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1 Introduction

Explicit formulas are rare in portfolio choice, and arise mainly with isoelas-
tic utilities and long horizons. As a result, little is known for general optimal
portfolios, especially if investment opportunities are stochastic and markets
incomplete. Turnpike theorems provide tractable and approximately optimal
portfolios for a large class of utility functions, and long but finite horizons.
Informally, these results state the following: when the investment horizon is
distant, the optimal portfolio for a generic utility approaches that of an isoe-
lastic, or power, utility, where the power is determined by the marginal growth
rate of the original utility function. Unfortunately, available results focus on
either independent returns, or on complete markets.

This paper proves turnpike theorems in a general framework, which in-
cludes discrete and continuous time, and nests diffusion models with several
assets, stochastic drifts, volatilities, and interest rates. The paper departs from
the existing literature, in which either asset returns are independent over time,
or markets are complete. It is precisely when both these assumptions fail that
portfolio choice becomes most challenging, and turnpike theorems are most
useful.

Our results have three broad implications. First, turnpike theorems are a
powerful tool in portfolio choice, because they apply not only when optimal
portfolios are myopic, but also when the intertemporal hedging component is
present. Finding this component is the central problem of portfolio choice, and
the only tractable but non-trivial analysis is based on isoelastic utilities, com-
bined with long horizon asymptotics. Turnpike theorems make this analysis
relevant for a large class of utility functions, and for long, but finite, horizons.

Second, we clarify the roles of preferences and market structure for turnpike
results. Under regularity conditions on utility functions, an abstract version
of turnpike theorem holds regardless of market structure, as long as utility
maximization is well posed, and longer horizons lead to higher payoffs. This
abstract turnpike yields the convergence of optimal portfolios to their isoelastic
limit under myopic probabilities PT , which change with the horizon T . Market
structure becomes crucial to pass from from the abstract to the classic turnpike
theorem, in which convergence holds under the physical probability P.

Third, we prove a new kind of result, the explicit turnpike, in which the
limit portfolio is identified as the long-run optimal portfolio, the latter being a
stationary portfolio identified by an ergodic Hamilton-Jacobi-Bellman (HJB)
equation. This result provides a tractable and asymptotically optimal portfolio
for the long-term investment with generic utilities. Moreover, it offers the
first theoretical basis for the long-standing practice of interpreting solutions of
ergodic HJB equations as long-run limits of utility maximization problems.1

We show that this intuition is indeed correct for a large class of diffusion
models, and that its scope includes a broader class of utility functions.

1 This interpretation underpins the literature on risk-sensitive control, introduced by
Fleming and McEneaney (1995), and applied to optimal portfolio choice by Fleming and
Sheu (2000; 2002), Bielecki et al. (2000; 2002), Nagai and Peng (2002a; 2002b) among others.
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Portfolio turnpikes start with the work of Mossin (1968) on affine risk
tolerance (−U ′(x)/U ′′(x) = ax+ b), which envisions many of the later devel-
opments. In his concluding remarks, he writes: “Do any of these results carry
over to arbitrary utility functions? They seem reasonable enough, but the gen-
eralization does not appear easy to make. As one usually characterizes those
problems one hasn’t been able to solve oneself: this is a promising area for
future research.”.

Leland (1972) coins the expression portfolio turnpike, extending Mossin’s
result to larger classes of utilities, followed by Ross (1974) and Hakansson
(1974). Huberman and Ross (1983) prove a necessary and sufficient condi-
tion for the turnpike property. As in the previous literature, they consider
discrete time models with independent returns. Cox and Huang (1992) prove
the first turnpike theorem in continuous time using contingent claim meth-
ods. Jin (1998) extends their results to include consumption, and Huang and
Zariphopoulou (1999) obtain similar results using viscosity solutions. Dybvig,
Rogers, and Back (1999) dispose of the assumption of independent returns,
proving a turnpike theorem for complete markets in the Brownian filtration,
while Detemple and Rindisbacher (2010) obtain a portfolio decomposition for-
mula for complete markets, which allows to compute turnpike portfolios in
certain models.

In summary, the literature either exploits independent returns, which make
dynamic programming attractive, or complete markets, which make martin-
gale methods convenient. Since market completeness and independence of re-
turns have a tenuous relation, neither of these concepts appears to be central
to turnpike theorems. Indeed, in this paper both assumptions are dropped.

The basic intuition of portfolio turnpikes is that, if wealth grows indef-
initely, then investment policies should depend only on the behavior of the
utility function at high levels of wealth, and if two utility functions are close,
so should be their optimal portfolios. The question is whether the utilities
themselves, marginal utilities, or risk aversions should be close for portfolios
to converge, and this paper provides precise conditions that are valid even in
incomplete markets. Portfolio turnpikes can also be seen as stability results for
optimal investment problems with respect to the horizon, and stability typi-
cally involves some rather delicate conditions (cf. Larsen and Žitković (2007)
and Cheridito and Summer (2006)).

The main results are in section 2, which is divided into three parts. The first
part shows the conditions leading to the abstract turnpike, whereby optimal
final payoffs and portfolios converge under the myopic probabilities. Assump-
tion 2.1 requires a marginal utility that is asymptotically isoelastic as wealth
increases, and a well-posed utility maximization problem. The abstract turn-
pike is a crucial step towards stronger turnpike theorems, because it reduces
the comparison of the optimal portfolio for a generic utility and its isoelastic
counterpart to the comparison of the optimal isoelastic finite-horizon portfolio
with its long-run limit.

The second part of section 2 introduces a class of diffusion models with
several assets, but with a single state variable driving expected returns, volatil-
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ities and interest rates. The discussion starts with a heuristic argument, which
shows the relation between finite-horizon and long-run portfolio choice for isoe-
lastic utilities. A rigorous account of classic and explicit turnpike theorems for
the diffusion models follows in the last part of section 2. For an ergodic state
variable a classic turnpike theorem holds: optimal portfolios of generic utility
functions converge to their isoelastic counterparts. The same machinery leads
to the explicit turnpike, in which optimal finite-horizon portfolios for a generic
utility converge to the long-run optimal portfolio, defined via the solution of an
ergodic HJB equation. Section 2 concludes with an application to target-date
retirement funds, which shows that a fund manager who tries to maximize the
weighted welfare of participants – like a social planner – tends to act on behalf
of the least risk averse investors.

Section 3 contains the proofs of the abstract turnpike, while the classic
and the explicit turnpike for diffusions are proved in section 4. The first part
of section 3 proves the convergence of the ratio of final payoffs, while the
second part derives the convergence of wealth processes. Section 4 studies the
properties of the long-run measure and the value function, and continues with
the convergence of densities and wealth processes, from which the classic and
explicit turnpikes follow.

In conclusion, this paper shows that turnpike theorems are an useful tool to
make portfolio choice tractable, even in the most intractable setting of incom-
plete markets combined with stochastic investment opportunities. Still, these
results are likely to admit extensions to more general settings, like diffusions
with multiple state variables. As gracefully put by Mossin, this is a promising
area for future research.

2 Main Results

This section contains the statements of the main results and their implica-
tions. The first subsection states an abstract version of the turnpike theorem,
which focuses on payoff spaces and wealth processes, in a general semimartin-
gale model. In this setting, asymptotic conditions on the utility functions and
on wealth growth imply that, as the horizon increases, optimal wealths and
optimal portfolios converge to their isoelastic counterparts.

The defining feature of the abstract turnpike is that convergence takes place
under a family of probability measures (PT )T≥0 that change with the horizon.
By contrast, in the classic turnpike, which is the desired result, the conver-
gence holds under the physical probability measure P. While the abstract
turnpike provides an important preliminary step towards the classic turnpike,
passing from the abstract to the classic turnpike theorem requires convergence
of the probabilities PT , which in turn commands additional assumptions. The
second and third subsections achieve this task for a class of diffusion models
with several risky assets, and with a single state variable driving investment
opportunities. This class nests several models in the literature, and allows for
return predictability, stochastic volatility, and stochastic interest rates.
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The explicit turnpike – stated at the end of the third subsection – holds for
the same class of diffusion models. Whereas in the classic turnpike the bench-
mark is the optimal portfolio for isoelastic utility with the same finite horizon,
in the explicit turnpike the benchmark is the long-run optimal portfolio: that
is, the portfolio which achieves the maximal expected utility growth rate for an
isoelastic investor. In contrast to the finite horizon optimal portfolio, the long-
run optimal portfolio is independent of the investment horizon, and is more
tractable than its finite horizon counterpart. In the explicit turnpike, as the
investment horizon increases, the finite-horizon portfolios for a generic utility
converge to the corresponding isoelastic long-run optimal portfolio, providing
tractable and asymptotically optimal portfolios for long-term investment with
generic utilities.

2.1 The abstract turnpike

Consider two investors, one with Constant Relative Risk Aversion (henceforth
CRRA) equal to 1 − p (i.e. power utility xp/p for 0 6= p < 1 or logarithmic
utility log x for p = 0), the other with a generic utility function U : R+ → R.
The marginal utility ratio R(x) measures how close U is to the reference utility:

R(x) :=
U ′(x)

xp−1
, x > 0. (2.1)

Assumption 2.1 The utility function U : R+ → R is continuously differen-
tiable, strictly increasing, strictly concave, and satisfies the Inada conditions
U ′(0) =∞ and U ′(∞) = 0. The marginal utility ratio satisfies:

lim
x↑∞

R(x) = 1. (2.2)

Condition (2.2) means that investors have similar marginal utilities when
wealth is high, and is the basic assumption on preferences for turnpike theo-
rems (Dybvig et al., 1999; Huang and Zariphopoulou, 1999).

Both investors trade in a frictionless market with one safe and d risky
assets. Let (Ω, (Ft)t≥0,F ,P) be a filtered probability space with (Ft)t≥0 a
right-continuous filtration. It is important for the developments in the paper
not to include all negligible sets in F into F0. However, to align with references
on finite horizon problems, where only negligible sets in FT , for some T ≥ 0,
are included, we include all N -negligible sets into F0.2 The safe asset, denoted
by (S0

t )t≥0 and the risky assets (Sit)
1≤i≤d
t≥0 satisfy:

2 A subset A of Ω is N -negligible if there exists a sequence (Bn)n≥0 of subsets of Ω, such
that for all n ≥ 0, Bn ∈ Fn, P[Bn] = 0, and A ⊂ ∪n≥0Bn. This notion is introduced in
(Bichteler, 2002, Definition 1.3.23) and Najnudel and Nikeghbali (2011). Such completion
ensures, for all T ≥ 0, the space (Ω,FT , (F)0≤t≤T ,P) satisfies the usual conditions. Hence
all references below on finite horizon problems with completed filtration can be used in this
paper.
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Assumption 2.2 S0 has RCLL (right-continuous with left limits) paths, and

there exist two deterministic functions S0, S
0

on (0,∞) such that 0 < S0
t ≤

S0
t ≤ S

0

t for all t > 0 and
lim
T→∞

S0
T =∞. (2.3)

This condition means that growth continues over time, and is the main mar-
ket assumption in the turnpike literature. It implies that the riskless discount
factor declines to zero in the long run. Denote the discounted prices of risky
assets by S̃i = Si/S0 for i = 1, . . . , d, and set S̃ = (S̃it)

1≤i≤d
t≥0 . The follow-

ing assumption is equivalent to the absence of arbitrage, in the sense of No
Free Lunch with Vanishing Risk (Delbaen and Schachermayer, 1994, 1998). In

particular, S = (Sit)
1≤i≤d
t≥0 is a Rd-valued semimartingale on [0, T ] with RCLL

paths.

Assumption 2.3 For all T ∈ R+, there exists a probability QT that is equiv-

alent to P on FT and such that S̃ is a (vector) sigma-martingale.

