertical segment t× [φ(t−)∧φ(t), φ(t−)∨φ(t)] in the direction from
φ(t−) to φ(t), which means that (r, g) is nondecreasing in the order relation
on the graph of GΛa(φ) on the interval r−1(t). For values of t for which Γa(φ)
is continuous, we use the fact r is nondecreasing to again conclude that (r, g)
is nondecreasing.
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