
LECTURE 10 EXERCISES

1: Prove that the remark in the middle of page 214 in the Dembo and Zeitouni book is true; i.e.
that if a = σσ′ is uniformly positive definite then Ix(f) = Îx(f) where
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2: There is nothing to turn in for this problem : Make sure you go through and understand the
proof of Theorem 5.6.7 on page 214 in the Dembo and Zeitouni book - especially Lemmas 5.6.9 and
5.6.18.

3: Do Exercise 5.6.24 in the Dembo and Zeitouni book.

Comment : In Exercise 5.6.24 you do not have to reprove everything : you only need to verify the
validity of the results in equations 5.6.11 and 5.6.23 under the assumption that b is Lipschitz but
possibly unbounded. However, please write a paragraph explaining why verifying these two facts
suffices.
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