Starting from unit capital, each investor trades with some admissible strat-
egy H: that is, an S-integrable and F-predictable Rd-valued process such that
X̃H
t := 1 +

∫ t
0
Hu dS̃u ≥ 0 P-a.s. for all t ≥ 0. Denote a wealth process by

XH = S0X̃H , and their class by X := {XH : H is admissible}.
Both investors seek to maximize the expected utility of their terminal

wealth at some time horizon T . Using the index 0 for the CRRA investor,
and 1 for the generic investor, their optimization problems are:

u0,T = sup
X∈XT

EP [Xp
T /p] , u1,T = sup

X∈XT
EP [U (XT )] . (2.4)

When p = 0, u0,T is understood as supX∈XT EP[log(XT )]. The next assump-
tion requires that these problems are well-posed. It holds under the simple
criteria in Karatzas and Žitković (2003, Remark 8).

Assumption 2.4 For 0 ≤ p < 1, u0,T <∞ for all T > 0.

The previous assumption and (2.2) combined imply that u1,T < ∞ when
0 ≤ p < 1 and T > 0. 3 Moreover ui,T ≤ 0 for i = 0, 1 when p < 0 and T > 0.
Therefore utility maximization problems for both investors are well-posed for
all horizons. It then follows from Karatzas and Žitković (2003) that, under
Assumptions 2.1-2.4, the optimal wealth processes Xi,T exist for i = 0, 1 and
any T ≥ 0. In addition, ui,T > −∞, because both investors can invest all their
wealth in S0 alone, and S0

T is bounded away from zero by a constant.
The central objects in the turnpike theorem are the ratio of optimal wealth

processes and their stochastic logarithms

rTu :=
X1,T
u

X0,T
u

, ΠT
u :=

∫ u

0

drTv
rTv−

, for u ∈ [0, T ]. (2.5)

3 For any ε > 0, there exists Mε such that U ′(x) ≤ (1 + ε)xp−1 for x ≥ Mε. Integrating
the previous inequality on (Mε, x) yields U(x) ≤ (1+ ε)(xp−Mp

ε )/p+U(Mε), when x ≥Mε

and 0 < p < 1, from which the claim follows. The proof for the case p = 0 is similar.
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They are well-defined by Remark 3.2 below. Moreover, rT0 = 1 since both
investors start with the same initial capital. To state the abstract turnpike
result, define the myopic probabilities (PT )T≥0

4 by:

dPT

dP
:=

(
X0,T
T

)p
EP
[(
X0,T
T

)p] . (2.6)

The above densities are well-defined and strictly positive on [0, T ] (cf. As-
sumption 2.4 and Remark 3.2), hence PT is equivalent to P on FT . Moreover
PT = P in the logarithmic case p = 0. The expression myopic probability is
used since an investor with relative risk aversion 1− p under the probability P
selects the same optimal payoff as an investor with logarithmic utility under
the probability PT .

With the above definitions, the abstract version of the turnpike theorem
reads:

Proposition 2.5 (Abstract Turnpike) Let Assumptions 2.1–2.4 hold. Then,
for any ε > 0,

a) limT→∞ PT
(

supu∈[0,T ]

∣∣rTu − 1
∣∣ ≥ ε) = 0,

b) limT→∞ PT
([
ΠT , ΠT

]
T
≥ ε
)

= 0, where [·, ·] denotes the square bracket of
semimartingales.

Since PT ≡ P for p = 0, convergence holds under P in the case of logarithmic
utility. In this case, Proposition 2.5 is already the classic turnpike. Moreover,
since the optimal portfolio for logarithmic utility is myopic (Goll and Kallsen,
2003, Proposition 2.5), it is also the explicit turnpike.

To gain intuition into the structure of
[
ΠT , ΠT

]
, consider an Itô process

market with the discounted asset price dynamics given by

dS̃ju

S̃ju
= µjudu+

n∑
k=1

σjku dW
k
u , j = 1, · · · , d,

where µ and σ are Rd and Rd×n-valued, respectively, predictable processes,
W = (W 1, · · · ,Wn)′, with ′ representing transposition, is a Rn-valued Brow-
nian motion. Here, the discounted optimal wealth processes satisfy

dX̃i,T
u = X̃i,T

u (πi,Tu )′(µudu+ σudWu), i = 0, 1,

where (πi,T )1≤j≤du≥0 represents the proportions of wealth invested in each risky

asset. In this case, [ΠT , ΠT ] measures the squared distance between the port-
folios π1,T and π0,T , weighted by Σ = σσ′:[

ΠT , ΠT
]
· =

∫ ·
0

(
π1,T
u − π0,T

u

)′
Σu
(
π1,T
u − π0,T

u

)
du.

4 These probabilities already appear in the work of Kramkov and Ŝırbu (2006a,b, 2007)
under the name of R.
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2.1.1 From abstract to classic turnpikes

Except for logarithmic utility, Proposition 2.5 is not a classic turnpike theo-
rem, in that convergence holds under the probability measures (PT )T≥0 which
change with T . However, the convergence in Proposition 2.5 holds on the entire
(moving) time interval [0, T ]. By contrast, in the classic turnpike, convergence
holds under the physical measure P for any (fixed) horizon [0, t] where t > 0.

To pass from the abstract to the classic turnpike, observe two facts. First,
since PT is constructed by solving the finite horizon problem for an isoelastic
investor, the role of the abstract turnpike is to reduce the problem of comparing
optimal portfolios between generic and isoelastic utilities to comparing optimal
portfolios between finite horizon and long run isoelastic investors. Second,
Proposition 2.5 implies that, for any t > 0, both optimal wealth processes and
portfolios are close, under PT , in the time window [0, t]. Indeed, for any ε:

lim
T→∞

PT
(

sup
u∈[0,t]

∣∣rTu − 1
∣∣ ≥ ε) = 0 and lim

T→∞
PT
([
ΠT , ΠT

]
t
≥ ε
)

= 0.

Since the events {supu∈[0,t] |rTu−1| ≥ ε} and {[ΠT , ΠT ]t ≥ ε} are Ft-measurable,
the classic turnpike will follow precisely when the measure P is contiguous with
respect to (PT )T≥t on Ft for all t > 0 (see Jacod and Shiryaev (2003); Ka-
banov and Kramkov (1998) for the contiguity of measures). The following
lemma, used in the sequel, connects the abstract and classic turnpikes:

Lemma 2.6 Let Q, Q̃, and (QT )T≥t be measures on (Ω,Ft) such that Q ∼ Q̃.

Let (AT )T≥t ⊂ Ft be such that limT→∞QT [AT ] = 0. If QT � Q̃ on Ft for

each T ≥ t, and there exists an ε > 0 such that limT→∞ Q̃
[
dQT /dQ̃ ≥ ε

]
= 1

(in particular, if5 Q̃− limT→∞ dQT /dQ̃ = 1), then limT→∞Q [AT ] = 0.

2.2 A turnpike for myopic strategies with independent returns

The density between PT and P on Ft is given by the projection:

dPT

dP

∣∣∣∣
Ft

=
EP
t

[(
X0,T
T

)p]
EP
[(
X0,T
T

)p] . (2.7)

In fact, the densities in (2.7) become constant in T when the finite horizon
optimal CRRA strategy is myopic (i.e. does not depend upon T ) and such that
its wealth process has independent returns. Under these assumptions, which
are ubiquitous within the literature (see (Dybvig et al., 1999, Theorem 1) for
a notable exception), the classic turnpike theorem follows:

Corollary 2.7 (IID Myopic Turnpike) If, in addition to Assumptions 2.1
– 2.4,

5 The notation Q̃− limT→∞ is short for the limit in probability under Q̃.
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1. X0,T
t = X0,S

t P-a.s. for all t ≤ S, T (myopic optimality);

2. X0,T
s /X0,T

t and Ft are independent under P for all t ≤ s ≤ T (independent
returns).

then, for any ε, t > 0:

a) limT→∞ P
(

supu∈[0,t]
∣∣rTu − 1

∣∣ ≥ ε) = 0,

b) limT→∞ P
([
ΠT , ΠT

]
t
≥ ε
)

= 0.

Typically, if asset prices have independent returns the optimal strategy for
a CRRA investor generates a myopic portfolio with independent returns. This
is the case, for example, if asset prices follow exponential Lévy processes, as
in Kallsen (2000). However, as Example 2.2 below shows, a myopic CRRA
portfolio alone is not sufficient to ensure that PT is independent of T .

The assumptions of Corollary 2.7 exclude models in which portfolio choice
is least tractable, and turnpike results are needed the most. The next section
proves classical and explicit turnpikes for diffusion models in which returns
may not be independent, and the market may be incomplete.

2.3 A turnpike for diffusions

This section introduces a class of diffusion models in which a single state
variable drives investment opportunities. Conditions are given under which
both the classic and explicit turnpikes hold. For the purposes of this whole
subsection we assume that p 6= 0; the case p = 0 is simpler and has already
been studied in much greater generality in the previous subsections.

2.3.1 The model

The state variable takes values in an interval E = (α, β), with −∞ ≤ α < β ≤
∞, and has dynamics

dYt = b(Yt) dt+ a(Yt) dWt. (2.8)

The market includes a safe rate r(Yt) and d risky assets, with discounted prices
S̃it satisfying dS̃it/S̃

i
t = dRit, 1 ≤ i ≤ d, where the cumulative excess return

process R has dynamics

dRit = µi(Yt) dt+

d∑
j=1

σij(Yt) dZ
j
t , 1 ≤ i ≤ d. (2.9)

W and Z are, respectively, 1 and d dimensional Brownian motions with con-
stant correlation ρ: i.e. ρ = (ρ1, · · · , ρd)′ ∈ Rd with d〈Zi,W 〉t = ρi dt for
1 ≤ i ≤ d. Hence one can write Z = ρW + ρB with a d-dimensional Brownian
motions B independent of W and ρ ∈ Rd×d being a square root of 1n×n− ρρ′,
where 1n×n denotes the n× n identity matrix. Set

Σ := σσ′, A := a2, Υ := σρa. (2.10)
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The first two assumptions concern the well posedness of the model given in
(2.8) and (2.9). Recall that for γ ∈ (0, 1] and an integer k, a function f : E 7→ R
is locally Ck,γ on E if for all bounded, open, connected D ⊂ E such that
D̄ ⊂ E, f is in the Hölder space Ck,γ(D̄) (Evans (1998, Chapter 5.1)). For
integers n,m, Ck,γ(E,Rn×m) is the set of all n×m matrix-valued f for which
each component fij is locally Ck,γ on E. With Rn ≡ Rn×1:

Assumption 2.8 r ∈ Cγ(E,R), b ∈ C1,γ(E,R), µ ∈ C1,γ(E,Rd), A ∈
C2,γ(E,R), Σ ∈ C2,γ(E,Rd×d), and Υ ∈ C2,γ(E,Rd) for some γ ∈ (0, 1].
For all y ∈ E, Σ is strictly positive definite and A is strictly positive.

These regularity conditions imply the local existence and uniqueness of a so-
lution (R, Y ). The next assumption ensures the existence of a unique global
solution, by requiring that Feller’s test for explosions is negative (Pinsky, 1995,
Theorem 5.1.5).

Assumption 2.9 There is some y0 ∈ E such that∫ y0

α

1

A(y)m(y)

(∫ y0

y

m(z)dz

)
dy =∞ =

∫ β

y0

1

A(y)m(y)

(∫ y

y0

m(z)dz

)
dy,

where the speed measure density is defined as

m(y) := (A(y))−1 exp

(∫ y

y0

2b(z)/A(z)dz

)
.

