LECTURE 2 EXERCISES

1: Show that if $0 \in D^{\circ}_{\Lambda}$ then Λ^* is a good rate function.

2: Let μ be a measure on \mathbb{R} such that $\int_{\mathbb{R}} |x| \mu(dx) < \infty$. Let $\Lambda_{\mu}, \Lambda_{\mu}^{*}$ be the associated cummulant generating function and Legendre transform. Let $p \in \mathbb{R}$.

i) If $\nu = \delta_p * \mu$ is the convolution of μ, δ_p then $\Lambda^*_{\nu}(x) = \Lambda^*_{\mu}(x-p)$. ii) Prove

$$\int_{\mathbb{R}} \exp\left(\alpha \Lambda_{\mu}^{*}(x)\right) \mu(dx) \leq \frac{2}{1-\alpha} \qquad \forall \alpha \in (0,1)$$

This is from exercises 1.2.9, 1.2.10 in the Deuschel and Stroock book. In *ii*), let $p = \int_{\mathbb{R}} x\mu(dx)$ and use the facts (and make sure you understand why...)

$$\mu([q,\infty)) \le e^{-\Lambda^*_{\mu}(q)} \qquad q \ge p$$

$$\mu((-\infty,q]) \le e^{-\Lambda^*_{\mu}(q)} \qquad q \le p$$

3: (This is actually a hold-over from Lecture 1) Prove that if \mathcal{X} is a metric space with distance function d and the $\{\mu_n\}$ are Borel measures then $\{\mu_n\}$ cannot satisfy a LDP with more than one rate function (and hence the rate function must be unique).

4: Let *I* be a rate function. Let $\delta > 0$ and set $I^{\delta}(x) = \min\{I(x) - \delta, \frac{1}{\delta}\}$. Prove that for any set γ

$$\lim_{\delta>0} \inf_{x\in\Gamma} I^{\delta}(x) = \inf_{x\in\Gamma} I(x)$$

5: Do the following exercises from Dembo & Zeitouni.

i) 2.2.23 (page 35)

ii) 2.2.36 (page 41)

iii) 2.2.38 (page 42)