LECTURE 11 EXERCISES

1: Prove the statements made in class regarding the Perron-Frobenious eigenvalue in the case that the $N \times N$ dimensional matrix B is such that B(i, j) > 0 for each $i, j \in 1...N$. Namely, setting

$$\rho = \sup_{\{x \in \mathbb{R}^N : x_i \ge 0, x'x = 1\}} \min_{i=1,\dots,N} \frac{(Bx)_i}{x_i}$$

show that

- (1) ρ is an eigenvalue
- (2) The right eigenvector x is such that $x_i > 0, i = 1 \dots N$.
- (3) If λ is any other eigevalue then $|\lambda| \leq \rho$.

Hints: Setting $\rho(x) = \min_{i=1,\dots,N} \frac{(Bx)_i}{x_i}$ note that $\rho(x)$ is upper semicontinuous. Note that if $x \in \mathbb{R}^N$ is such that $x_i \ge 0, i = 1, \dots, N$ then $(Bx)_i > 0, i = 1, \dots, N$.

2: Show that for the $N \times N$ stochastic matrix π , that if $\nu \in \mathbb{R}^N$, $\nu >> 0$ is a left eigenvector, i.e.

$$\sum_{i=1}^N \nu_i \pi_{ij} = \nu_j, j = 1, \dots N$$

then

$$I(\nu) = \sup_{u \in \mathbb{R}^N, u > >0} \sum_{j=1}^N \nu_j \log\left(\frac{u_j}{\sum_{i=1}^N u_i \pi_{ij}}\right) = 0$$

The meaning of this is that if ν is an invariant measure for π (ν can always be normalized) then $I(\nu) = 0$. This makes sence since the empirical distribution of the Markov chain is converging to the invariant measure.

2: Do exercises 3.1.8, 3.1.9 on pages 77-78 of the Dembo and Zeitouni book.

3: Read Section 4.5, 4.5.1 and 4.5.2 in the Dembo and Zeitouni book.