Assumption 2.9 implies the model for (R, Y ) is well posed in that it admits
a solution. This statement is made precise within the setting of the martingale
problem. For a fixed integer n, let Ω be the space of continuous maps ω :
R+ → Rn and B = (Bt)t≥0 be the filtration generated by the coordinate
process Ξ defined by Ξt(ω) = ωt for ω ∈ Ω. Let F = σ (Ξt, t ≥ 0) and
Ft = Bt+ ∨ {N-negligible sets} cf. footnote 2. For an open, connected set
D ⊂ Rn and γ ∈ (0, 1], let Ǎ ∈ C2,γ(D,Rn×n) be point-wise positive definite
and let b̌ ∈ C1,γ(D,Rn). Define the second order elliptic operator Ľ by

Ľ :=
1

2

n∑
i,j=1

Ǎij
∂2

∂xi∂xj
+

n∑
i=1

b̌i
∂

∂xi
. (2.11)

Definition 2.10 A family of probability measures (Px)x∈D on (Ω,B) is a so-
lution to the martingale problem for Ľ on D if, i) : Px(Ξ0 = x) = 1, ii) :

Px(Ξt ∈ D,∀t ≥ 0) = 1, and iii) :
(
f(Ξt)− f(Ξ0)−

∫ t
0
Ľf(Ξu) du; (Bt)t≥0

)
is a Px martingale for all f ∈ C2

0 (D) and each x ∈ D, where C2
0 (D) is the

class of twice continuously differentiable functions with compact support in D.

Let ξ = (z, y) ∈ Rd × E and consider the generator

L :=
1

2

d+1∑
i,j=1

Ãij(ξ)
∂2

∂ξi∂ξj
+

d+1∑
i=1

b̃i(ξ)
∂

∂ξi
, Ã :=

(
Σ Υ
Υ ′ A

)
and b̃ :=

(
µ
b

)
.

(2.12)
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This is the infinitesimal generator of (R, Y ) from (2.8) and (2.9). Assumptions
2.8 and 2.9 imply that there exists a unique solution (Pξ)ξ∈Rd×E on (Ω,F) to
the martingale problem on Rd×E for L; see Pinsky (1995, Theorem 1.12.1).6

Remark 2.11 There is a one to one correspondence between solutions to
the martingale problem and weak solutions for (R, Y ), (Rogers and Williams,
2000, Chapter V). In fact, under the given assumptions there exists 1- and
d-dimensional Pξ independent Brownian Motions W and B such that B is Pξ
independent of Y and

(
(R, Y ), (W,Z), (Ω,F , (Ft)t≥0,Pξ)

)
is a weak solution

of (2.8) and (2.9) where Z = ρW + ρ̄B.

2.3.2 The value function

Since p = 0 case has been treated in Proposition 2.5, we will focus on p 6= 0 case
throughout this section. Let H be an admissible strategy. Let π = (π1, · · · , πd)′
be the corresponding risky weight πi = HiSi/XH for i = 1, . . . , d, and write
Xπ for XH , so that

dXπ
t

Xπ
t

= r(Yt)dt+ π′t dRt. (2.13)

The value function for the horizon T ∈ R+ is given by

uT (t, x, y) := sup
π admissible

EPy0 [(Xπ
T )
p
/p |Xt = x, Yt = y] ; 0 ≤ t ≤ T, y ∈ E.

(2.14)

where y0 ∈ E is some arbitrary point (which is inconsequential since (R, Y ) has
the Markov property). It is understood that u0,T = uT (0, 1, y)7. To account
for the homogeneity of power utility, define the reduced value function vT via

uT (t, x, y) =
xp

p

(
vT (t, y)

)δ
, where δ :=

1

1− qρ′ρ
, q :=

p

p− 1
. (2.15)

2.3.3 Heuristics for the classic turnpike

The next heuristic argument shows why, under certain technical conditions,
the classic turnpike is expected to hold in the present diffusion setting. Suppose
that uT from (2.14) is smooth. The power transformation in (2.15) linearizes
the HJB equation satisfied by uT (see Zariphopoulou (2001)), so that vT is
expected to solve

−∂tv = Lv + c v, (t, y) ∈ (0, T )× E,
v(T, y) = 1, y ∈ E,

(2.16)

6 Since R0 = 0 by assumption, Pξ with ξ = (0, y) is denoted as Py . The same convention
applies to other probabilities introduced later.

7 In model (2.8) and (2.9), u0,T depends on the initial value of the state variable Y0 = y.
Hence uT is a function of y. Because Proposition 2.5 reduces the problem to the comparison
of the optimal isoelastic finite-horizon portfolio with its long-run limit, the superscript 0
will be omitted in this section.
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where

L :=
1

2
A∂2yy +B ∂y; B := b− qΥ ′Σ−1µ; and c :=

1

δ
(pr− q

2
µ′Σ−1µ).

(2.17)
Moreover, the optimal portfolio for the horizon T problem is (all functions are
evaluated at (t, Yt)):

πT =
1

1− p
Σ−1

(
µ+ δΥ

vTy
vT

)
. (2.18)

For Y0 = y, the wealth process corresponding to this portfolio leads to the

optimal terminal wealth XπT

T , which in turn defines the probability PT,y by
(2.6). A calculation shows that the density of PT,y with respect to Py on Ft is

DvT

t :=
dPT,y

dPy

∣∣∣∣
Ft

= E

(∫ (
−qΥ ′Σ−1µ+A

vTy
vT

)
1

a
dW − q

∫ (
Σ−1µ+Σ−1Υδ

vTy
vT

)′
σρ̄dB

)
t

,

(2.19)

where the independent Brownian motions (W,B) are as in Remark 2.11. In

view of Lemma 2.6, identifying the limiting behavior of the density DvT

t as
T → ∞ is crucial to pass from the abstract to the classic turnpike. A guess
for the limiting density is obtained from ergodic version of (2.16)

λ v = L v + c v, y ∈ E. (2.20)

The principal (i.e. with v > 0) solution (v̂, λc) controls the long-run limit of the
utility maximization problem (Guasoni and Robertson, 2012) and is related
to vT by vT (t, y) ∼ eλc(T−t)v̂(y) as T →∞. The long run portfolio is given by

π̂ =
1

1− p
Σ−1

(
µ+ δΥ

v̂y
v̂

)
, (2.21)

Define the process

Dv̂
t := E

(∫ (
−qΥ ′Σ−1µ+A

v̂y
v̂

)
1

a
dW − q

∫ (
Σ−1µ+Σ−1Υδ

v̂y
v̂

)′
σρ̄dB

)
t

.

(2.22)

Assuming there exists a long run probability P̂y on (Ω,B) whose density with
respect to Py is given by Dv̂

t for t ≥ 0. Then the density of PT,y with respect
to P̂y on Ft takes the form (see (4.15) below):

dPT,y

dP̂y

∣∣∣∣
Ft

=
DvT

t

Dv̂
t

=
hT (t, Yt)

hT (0, y)
E

(
−
∫
qδa

hTy
hT

ρ̄′ρ dB̂

)
t

, (2.23)
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where B̂ is a P̂y Brownian motion, and hT is the ratio between vT and its long
run analog v̂: i.e. hT satisfies vT (t, y) = eλc(T−t)v̂(y)hT (t, y). Given that vT

and (v̂, λc) satisfy (2.16) and (2.20) respectively, hT satisfies the PDE

∂th
T + Lv̂,0hT = 0, (t, y) ∈ (0, T )× E,

hT (T, y) =
1

v̂(y)
, y ∈ E,

(2.24)

where

Lv̂,0 = L+A
v̂y
v̂
∂y (2.25)

is the differential part of the h-transform of L using v̂ as the h-function; cf.
(Pinsky, 1995, Section 4.1). Since Lv̂,0 is the infinitesimal generator of Y under

P̂y, one expects from the Feymann-Kac formula that hT has the stochastic
representation

hT (t, y) = EP̂y
[

1

v̂(YT−t)

]
, (t, y) ∈ [0, T ]× E. (2.26)

If Y is positive recurrent under (P̂y)y∈E and if v̂−1 is integrable with respect to
the invariant density, (2.26), in conjunction with the ergodic theorem implies
that hT (t, y) converges to a constant for all (t, y) as T → ∞. Hence, (2.23)

implies that dPT,y/dP̂y|Ft converges to 1 in P̂y probability, and the classic
turnpike theorem follows from Lemma 2.6.

Remark 2.12 For multivariate factor models with stochastic correlations,
consider the reduced value vT defined by uT (t, x, y) = (xp/p) exp(vT (t, y)).
Then vT is expected to solve a semilinear HJB equation with quadratic non-
linearity in the first order derivative. The associated ergodic HJB equation has
been studied by Guasoni and Robertson (2012); Kaise and Sheu (2006). Given
its solution (v̂, λc), h

T (t, y) = vT (t, y)− λc(T − λ)− v̂(y) is expected to solve
another quasilinear equation with modified first order derivative term, which is
similar to the h-transform above. Since the study of quasilinear PDE requires a
different set of techniques, turnpike theorems for multivariate diffusion models
are deferred to a separate treatment.

2.3.4 The classic turnpike theorem

Turning the previous argument into a precise statement requires some hy-
potheses. First, the following assumption ensures the existence of a principal
solution (v̂, λc) to the ergodic HJB equation in (2.20) such that Y is positive

recurrent under (P̂y)y∈E and such that v̂−1 is integrable with respect to the
invariant density for Y .
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Assumption 2.13 There exist (v̂, λc) such that v̂ ∈ C2(E), v̂ > 0, and solves
the equation (2.20). For the y0 ∈ E in Assumption 2.98,∫ y0

α

1

v̂2Am̂(y)
dy =∞,

∫ β

y0

1

v̂2Am̂(y)
dy =∞, (2.27)∫ β

α

v̂2 m̂(y) dy =1,

∫ β

α

v̂ m̂(y) dy <∞, (2.28)

where

m̂(y) :=
1

A(y)
exp

(∫ y

y0

2B(z)

A(z)
dz

)
. (2.29)

Remark 2.14 By the linearity of (2.20), assuming
∫ β
α
v̂2m̂(y)dy = 1 is equiv-

alent to assuming
∫ β
α
v̂2m̂(y)dy <∞ since v̂ may be renormalized.

A simple criterion to check Assumption 2.13 is the following:

Proposition 2.15 Let Assumptions 2.8 and 2.9 hold. Suppose that c and m̂
satisfy: ∫ β

α

m̂(y)dy <∞, (2.30)

lim
y↓α

c(y) = lim
y→β

c(y) = −∞. (2.31)

Then, Assumption 2.13 holds.

Remark 2.16 If the interest rate r is bounded from below, and p < 0, (2.31)
states that the squared norm of the vector of risk premia σ−1µ goes to ∞ at
the boundary of the state space E. Even though Proposition 2.15 may not be
applicable, Assumption 2.13 holds also for 0 < p < 1, under some parameter
restrictions: see Examples 2.2 and 2.3 below.

To understand (2.27) and (2.28), define the operator:

L̂ :=
1

2

d+1∑
i,j=1

Ãij(ξ)
∂2

∂ξi∂ξj
+

d+1∑
i=1

b̂i(ξ)
∂

∂ξi
, b̂ :=

(
1

1−p

(
µ+ δΥ

v̂y
v̂

)
B +A

v̂y
v̂

)
, (2.32)

where Ã is from (2.12). Condition (2.27) implies that the martingale problem

for L̂ on Rd × E has a unique solution (P̂ξ)ξ∈Rd×E and that P̂ξ is equivalent

to Pξ (see Lemma 4.2 below). The family (P̂ξ)ξ∈Rd×E is called the long-run

probability. The measure P̂ξ with ξ = (0, y) is the measure P̂y in the heuristic

argument. Proposition 4.6 below shows that dP̂y/dPy|Ft = Dv̂
t and for all

T > 0 it both constructs a strictly positive classical solution vT to (2.16) and
verifies that the value function uT in (2.14) can be represented as uT (t, x, y) =
(xp/p)(vT (t, y))δ.

8 Any y0 ∈ E suffices. This y0 is chosen to align m with m̂.
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Conditions (2.27) and the identity in (2.28) imply that Y is ergodic under

(P̂y)y∈E with the invariant density v̂2m̂ (see Lemma 4.1 below and Section 4.2
for a precise definition of ergodicity). The inequality in (2.28) ensures that v̂−1

is integrable with respect to the invariant density. Hence hT , with its stochastic
representation (2.26), converges to a constant as T →∞. Combined with the
representation (2.23):

Lemma 2.17 Let Assumptions 2.8, 2.9, and 2.13 hold. Then, for all y ∈ E
and t, ε > 0:

lim
T→∞

P̂y
(∣∣∣∣∣dPT,ydP̂y

∣∣∣∣
Ft
− 1

∣∣∣∣∣ ≥ ε
)

= 0. (2.33)

In light of Lemma 2.6, the classical turnpike follows under the additional
assumption upon r, Y,E which enforces Assumption 2.2: for example, one can
take r ≤ r(y) ≤ r for some constants 0 < r ≤ r.

Theorem 2.18 (Classic Turnpike) Let Assumptions 2.1 - 2.4, 2.8, 2.9,
and 2.13 hold. Then, for all y ∈ E, 0 6= p < 1 and ε, t > 0:

a) limT→∞ Py (supu∈[0,t]
∣∣rTu − 1

∣∣ ≥ ε) = 0,

b) limT→∞ Py
([
ΠT , ΠT

]
t
≥ ε
)

= 0.

2.3.5 The explicit turnpike theorem

Abstract and classic turnpikes compare the finite-horizon optimal portfolio of
a generic utility to that of its CRRA benchmark at the same finite horizon.
However the finite horizon optimal portfolio πT for the CRRA benchmark still
depends on the horizon T . By contrast, the explicit turnpike, discussed next,
uses π̂ in (2.21) as the benchmark. Unlike πT , the portfolio π̂ is myopic.

This result has two main implications: first, and most importantly, it shows
that the two approximations of replacing a generic utility with a power utility,
and a finite horizon problem with its long-run limit, lead to small errors as the
horizon becomes large. Second, this theorem has a non-trivial statement even
for U in the CRRA class: in this case, it states that the optimal finite-horizon
portfolio converges to the long-run optimal portfolio, identified as a solution
to the ergodic HJB equation (2.20).

To state the explicit turnpike, define, in analogy to (2.5), the ratio of opti-
mal wealth processes relative to the long-run benchmark, and their stochastic
logarithms as:

r̂Tu :=
X1,T
u

X̂u

, Π̂T
u :=

∫ u

0

dr̂Tv
r̂Tv−

, for u ∈ [0, T ],

where X̂ is the wealth process of the long-run portfolio π̂.

Theorem 2.19 (Explicit Turnpike) Under the assumptions of Theorem 2.18,
for any y ∈ E, ε, t > 0 and 0 6= p < 1:

a) limT→∞ Py (supu∈[0,t]
∣∣r̂Tu − 1

∣∣ ≥ ε) = 0,
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b) limT→∞ Py
([
Π̂T , Π̂T

]
t
≥ ε
)

= 0.

If U is in the CRRA class, (2.3) is not needed for the above convergence.

When U is in the CRRA class, consider the portfolio πT , optimal for the
horizon T , and its long run limit π̂ in the feedback form: πTt = πT (t, Yt) and
π̂t = π̂(Yt). The following convergence result for the optimal strategies can be
obtained as a direct consequence of the fact that hT (t, y) converge towards a
constant and that, furthermore, hTy (t, y)/hT (t, y) converges to 0 as T →∞.

Corollary 2.20 Let the assumptions of Theorem 2.18 hold without (2.3), for
any t ≥ 0 and p < 1. Then limT→∞ πT (t, y) = π̂(y), locally uniformly in
[0,∞)× E.

2.4 Applications

Before proving the main results, three examples of their significance are offered.
First is an application to target-date mutual funds and the social planner
problem.

Example 2.1 Consider several investors, who differ in their initial capitals
(xi)

n
i=1 and risk aversions (γi)

n
i=1, but share the same long horizon T . Suppose

that they do not invest independently, but rather pool their wealth into a com-
mon fund, delegate a manager to invest it, and then collect the proceeds on
their respective capitals under the common investment strategy. This setting
is typical of target-date retirement funds, in which savings from a diverse pool
of participants are managed according to a single strategy, characterized by
the common horizon T .

Suppose the manager invests as to maximize a weighted sum of the in-
vestors’ expected utilities, thereby solving the problem

max
X∈XT

n∑
i=1

wiEP
[

(xiXT )1−γi

1− γi

]
(2.34)

for some (wi)
n
i=1 > 0. By homogeneity and linearity, this problem is equivalent

to maximizing the expected value EP[U(XT )] of the master utility function9:

U(x) =

n∑
i=1

w̃i
x1−γi

1− γi
where w̃i = wix

1−γi
i . (2.35)

Thus, the fund manager is akin to a social planner, who ponders the welfare
of various investors according to the weights w̃i. The question is how these
weights affect the choice of the common fund’s strategy, if the horizon is dis-
tant, as for most retirement funds.

9 If a logarithmic investor is present (γi = 1 for some i), a constant is added to U(x), and
the stated equivalence remains valid.
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While this problem is intractable for a fixed horizon T , turnpike theorems
offer a crisp solution in the long run limit. Indeed, the master utility function
satisfies Assumption 2.1 with γ = 1− p = min1≤i≤n γi. Thus, for any market
that satisfies the additional Assumptions 2.2–2.4, it is optimal for the fund
manager to act on behalf of the least risk-averse investor.

The implication is that most or nearly all fund participants will find that
the fund takes more risk than they would like, regardless of the welfare weights
w̃i (provided that they are strictly positive). The result holds irrespective of
market completeness or independence of returns, and indicates that a social
planner objective is ineffective in choosing a portfolio that balances the needs
or investors with different preferences.

Note that this result points in the same direction as the ones of Benninga
and Mayshar (2000) and Cvitanic and Malamud (2011), with the crucial dif-
ference that prices are endogenous in their models, while they are exogenous in
our setting. Finally, the result should be seen in conjunction with the classical
numéraire property of the log-optimal portfolio, whereby the wealth process
of the logarithmic investor becomes arbitrarily larger than any other wealth
process. In spite of this property, the fund manager does not choose the log-
optimal strategy, but the one optimal for the least risk-averse investor.

In the next example, returns of risky assets have constant volatility, but
their drift is a correlated Ornstein-Uhlenbeck process. The optimal CRRA
portfolios are neither myopic (except when p = 0) nor have independent re-
turns (even when p = 0) and hence Corollary 2.7 is not applicable. Yet, both
the classic and the explicit turnpikes hold in this model, in the form of Theo-
rems 2.18 and 2.19, even for 0 < p < 1.

Example 2.2 Consider the diffusion model:

dRt = Yt dt+ dZt and dYt = −Yt dt+ dWt.

The correlation ρ takes values in (−1, 1) and the safe rate is a constant r > 0.
Clearly, Assumptions 2.8 and 2.9 hold. Furthermore, for p, ρ satisfying 2p(1 +
ρ) < 1 (or, equivalently, 1 + q(2ρ + 1) > 0 where q = p/(p − 1)) Assumption
2.13 holds as well. Indeed, it can be directly verified that

v̂(y) = v̂(0)e
1
2

(
1+qρ−

√
1+q(2ρ+1)

)
y2

; λc =
pr

δ
+

1

2

(
1 + qρ−

√
1 + q(2ρ+ 1)

)
.

Therefore, Theorem 2.18 and 2.19 follow. Note that 2p(1+ρ) < 1 always holds
when either p < 0 or ρ < −1/2 but may also hold when 0 < p < 1. Thus, even
though the hypothesis of Proposition 2.15 are not met, the turnpike theorems
still follow.

It is well known that when 0 < p < 1 that the value function vT (t, y)
may explode in finite time. Indeed, in the present setup, vT takes the form
vT (t, y) = eC(T−t)−(y2/2)A(T−t) where A(s) solves the Riccati ODE

Ȧ(s) = −A2(s)− 2(1 + qρ)A(s) +
q

δ
; A(0) = 0,
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and where, given A, C(s) = (pr/δ)s − (1/2)
∫ s
0
A(u)du. When 2p(1 + ρ) ≤ 1

it can be shown the solution A(s) remains finite for all s. Alternatively, for
2p(1 + ρ) > 1, A(s) explodes to −∞ as s approaches s∗, the minimal positive
solution of

tan
(
s
√
−(1 + q(2ρ+ 1))

)
= −

√
−(1 + q(2ρ+ 1))

1 + qρ
.

with the convention that tan(y) = ∞ ⇒ y = π/2. Therefore, except for the
boundary case of 2p(1+ρ) = 1, turnpike theorems hold when the value function
remains finite for all T , and vice versa.

Consider the case ρ = 0. Since Υ = 0, the optimal portfolio for a CRRA
investor is the myopic portfolio πTt = Yt/(1 − p); see (2.18). However, the
density dPT,y/dPy

∣∣
Ft

depends on the horizon T . Indeed, it follows by plugging

into (2.19) that

dPT,y

dPy
|Ft = E

(∫
vTy (s, Ys)

vT (s, Ys)
dWs − q

∫ ·
0

Ys dZs

)
t

,

where vT satisfies the HJB equation ∂tv + 1
2∂

2
yyv − y∂yv + (rp − q

2y
2)v = 0

with v(T, y) = 1. The above density is independent of T only if gT (t, y) :=
vTy (t, y)/vT (t, y) is independent of T for any fixed (t, y). It can be shown that

vT is smooth, and not just twice continuously differentiable, in the state vari-
able y, and hence gT satisfies ∂tg + 1

2∂
2
yyg + (g − y)∂yg − g − qy = 0 with

g(T, y) = 0. If gT were independent of T , 0 should be a solution to the previ-
ous equation. However, this is clearly not the case for q 6= 0.

In the final example (cf. Guasoni and Robertson (2012, 2013)), a single
state variable follows the square-root diffusion of Feller (1951), and simulta-
neously affects the interest rate, the volatilities of risky assets, and the Sharpe
ratios. This model is not necessarily affine, yet both the classic and explicit
turnpikes always hold for p < 0. Furthermore, when restricted to be affine
(µ0 = 0 below) turnpikes may hold even for 0 < p < 1.

Example 2.3 Consider the diffusion model

dRt = (µ0+µ1Yt)dt+
√
YtdZt and dYt = b(θ−Yt)dt+a

√
YtdWt. (2.36)

The correlation ρ takes value in (−1, 1) and the safe rate is a constant r > 0.
Note that for µ0 6= 0 this model is not affine. Clearly, Assumption 2.8 holds.
In order to make the original model well posed (i.e. Assumption 2.9 holds) it
is assumed that b, θ, a > 0 and bθ − a2/2 ≥ 0. Set

Λ =
(
bθ − a2/2− qaρµ0

)2
+ a2qµ2

0/δ; Θ = (b+ qaρµ1)
2

+ a2qµ2
1/δ.

If Λ ≥ 0, Θ > 0 (which is always the case when p < 0, µ1 6= 0), the candidate
(v̂, λc) is given by (Guasoni and Robertson (2012))

v̂(y) = v̂(1)y(1/a
2)(
√
Λ−(bθ−a2/2−qaρµ0))e(1/a

2)(b+qaρµ1−
√
Θ)(y−1),

λc = (1/δ)
(
pr − qµ0µ1 + (δ/a2)

(
(b+ qaρµ1)(bθ − qaρµ0)−

√
Θ
(√

Λ+ a2/2
)))

.
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Indeed, in Assumption 2.13, (v̂, λc) satisfy (2.20), (2.27) and the first equality

in (2.28) where now m̂(y) = m̂(1)y(2/a
2)(bθ−a2/2−qaρµ0)e−(2/a

2)(b+qaρµ1)(y−1).
As for the inequality in (2.28), note that for some positive C̃

v̂(y)m̂(y) = C̃yAe−By;

A =
(√

Λ+ (bθ − a2/2− qaρµ0)
)
/a2,

B =
(√

Θ + (b+ qaρµ1)
)
/a2.

The inequality in (2.28) thus holds if A > −1 and B > 0. When p < 0, µ1 6=
0 this is always the case. For 0 < p < 1 this is a very delicate parameter
restriction which simplifies if µ1 6= 0, µ0 = 0 or equivalently, if the model is
affine. Summarizing:

Lemma 2.21 In the model of (2.36) assume that ρ ∈ (−1, 1), r, b, θ, a > 0,
bθ ≥ a2/2. Then Assumptions 2.8 and 2.9 hold. Furthermore,

i) If p < 0 and µ1 6= 0, then Λ ≥ 0, Θ > 0, A > −1 and B > 0. Thus, As-
sumption 2.13 holds and the classic and explicit turnpike theorems follow.

ii) If 0 < p < 1 then Assumption 2.13 holds, and hence the turnpike theorems
follow, provided that Λ ≥ 0, Θ > 0, A > −1 and B > 0. When µ0 =
0, µ1 6= 0, the condition Λ ≥ 0, Θ > 0,A > −1,B > 0 is equivalent to

(b+ qaρµ1)2 + a2qµ2
1/δ > 0; b+ qaρµ1 > 0.

3 Proof of the Abstract Turnpike

This section contains the results leading to the abstract version of the turnpike
theorem. The proof proceeds through two main steps:

i) Establish that optimal payoffs for the generic utility converge to their
CRRA counterparts;

ii) Obtain from the convergence of optimal payoffs the convergence of wealth
processes.

These steps are taken in Dybvig et al. (1999) to prove turnpike theorems
in complete markets. Two new techniques employed here allow us to analyze
incomplete markets: i) the measure is changed to PT (the numéraire is changed
to X0,T ) so that rT is a PT -supermartingale on [0, T ]; ii) a novel estimate
using the first order condition (see Lemma 3.6) is introduced. The convergence

of EPT [|rT − 1|] is derived using this estimate. However, additional technical
difficulties come along with these new techniques. In particular, every quantity,
especially the measure PT , depends on the horizon T .
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3.1 Convergence of optimal payoffs

First, note that Assumption 2.3 implies the existence of a deflator, that is a
strictly positive process Y such that Y X is a (nonnegative) supermartingale on
[0, T ] for all X ∈ X and T > 0. Condition (2.3) entails that limT→∞ E[YT ] = 0
for any such deflator Y . In this section, the capital letter Y is used for deflators,
while in the section on diffusion models it denotes the state variable. Recall a
result from Karatzas and Žitković (2003):

Theorem 3.1 (Karatzas-Žitković) Under Assumptions 2.1 - 2.4, the opti-
mal payoffs are

Xi,T
T = Ii(yi,TY i,TT ), i = 0, 1, T > 0, (3.1)

where I0 is the inverse function of xp−1, I1 is the inverse function of U ′(x),
the positive constant yi,T is the Lagrangian multiplier, and Y i,T is some su-
permartingale deflator. Moreover,

yi,T = EP
[
(U i)′(Xi,T

T )Xi,T
T

]
≥ EP

[
(U i)′(Xi,T

T )XT

]
, i = 0, 1, T > 0, (3.2)

for any X ∈ X . Here U0(x) = xp/p and U1(x) = U(x).

Remark 3.2

i) It follows from (3.1) and the Inada condition that Xi,T
T > 0 P-a.s. for

i = 0, 1 and T ≥ 0. Since Xi,T is a nonnegative QT -supermartingale and
QT is equivalent to P, it follows that Xi,T

t > 0 P-a.s. for 0 ≤ t ≤ T .
ii) Condition (2.3) entails that limT→∞ PT (S0

T ≥ N) = 1 for any N > 0 and

limT→∞ EP[Y i,TT ] = 0 for i = 0, 1.
iii) Recall the probability measure PT defined in (2.6). The optimal wealth

process X0,T has the numéraire property under PT , i.e. EPT [XT /X
0,T
T ] ≤ 1

for any X ∈ X . This claim follows from EP
[
(X0,T

T )p
(
XT /X

0,T
T − 1

)]
≤ 0,

obtained from (3.2), and switching the expectation from P to PT .

Both X0,T
T and X1,T

T will be shown to be unbounded as T →∞. However,
the main result of this subsection, Proposition 3.8, shows that their ratio at

the horizon T , given by rTT from (2.5) satisfies limT→∞ EPT [|rTT − 1|
]

= 0.
Proposition 3.8 will be the culmination of a series of auxiliary results.

Note: Assumptions 2.1 - 2.4 are enforced in the rest of this subsection.

Lemma 3.3

lim
T→∞

PT
(
X0,T
T ≥ N

)
= 1, for any N > 0.
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Proof It suffices to prove lim supT→∞ PT (X0,T
T < N) = 0 for each fixed N . To

this end, the numéraire property of X0,T under PT implies that:

1 ≥ EPT
[
S0
T

X0,T
T

]
≥ EPT

[
S0
T

X0,T
T

1{X0,T
T <N,S0

T≥Ñ}

]

≥ Ñ

N
PT
(
X0,T
T < N,S0

T ≥ Ñ
)
,

for any positive constant Ñ . As a result, PT (X0,T
T < N,S0

T ≥ Ñ) ≤ N/Ñ .
Combining the last inequality with Remark 3.2 item ii), it follows that

lim sup
T→∞

PT (X0,T
T < N) ≤ lim sup

T→∞
PT (X0,T

T < N,S0
T ≥ Ñ) + lim

T→∞
PT (S0

T < Ñ)

≤ N

Ñ
.

Then, the statement follows since Ñ is chosen arbitrarily.

Recall the Lagrangian multipliers yi,T , i = 0, 1, from Theorem 3.1. The
following result presents the asymptotic behavior of y0,T /y1,T as T →∞.

Lemma 3.4

lim inf
T→∞

y0,T

y1,T
≥ 1.

Proof The statement will be proved separately for p = 0, p ∈ (0, 1), and p < 0.

Throughout this proof, in order to ease notation, set αT = y1,T , YT = Y 1,T
T ,

ỸT = Y 0,T
T , XT = X1,T

T , X̃T = X0,T
T , and I = (U ′)−1. All expectations are

under P. Observe first that

lim
y↓0

I(y)y
1

1−p = 1. (3.3)

Indeed, set x = I(y), hence x → ∞ as y ↓ 0. Then the convergence above
follows from (2.2) via

I(y)

y
1
p−1

=
I(U ′(x))

(U ′(x))
1
p−1

=
x

(U ′(x))
1
p−1

=

(
xp−1

U ′(x)

) 1
p−1

→ 1, as y ↓ 0.

Case p = 0: It follows from (3.3) that for any ε > 0 there exists δ > 0 such
that 1− ε ≤ yI(y) ≤ 1 + ε for y < δ. Then (3.1) and (3.2) imply

1 = E[YT I(αTYT )] = E[YT I(αTYT )1{αTYT<δ} + YT I(αTYT )1{αTYT≥δ}]

≤ 1 + ε

αT
P(αTYT < δ) + I(δ)E[YT 1{αTYT≥δ}]

≤ 1 + ε

αT
+ I(δ)E[YT ],
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where the first inequality follows because I is decreasing. Now, the previous
inequality combined with Remark 3.2 item ii) implies that

1 ≤ lim inf
T→∞

1 + ε

αT
,

from which the statement follows since for p = 0, y0,T = 1 and ε is chosen
arbitrarily.

Case p ∈ (0, 1): It follows from (2.2) that for any ε > 0 there exists M > 0

such that 1− ε ≤ U ′(x)x1−p ≤ 1 + ε for x ≥M . Then (3.2) implies that

1 =
1

αT
E [U ′(XT )XT ]

=
1

αT
E
[
U ′(XT )X1−p

T Xp
T 1{XT≥M}

]
+

1

αT
E
[
U ′(XT )XT 1{XT≤M}

]
≤ 1 + ε

αT
E
[
Xp
T 1{XT≥M}

]
+

1

αT
E
[
U ′(XT )XT 1{XT≤M}

]
.

Note that (1/αT )E
[
U ′(XT )XT 1{XT≤M}

]
= E[YTXT 1{XT≤M}] ≤ME[YT ]→

0, as T →∞. Therefore

1

1 + ε
≤ lim inf

T→∞

1

αT
E
[
Xp
T 1{XT≥M}

]
≤ lim inf

T→∞

1

αT
E[Xp

T ] ≤ lim inf
T→∞

1

αT
E[X̃p

T ],

where the third inequality follows from the optimality of X̃ = X0,T for
supx∈X E[Xp

T /p]. Note that y0,T = E[X̃p
T ]. The statement follows from the

previous inequality since ε is chosen arbitrarily.

Case p < 0: For any ε > 0 there exists δ > 0 such that 1−ε ≤ I(y)y
1

1−p ≤ 1+ε
for y < δ. Then (3.1) and (3.2) yield (recall q = p/(p − 1) is the conjugate
exponent to p)

1 = E [YT I(αTYT )]

= E
[
YT I(αTYT ) 1{αTYT<δ}

]
+ E

[
YT I(αTYT ) 1{αTYT≥δ}

]
≤ 1 + ε

α
1

1−p
T

E
[
Y qT 1{αTYT<δ}

]
+ E

[
YT I(αTYT ) 1{αTYT≥δ}

]
.

Since E
[
YT I(αTYT ) 1{αTYT≥δ}

]
≤ I(δ)E[YT ] → 0, as T → ∞, the inequality

in the last line yields

1

1 + ε
≤ lim inf

T→∞

1

α
1

1−p
T

E
[
Y qT 1{αTYT<δ}

]
≤ lim inf

T→∞

1

α
1

1−p
T

E [Y qT ] .

The (1− p)th power on both sides of the previous inequality gives(
1

1 + ε

)1−p

≤ lim inf
T→∞

1

αT
E[Y qT ]1−p ≤ lim inf

T→∞

1

αT
E[X̃p

T ], (3.4)
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from which the statement follows. Since p < 0, the second inequality above
follows from

1

p
E[X̃p

T ] =
1

p
E[Ỹ qT ]1−p ≤ 1

p
E[Y qT ]1−p,

where the equality holds due to the duality for power utility and the inequal-
ity follows from the optimality of Ỹ for the dual problem which minimizes
E[−YqT /q] among all supermartingale deflators Y.

The previous two lemmas combined describe the asymptotic behavior of
X1,T
T and R(X1,T

T ) where R is given in (2.1).

Lemma 3.5

lim
T→∞

PT (X1,T
T ≥ N) = 1, for any N > 0.

Hence

lim
T→∞

PT (|R(X1,T
T )− 1| ≥ ε) = 0, for any ε > 0.

Proof It follows from Lemma 3.4 and (3.2) that

2 ≥ y1,T

y0,T
≥

EP[X0,T
T U ′(X1,T

T )]

EP[(X0,T
T )p]

= EPT
[
U ′(X1,T

T )

(X0,T
T )p−1

]
, for sufficiently large T.

(3.5)
Combining the previous inequality with Lemma 3.3, the first statement fol-
lows. Indeed, for any given M and N , on the set {X1,T

T ≤ N ;X0,T
T ≥ M},

(X0,T
T )1−p ≥M1−p and U ′(X1,T

T ) ≥ U ′(N), therefore

2 ≥ EPT
[
U ′(X1,T

T )

(X0,T
T )p−1

1{X1,T
T ≤N ;X0,T

T ≥M}

]
≥ U ′(N)M1−p PT (X1,T

T ≤ N ;X0,T
T ≥M).

Hence,

PT (X1,T
T ≤ N) ≤ PT (X1,T

T ≤ N ;X0,T
T ≥M) + PT (X0,T

T ≤M)

≤ 2

U ′(N)M1−p + PT (X0,T
T ≤M).

Letting first T → ∞ and then M → ∞ in the previous inequality, the first
statement follows.

Passing to the proof of the second statement, for any ε > 0, due to (2.2),
there exists a sufficiently large Nε such that |R(x) − 1| < ε for any x > Nε.

As a result, PT (|R(X1,T
T ) − 1| ≥ ε,X1,T

T > Nε) = 0. Combining the previous

identity with limT→∞ PT (X1,T
T ≤ Nε) = 0, the second statement follows.

The following result is crucial for the proof of Proposition 3.8 later on.
Recall that rT is given in (2.5).
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Lemma 3.6

lim
T→∞

EPT
[∣∣∣1−R(X1,T

T )(rTT )p−1
∣∣∣ ∣∣rTT − 1

∣∣] = 0.

Proof To ease notation, set RT = R(X1,T
T ) and rT = rTT . It follows from (3.2)

that EP[(X0,T
T )p−1(X1,T

T − X0,T
T )] ≤ 0 and EP[U ′(X1,T

T )(X0,T
T − X1,T

T )] ≤ 0.
Summing these two inequalities, it follows that

0 ≥ EP
[(

(X0,T
T )p−1 − U ′(X1,T

T )
)(

X1,T
T −X0,T

T

)]
,

= EP

[
(X0,T

T )p−1

(
1−

U ′(X1,T
T )

(X1,T
T )p−1

(X1,T
T )p−1

(X0,T
T )p−1

)(
X1,T
T −X0,T

T

)]
,

= EP
[
(X0,T

T )p
(

1−RT r
p−1
T

)
(rT − 1)

]
.

After changing to the measure PT , the previous inequality reads

EPT
[(

1−RT r
p−1
T

)
(rT − 1)

]
≤ 0.

Note that
(

1−RT r
p−1
T

)
(rT − 1) ≤ 0 if and only if R

1/(1−p)
T ≤ rT ≤ 1 or

1 ≤ rT ≤ R
1/(1−p)
T , hence

EPT
[∣∣∣1−RT r

p−1
T

∣∣∣ |rT − 1|
]

≤ 2EPT
[(

1−RT r
p−1
T

)
(1− rT ) 1{

R
1/(1−p)
T ≤rT≤1 or 1≤rT≤R1/(1−p)

}] . (3.6)

Let us estimate the right-hand-side expectation on {R1/(1−p)
T ≤ rT ≤ 1} and

{1 ≤ rT ≤ R
1/(1−p)
T } separately. On the first set, note that (1−RT r

p−1
T )(1−

rT ) ≤ (1−RT )(1−R
1/(1−p)
T ). Then

EPT
[
(1−RT r

p−1
T )(1− rT ) 1{R1/(1−p)

T ≤rT≤1}

]
≤ EPT

[
(1−RT )(1−R

1/(1−p)
T ) 1{RT≤1}

]
≤ PT (RT ≤ 1− ε) + EPT

[
(1−RT )(1−R

1/(1−p)
T ) 1{1−ε≤RT≤1}

]
≤ PT (RT ≤ 1− ε) + ε(1− (1− ε)1/(1−p)).

Sending T →∞ then ε ↓ 0 and using Lemma 3.5, it follows that

lim
T→∞

EPT
[(

1−RT r
p−1
T

)
(1− rT ) 1{R1/(1−p)

T ≤rT≤1}

]
= 0. (3.7)

On the set {1 ≤ rT ≤ R
1/(1−p)
T }, observe that RT r

p−1
T + rT ≥ 2. Then on

the same set,(
1−RT r

p−1
T

)
(1− rT ) = RT r

p
T −RT r

p−1
T − rT + 1 ≤ RT r

p
T − 1.
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Therefore

EPT
[(

1−RT r
p−1
T

)
(1− rT ) 1{1≤rT≤R1/(1−p)

T }

]
≤ EPT

[(
1−RT r

p−1
T

)
(1− rT ) 1{1≤rT≤R1/(1−p)

T ,RT≤1+ε}

]
+ EPT

[
(RT r

p
T − 1) 1{1≤rT≤R1/(1−p)

T ,1+ε<RT }

]
=: J1 + J2.

In the previous equation, J1 ≤ ε((1+ ε)1/(1−p)−1). Let us focus on J2 in what
follows. Since

J2 ≤ EPT [(RT r
p
T − 1) 1{1+ε<RT }

]
= EPT [RT r

p
T 1{1+ε<RT }

]
−PT (1+ε < RT ),

and limT→∞ PT (1 + ε < RT ) = 0 from Lemma 3.5, it suffices to estimate
the first term in the previous inequality. To this end, note from (2.2) that

{1 + ε < RT } ⊂ {X1,T
T ≤M}, for some M depending on ε. Then

EPT [RT r
p
T 1{1+ε<RT }

]
≤ EPT

[
RT r

p
T 1{X1,T

T ≤M}

]
=

EP
[
U ′(X1,T

T )X1,T
T 1{X1,T

T ≤M}

]
EP[(X0,T

T )p]

=
y1,T

y0,T
EP
[
Y 1,T
T X1,T

T 1{X1,T
T ≤M}

]
.

Introduce a probability measure P1,T via

dP1,T

dP
= Y 1,T

T X1,T
T .

A line of reasoning similar to that in iii) of Remark 3.2 shows that X1,T has
the numéraire property under P1,T . Thus, the argument in Lemma 3.3 applied
to X1,T and P1,T implies that limT→∞ P1,T (X1,T ≥ M) = 1. The previous
convergence, combined with Lemma 3.4, then implies

y1,T

y0,T
EP
[
Y 1,T
T X1,T

T 1{X1,T
T ≤M}

]
=
y1,T

y0,T
P1,T (X1,T

T ≤M)→ 0, as T →∞.

Now, combining estimates on J1 and J2, and utilizing Lemma 3.5, sending
T →∞ then ε ↓ 0 it follows that

lim
T→∞

EPT
[(

1−RT r
p−1
T

)
(1− rT ) 1{1≤rT≤R1/(1−p)

T }

]
= 0.

Combining the previous convergence with (3.7), the statement now follows
from (3.6).

The previous result implies that rTT → 1 under PT .
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Lemma 3.7

lim
T→∞

PT (|rTT − 1| ≥ ε) = 0, for any ε > 0.

Proof As in the proof of Lemma 3.6, set RT = R(X1,T
T ) and rT = rTT . Fix

ε ∈ (0, 1) and consider the set

DT =
{
|rT − 1| ≥ ε, (1− ε)

1−p
2 ≤ RT ≤ (1 + ε)

1−p
2

}
.

The next task is to estimate the lower bound of
∣∣∣1−RT r

p−1
T

∣∣∣ on DT for the

cases rT ≥ 1 + ε and rT ≤ 1− ε separately.

For rT ≥ 1 + ε, RT r
p−1
T ≤ (1 + ε)

p−1
2 < 1 on DT , whence

1−RT r
p−1
T ≥ 1− (1 + ε)

p−1
2 > 0;

For rT ≤ 1− ε, RT r
p−1
T ≥ (1− ε)

p−1
2 > 1 on DT whence

1−RT r
p−1
T ≤ 1− (1− ε)

p−1
2 < 0.

Denote η = min
{

1− (1 + ε)
p−1
2 ,−1 + (1− ε)

p−1
2

}
. In either of the above

cases,
∣∣∣1−RT r

p−1
T

∣∣∣ ≥ η, therefore

EPT
[∣∣∣1−RT r

p−1
T

∣∣∣ |rT − 1|
]
≥ ε η PT (DT ).

Combining the previous inequality with Lemma 3.6, it follows that

lim
T→∞

PT (DT ) = 0.

Now, combining the previous convergence with the second statement in Lemma
3.5, the proof is complete.

The previous results allow to prove the main result of this subsection.

Proposition 3.8

lim
T→∞

EPT [|rTT − 1|
]

= 0.

Proof As in the previous Lemmas, set rT = rTT . The proof consists of the
following two steps, whose combination confirms the claim. Note that for p = 0,
PT below is exactly P and hence convergence takes place under the physical
measure.

Step 1: Establish that

lim
T→∞

EPT [|rT − 1| 1{rT≤N}
]

= 0, for any N > 2. (3.8)
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To this end, note that, for any ε > 0,

EPT [|rT − 1| 1{rT≤N}
]

= EPT [|rT − 1|1{rT≤N, |rT−1|≤ε}
]

+ EPT [|rT − 1|1{rT≤N, |rT−1|>ε}
]

≤ ε+ (N − 1)PT (|rT − 1| > ε) .

As T →∞, (3.8) follows from Lemma 3.7 and the arbitrary choice of ε.

Step 2: Observe that

lim
T→∞

EPT [|rT − 1| 1{rT>N}
]

= 0, for any N > 2. (3.9)

To this end,

EPT [|rT − 1| 1{rT>N}
]
≤ EPT [rT 1{rT>N}

]
= EPT [rT ]− EPT [(rT − 1)1{rT≤N}]− PT (rT ≤ N).

Note that EPT [rT ] ≤ 1 due to the numéraire property of X0,T under PT (cf.

Remark 3.2 item iii)), limT→∞ EPT [(rT − 1)1{rT≤N}] = 0 from Step 1, and
limT→∞ PT (rT ≤ N) = 1 from Lemma 3.7, therefore

0 ≤ lim sup
T→∞

EPT [|rT − 1| 1{rT>N}
]
≤ 1− 0− 1 = 0,

which confirms (3.9).

3.2 Convergence of wealth processes

The following lemma bridges this transition from the convergence of optimal
payoffs to the convergence of their wealth processes.

Lemma 3.9 Consider a sequence (rT )T∈R+ of càdlàg processes and a se-
quence (PT )T∈R+

of probability measures, such that:

i) For each T ∈ R+, rT is defined on [0, T ] with rT0 = 1 and rTt > 0 for all
t ≤ T , PT -a.s..

ii) Each rT is a PT -supermartingale on [0, T ]

iii) limT→∞ EPT [|rTT − 1|
]

= 0.

Then:

a) limT→∞ PT
(

supu∈[0,T ]

∣∣rTu − 1
∣∣ ≥ ε) = 0, for any ε > 0.

b) Define LT :=
∫ ·
0
(1/rTt−) drTt , i.e., LT is the stochastic logarithm of rT , for

each T ∈ R+. Then limT→∞ PT
([
LT , LT

]
T
≥ ε
)

= 0, for any ε > 0, where
[·, ·]T is the square bracket on [0, T ].
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Proof This result follows from Theorem 2.5 and Remark 2.6 in Kardaras
(2010). (Note that Theorem 2.5 in Kardaras (2010) is stated under a fixed
probability P and on a fixed time interval [0, T ], but its proof remains valid for
a sequence of probability measures (PT )T∈R+

and a family of time intervals
([0, T ])T∈R+

.)

Combining the Lemma 3.9 with Proposition 3.8, Proposition 2.5 is proved
as follows.

Proof (Proof of Proposition 2.5) The statements follow from Lemma 3.9 di-
rectly, after checking that the assumptions of Lemma 3.9 are satisfied. First,
rT0 = 1 since both investors have the same initial capital. Second, assuming rT·
being a PT -supermartingale for a moment, then rTt > 0, PT -a.s., for any t ≤ T ,

because rTT > 0, PT -a.s. (see Remark 3.2 i)). Third, limT→∞ EPT [|rTT − 1|
]

= 0
is the result of Proposition 3.8. Hence it remains to show that rT· is a PT -
supermartingale. To this end, it suffices to show that:

EPT
[
Xt/X

0,T
t |Fs

]
≤ Xs/X

0,T
s , for any s < t ≤ T and X ∈ X . (3.10)

Since X0,T
T > 0 PT a.s., Remark 3.2 i) implies that both denominators in

above inequality are nonzero. To prove (3.10), fix any A ∈ Fs, and construct

the wealth process X̃ ∈ X via

X̃u :=


X0,T
u , u ∈ [0, s)

X0,T
s

Xu
Xs

1A +X0,T
u 1Ω\A, u ∈ [s, t)

X0,T
s

Xt
Xs

X0,T
u

X0,T
t

1A +X0,T
u 1Ω\A, u ∈ [t, T ]

.

Noting that

X̃T

X0,T
T

=
X0,T
s

Xs

Xt

X0,T
t

1A + 1Ω\A,

the claim follows from EPT
[
X̃T /X

0,T
T

]
≤ 1 (cf. Remark 3.2 iii)) and the arbi-

trary choice of A.

Proof (Proof of Lemma 2.6)

Set XT = dQT /dQ̃|Ft . Note that for all 0 < δ < 1 and the given ε > 0

Q̃ [AT ] = Q̃ [1AT ≥ δ] = Q̃
[
1AT ≥ δ,XT ≥ ε

]
+ Q̃

[
1AT ≥ δ,XT < ε

]
,

≤ Q̃
[
XT 1AT ≥ εδ

]
+ Q̃

[
XT < ε

]
.

Since limT→∞QT [AT ] = 0 it follows that XT 1AT goes to 0 in Q̃ probability.

By hypothesis, limT→∞ Q̃
[
XT < ε

]
= 0. Therefore, limT→∞ Q̃[AT ] = 0 holds.

The statement then follows from the equivalence between Q and Q̃.
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Proof (Proof of Corollary 2.7) First, note that (dPT /dP
∣∣
Ft

)T≥0 is a constant
sequence. Indeed, for any t ≤ T ≤ S,

dPS

dP

∣∣∣∣
Ft

=
EP
t

[(
X0,S
S

)p]
EP
[(
X0,S
S

)p] =
EP
t

[(
X0,S
T

)p (
X0,S
S /X0,S

T

)p]
EP
[(
X0,S
T

)p (
X0,S
S /X0,S

T

)p]
=

EP
t

[(
X0,S
T

)p]
EP
t

[(
X0,S
S /X0,S

T

)p]
EP
[(
X0,S
T

)p]
EP
[(
X0,S
S /X0,S

T

)p]
=

EP
t

[(
X0,S
T

)p]
EP
[(
X0,S
T

)p] =
EP
t

[(
X0,T
T

)p]
EP
[(
X0,T
T

)p] =
dPT

dP

∣∣∣∣
Ft
.

Here, the third equality follows from the assumption that X0,S
T and X0,S

S /X0,S
T

are independent; the fourth equality holds since X0,S
S /X0,S

T is independent of

Ft; and the fifth equality holds by the myopic optimality X0,T
T = X0,S

T .
It follows from the last paragraph that dPT /dP|Ft = dPt/dP|Ft P-a.s. for

any T ≥ t. Then the statement follows since Pt is equivalent to P on Ft; see
the discussion after (2.6).

4 Proof of the Turnpike for Diffusions

4.1 Outline of the proof

This section contains the proofs of the statements in Sections 2.3.4 and 2.3.5.
The discussion starts with the construction of the long-run measures (P̂ξ)ξ∈Rd×E
and their properties in Section 4.2. First (P̂yY )y∈E , the restriction of (P̂ξ)ξ∈Rd×E
on the last component of the state space, is constructed in Lemma 4.1. Assump-
tion 2.13 implies that Y is positive recurrent under (P̂yY )y∈E with invariant

density v̂2(y)m̂(y). The long run limit of EP̂yY [f(YT )] is then established for
function f integrable with respect to the invariant density. This property will
be used to study the long run limit of dPT,y/dP̂y|Ft in Lemma 2.17. In Lemma

4.2, (P̂ξ)ξ∈Rd×E is constructed by adding first d component to (P̂yY )y∈E and

each P̂ξ is shown to be equivalent to the physical measure Pξ.
Section 4.3 is devoted to construction of the candidate reduced value func-

tion vT and verification that it is indeed the reduced value function. To this
end, first consider hT , which is expected to solve (2.24). Instead of starting
from (2.24) and showing its solution admits stochastic representation (2.26),
define hT via the stochastic representation and verify that it is a classical solu-
tion to (2.24) via a localization argument. This approach avoids both uniform
ellipticity and growth assumptions on the terminal condition which come with
the classical version of the Feynman-Kac formula. After the reduced value
function is constructed in (4.3), its relationship with the value function uT is
verified in Proposition 4.6.
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Section 4.4 establishes the precise relations between the conditional den-
sities dPT,y/dPy|Ft , dP̂y/dPy|Ft and the wealth processes X0,T and X̂. These
relations prepare proofs of main results in the last subsection.

4.2 The long run measure P̂ξ

Recall the following terminology from ergodic theory for diffusions (see Pin-
sky (1995) for a more thorough treatment). Let Ľ be as in (2.11). Suppose
the martingale problem for Ľ is well posed on D, and denote its solution by
(Px)x∈D, with coordinate process Ξ. Denote by Ľ∗ the formal adjoint to Ľ.
Note that under Assumption 2.8 Ľ∗ is a second order differential operator.

Ξ is recurrent under (Px)x∈D if Px(τ(ε, y) < ∞) = 1 for any (x, y) ∈ D2

and ε > 0, where τ(ε, y) = inf {t ≥ 0 | |Ξt − y| < ε}. If Ξ is recurrent then it is
positive recurrent, or ergodic if there exists a strictly positive ϕ∗ ∈ C2,γ(D,Rk)
such that Ľ∗ϕ∗ = 0 and

∫
D
ϕ∗(y) dy < ∞. If Ξ is recurrent, but not positive

recurrent, it is null recurrent, cf. (Pinsky, 1995, Chapter 4) for more details.

Lemma 4.1 Let Assumptions 2.8 and 2.13 hold. Let L be as in (2.17) and

Lv̂,0 be as in (2.25). Then, there exists a unique solution (P̂yY )y∈E to the mar-
tingale problem for Lv̂,0 on E. Furthermore, the coordinate mapping process Y
is positive recurrent under (P̂yY )y∈E with invariant density v̂2(y)m̂(y), where
m̂ is defined in (2.29). Therefore, for all functions f integrable with respect to
the invariant density and all t > 0:

lim
T→∞

EP̂yY [f(YT−t)] =

∫
E

f(y)v̂2(y)m̂(y)dy. (4.1)

Proof Since (2.27) and (2.28) holds, applying Pinsky (1995, Theorem 5.1.10,
Corollary 5.1.11) to the operator Lv̂,0 whose drift term is B+Av̂y/v̂, it follows

that: a) (P̂yY )y∈E exists and is unique, b) Y is positive recurrent under (P̂yY )y∈E ,
and c) Y has invariant density v̂2(y)m̂(y). That (4.1) holds for f integrable
with respect to the invariant density follows from Pinchover (1992, Theorem
1.2 (iii), Eqns (3.29) and (3.30)) or Pinchover (2004, Corollary 5.2).

Lemma 4.2 Let Assumptions 2.8 and 2.13 hold. Then:

i) There exists a unique solution (P̂ξ)ξ∈Rd×E to the martingale problem for

L̂ on Rd × E where L̂ is given in (2.32).

ii) P̂ξ ∼ Pξ on Ft for any t ≥ 0 and ξ ∈ Rd × E.

Proof For any integer n denote by Ωn be the space of continuous maps ω :
R+ → Rn and Bn be the sigma algebra generated by the coordinate process Ξ
defined by Ξt(ω) = ωt for ω ∈ Ωn. By Lemma 4.1, there is a unique solution

(P̂yY )y∈E on (Ω1,B1) to the martingale problem on E for the operator Lv̂,0
given in (2.25). Set Ω = Ωd+1,F = Bd+1 and Ft = Bd+1

t+ , t ≥ 0. Let Wd

denote d-dimensional Wiener measure on the first d coordinates (along with
the associated sigma algebra) and set B̂ = (Ξ1, ..., Ξd), Y = Ξd+1, where Ξi,
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for i = 1, · · · , d + 1 is the ith component of Ξ. For any z ∈ Rd define the
processes Ŵ ,R by

Ŵt =

∫ t

0

a−1(Ys) (dYs − b(Ys)ds) ;

Rt = z +

∫ t

0

1

1− p

(
µ+ δΥ

v̂y
v̂

)
(Ys)ds+

∫ t

0

σ(Ys)ρdŴs +

∫ t

0

σ(Ys)ρdB̂s.

Clearly for ξ = (z, y) it follows that,
(

(R, Y ), (B̂, Ŵ ), (Ω,F , (Ft)t≥0,Wd × P̂yY )
)

is a weak solution to the SDE

dRt =
1

1− p

(
µ+ δΥ

v̂y
v̂

)
(Yt) dt+ σ(Yt)

(
ρdŴt + ρ̄dB̂t

)
,

dYt =

(
B +A

v̂y
v̂

)
(Yt) dt+ a(Yt) dŴt,

(4.2)

Since weak solutions induce solutions to the martingale problem via Ito’s for-
mula, P̂ξ defined as the law of (R, Y ) solves the martingale problem for L̂. It is
also the unique solution, since Assumption 2.8 and v̂ ∈ C2(E) in Assumption
2.13 imply coefficients of (4.2) are locally Lipschitz, hence uniqueness in law
holds for (4.2).

Part (ii) follows from (Cheridito et al., 2005, Remark 2.6). Note that the
assumption in Cheridito et al. (2005) is satisfied in view of Assumption 2.8,
v̂ > 0 and v̂ ∈ C2(E) in Assumption 2.13.

Remark 4.3 As in the proof of Lemma 4.2, for all ξ = (z, y) with z ∈ Rd
and y ∈ E, if Y denotes the (d+ 1)th coordinate, then

P̂ξ(Y ∈ A) = P̂yY (Y ∈ A); A ∈ B1.

Thus, since Y is positive recurrent under (P̂yY )y∈E by Lemma 4.1, Y is positive

recurrent under (P̂ξ)ξ∈Rd×E with the same invariant density as in Lemma 4.1.

Therefore, the ergodic result in (4.1) applies to P̂ξ for any ξ ∈ Rd × E.

4.3 Construction of vT

The solution vT (t, y) to (2.16) is constructed from the long-run solution v̂(y) of

Assumption 2.13. Recall that P̂ξ is denoted by P̂y for ξ = (0, y). Now, consider
the function hT defined by (2.26). The candidate reduced value function is

vT (t, y) := eλc(T−t)v̂(y)hT (t, y). (4.3)

The verification result Proposition 4.6 below confirms that vT is a strictly pos-
itive classical solution to (2.16) and the relation uT (t, x, y) = (xp/p)(vT (t, y))δ

holds for (t, x, y) ∈ [0, T ]× R+ × E.
As a first step to proving Proposition 4.6, the next result characterizes the

function hT . Clearly, hT (t, y) > 0 for (t, y) ∈ [0, T ]× E.
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Proposition 4.4 Let Assumptions 2.8, 2.9, and 2.13 hold. Then hT (t, y) <
∞ for all (t, y) ∈ [0, T ] × E, hT (t, y) ∈ C1,2((0, T ) × E), and hT satisfies
(2.24). Moreover, the process

hT (t, Yt)

hT (0, y)
, 0 ≤ t ≤ T, (4.4)

is a P̂y martingale on [0, T ] with constant expectation 1. Furthermore, for all

t > 0 and y ∈ E, it follows P̂y almost surely that

lim
T→∞

hT (t, Yt)

hT (0, y)
= 1. (4.5)

Proof The proof consists of several steps.

Step 1: hT (t, y) <∞ for all (t, y) ∈ [0, T ]× E. For t = T , hT (t, y) = 1/v̂(y) <
∞ by definition. Now, fix t < T and y ∈ E. Using the transition density p̂ for
Y under (P̂y)y∈E :

hT (t, y) =

∫
E

p̂(y, T − t, z) 1

v̂(z)
dz.

Since T − t > 0, according to (Pinchover, 1992, Eqn (3.30)) for each y ∈ E
there is some C(T − t, y) such that p̂(y, T − t, z) ≤ C(T − t, y)v̂2(z)m̂(z) where

v̂2m̂ is the invariant density for Y under (P̂y)y∈E . Thus

hT (t, y) ≤ C(T−t, y)

∫
E

1

v̂
v̂2m̂(z) dz = C(T−t, y)

∫
E

v̂(z)m̂(z)dz <∞, (4.6)

where the last inequality follows from (2.28).

Remark 4.5 As shown in Pinchover (1992) for t < T−1 (T > 1) the constant
C(T − t, y) can be made uniform in T .

Step 2: hT ∈ C1,2((0, T )× E) satisfies (2.24). To this end, the classical version
of the Feynman-Kac formula (see (Friedman, 1975, Chapter 6, Theorem 5.3))
does not apply directly because a) the operator Lv̂,0 is not assumed to be
uniformly elliptic on E, and b) 1/v̂ may grow faster than polynomial near
the boundary of E. Rather, the statement follows from Theorem 1 in Heath
and Schweizer (2000), which yields that hT is a classical solution of (2.24). To
check that the assumptions of Theorem 1 in Heath and Schweizer (2000) are
satisfied, first note that clearly, since v̂ ∈ C2(E), the given assumptions imply
that Assumptions (A1), (A2) and (A3a′)− (A3d′) are satisfied.

In order to check (A3e’), it suffices to show that hT is continuous in any
compact sub-domain of (0, T ) × E. Recall that the domain is E = (α, β) for
−∞ ≤ α < β ≤ ∞. Let {αm} and {βm} two sequences such that αm <
βm for all m, αm strictly decreases to α, and βm strictly increases to β. Set
Em = (αm, βm). For each m there exists a function ψm(y) ∈ C∞(E) such
that a) ψm(y) ≤ 1, b) ψm(y) = 1 on Em, and c) ψm(y) = 0 on E ∩ Ecm+1.
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To construct such ψm let εm = (1/3) min {βm+1 − βm, αm − αm+1} and set
ψm(y) = ηεm ∗ 1(αm−εm,βm+εm)(y), where ηεm is the standard mollifier on
(−εm, εm) for some ε > 0 and ∗ is the convolution operator, cf. (Evans, 1998,
Appendix C.4). Define the functions fm and hT,m by

fm(y) :=
ψm(y)

v̂(y)
and hT,m(t, y) := EP̂

y

[fm(YT−t)] .

By construction, for all y ∈ E, fm(y) strictly increases to 1/v̂(y). It then follows
from the monotone convergence theorem and (4.6) that limm→∞ hT,m(t, y) =
hT (t, y). Since v̂ ∈ C2(E) and v̂ > 0, each fm(y) ∈ C2(E) is bounded, so that

the Feller property for P̂y (see Theorem 1.13.1 in Pinsky (1995)) implies hT,m

is continuous in y. On the other hand, by construction of fm and the fact that
Lv̂,0(1/v̂) = (c− λc)(1/v̂) there exists a constant Km > 0 such that

a|ḟm| ≤ Km,
∣∣Lv̂,0fm∣∣ ≤ Km, on E. (4.7)

Therefore, for 0 ≤ s ≤ t ≤ T , Ito’s formula implies

sup
y∈E

∣∣∣EP̂y [fm(Yt)− fm(Ys)]
∣∣∣ ≤ Km(t− s),

and hence hT,m is uniformly continuous in t. Combining with the continuity
of hT,m in y, it follows that hT,m is jointly continuous in (t, y) on [0, T ]× E.

Note that the operator Lv̂,0 is uniformly elliptic in the parabolic domain
(0, T )×Em. It then follows from a straightforward calculation that hT,m sat-
isfies the differential equation:

∂th
T,m + Lv̂,0hT,m = 0 (t, y) ∈ (0, T )× Em.

Note that (hT,m)m≥0 is uniformly bounded from above by hT , which is finite on
[0, T ]×Em. Appealing to the interior Schauder estimate (see e.g. (Friedman,
1964, Chapter 3, Theorem 15)), there exists a subsequence (hT,m

′
)m′ which

converges to hT uniformly in (0, T )×D for any compact sub-domain D of Em.
Since each hT,m

′
is continuous and the convergence is uniform, hT is indeed

continuous in (0, T ) ×D. Since the choice of D is arbitrary in Em, (A3e’) in
Heath and Schweizer (2000) is satisfied. This proves that hT ∈ C1,2((0, T )×E)
and satisfies (2.24).

Step 3: Remaining statements. By definition of the martingale problem, the
process in (4.4) is a non-negative local martingale, and hence a super-martingale.
Furthermore, for y ∈ E, by construction of hT

EP̂y
[
hT (T, YT )

hT (0, y)

]
=

1

EP̂y [1/v̂(YT )]
EP̂y [v̂(YT )−1

]
= 1,

proving the martingale property on [0, T ]. Lastly, (4.5) follows from (4.1) in
Lemma 4.1 and Remark 4.3, since (2.28) in Assumption 2.13 implies that
1/v̂ ∈ L1(E, v̂2m̂). Thus, for all t > 0, y ∈ E,

lim
T→∞

hT (t, y) =

∫
E

v̂(z)m̂(z)dz. (4.8)



34 Paolo Guasoni et al.

which gives the result by taking y = Yt for a fixed t.

The next step towards the verification result in Proposition 4.6 is to connect
solutions vT to the PDE in (2.16) to the value function uT of (2.14).

Proposition 4.6 Let Assumptions 2.8, 2.9, and 2.13 hold. Define vT by (4.3).
Then:

(i) vT > 0, vT ∈ C1,2((0, T )× E), and it solves (2.16).

(ii) uT (t, x, y) = xp

p

(
vT (t, y)

)δ
on [0, T ] × R+ × E and πT in (2.18) is the

optimal portfolio.

Proof Clearly, the positivity of hT and v̂ yield that of vT . Furthermore, given
that hT solves (2.24), long but straightforward calculations using (2.20) show
that vT solves (2.16). Moreover, vT ∈ C1,2((0, T )×E) because v̂ ∈ C2(E) and
hT ∈ C1,2((0, T )× E). This proves (i).

As for part ii), by Lemma A.3 in Guasoni and Robertson (2013) it suffices

to show that for all y ∈ E the process DvT from (2.19) is a Py martingale on

[0, T ] or equivalently, that 1 = EPy
[
DvT

T

]
. Note that Lemma A.3 also proves

that if vT solves (2.16) then for π as in (2.18), DvT

t satisfies the equality in
(2.19). It follows from (4.3) that

vTy
vT

=
v̂y
v̂

+
hTy
hT

. (4.9)

(4.9) and the Py independence of Y and B (see Remark 2.11) imply (Karatzas
and Kardaras, 2007, Lemma 4.8)

EPy
[
DvT

T

]
= EPy

[
E

(∫ (
−qΥ ′Σ−1µ+A

(
v̂y
v̂

+
hTy
hT

))′
1

a
dW

)
T

]

= EPy
[
E

(∫ (
−qΥ ′Σ−1µ+A

(
v̂y
v̂

+
hTy
hT

))′
1

a
dW

−q
∫ (

Σ−1µ+Σ−1Υδ
v̂y
v̂

)′
σρ̄dB

)
T

]
. (4.10)

Let v̂ be as in Assumption 2.13 and recall the definition of Dv̂ in (2.22):

Dv̂
t = E

(∫ (
−qΥ ′Σ−1µ+A

v̂y
v̂

)′
1

a
dW − q

∫ (
Σ−1µ+Σ−1Υδ

v̂y
v̂

)′
σρ̄dB

)
t

.

(4.11)
As shown in (Guasoni and Robertson, 2012, Theorem 7), Dv̂ is a strictly

positive (Py, (Bt)t≥0) martingale, hence for any t ≥ 0 and y ∈ E, dP̂y/dPy
∣∣
Bt

=

Dv̂
t . It follows from the backward martingale convergence theorem that Dv̂
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is a (Py, (Bt+)t≥0) martingale. This property still holds after adding all N-
negligible sets to (Bt+)t≥0, whence

dP̂y

dPy

∣∣∣∣
Ft

= Dv̂
t . (4.12)

Furthermore, the Brownian motion Ŵ from (4.2) is related to W by dŴt =
dWt + (qρσ′Σ−1µ− av̂y/v̂)dt. Using this, for all t ≤ T

E

(∫ (
−qΥ ′Σ−1µ+A

(
v̂y
v̂

+
hTy
hT

))′
1

a
dW

−q
∫ (

Σ−1µ+Σ−1Υδ
v̂y
v̂

)′
σρ̄dB

)
t

= Dv̂
t E

(∫
a
hTy
hT

dŴ

)
t

= Dv̂
t

hT (t, Yt)

hT (0, y)
.

(4.13)

The last equality follows from the fact that hT solves the differential expression
in (2.24) combined with Ito’s formula. The second to last equality follows from
the identity for any adapted, integrable processes a, b and Wiener process W
that E

(∫
(as + bs)dWs

)
= E

(∫
asdWs

)
E
(∫
bsdWs −

∫
bsasds

)
. Using (4.13)

and (4.12) in (4.10) and applying Proposition 4.4

EPy
[
DvT

T

]
= EP̂y

[
hT (T, YT )

hT (0, y)

]
= 1. (4.14)

which is the desired result.

4.4 Conditional densities and wealth processes

The last prerequisite for the main result is to relate the terminal wealths
resulting from using the finite horizon optimal strategies πT of (2.18) and the
long-run optimal strategy π̂ of (2.21). A similar calculation to (4.13) using
(2.19), (2.22) and (4.9) gives

DvT

t

Dv̂
t

=
hT (t, Yt)

hT (0, y)
E

(
−
∫
a
hTy
hT

∆dB̂

)
t

, (4.15)

where

∆ := qδρ′ρ̄, (4.16)

and the Brownian Motion B̂ is from (4.2) and related to B by B̂ = B +
qρ̄σ′Σ−1µ+∆av̂y/v̂.
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Lemma A.3 in Guasoni and Robertson (2013) implies(
X0,T
t

)p
vT (t, Yt)

δ = EPy
[(
X0,T
T

)p ∣∣X0,T
t , Yt

]
= EPy

[(
X0,T
T

)p ∣∣Ft] ,
= EPy

[(
X0,T
T

)p]
EPy

[
DvT

T

∣∣Ft] = vT (0, y)δDvT

t .
(4.17)

where the last equality follows since DvT is a Py-martingale on [0, T ] and by
definition of vT (0, y). Similarly, according to (Guasoni and Robertson, 2012,
Equation (75)) (Note that v̂ from (Guasoni and Robertson, 2012, Equation
(75)) is equal to δ log(v̂) here and λ from (Guasoni and Robertson, 2012,
Equation (75)) is equal to δλc here)(

X̂t

)p
v̂(Yt)

δ = eδλctv̂(y)δ.Dv̂
t

Therefore, since vT (t, y) = eλc(T−t)v̂(y)hT (t, y),

X0,T
t

X̂t

=

(
vT (0, y)δDvT

t v̂(Yt)
δ

vT (t, Yt)δeδλctv̂(y)δDv̂
t

)1/p

=

(
DvT

t

Dv̂
t

)1/p(
hT (t, Yt)

hT (0, y)

)−δ/p

=

(
hT (t, Yt)

hT (0, y)

) 1−δ
p

E

(
−
∫
a
hTy
hT

∆dB̂

) 1
p

t

.

(4.18)

where the last equality uses (4.15). Equations (4.15) and (4.18) will be used
in the next section.

Remark 4.7 The proof of Proposition 4.6 showed DvT is a (Py, (Ft)0≤t≤T )
martingale for each y ∈ E. Thus, (4.17) implies that

DvT

t =
dPT,y

dPy

∣∣∣∣
Ft
. (4.19)

4.5 Proof of main results in sections 2.3.4 and 2.3.5

Proof (Proof of Proposition 2.15) By Theorem 18 in Guasoni and Robertson
(2012), under Assumptions 2.8 and 2.9, the decay condition in (2.31) yields
the existence of a function v̂ which satisfies (2.20), (2.27), along with the first
inequality in (2.28). By Holder’s inequality, (2.30) ensures that the second
inequality in (2.28) holds as well, proving the assertion.

Proof (Proof of Lemma 2.17) Recall the notation of Section 4.4. From (4.12),
(4.19) and (4.15), the limit in (2.33) holds provided that:

P̂y- lim
T→∞

hT (t, Yt)

hT (0, y)
E

(
−
∫
a
hTy
hT

∆dB̂

)
t

= 1. (4.20)
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where ∆ is from (4.16). Set LTt = hT (t, Yt)/h
T (0, y). Proposition 4.4 implies

that a) for each T , LT is a positive P̂y martingale on [0, T ] with expectation

1 and b) for each t ≥ 0, limT→∞ LTt = 1 almost surely P̂y. Therefore, Fatou’s

lemma gives 1 ≥ limT→∞ EP̂y [LTt ] ≥ EP̂y [lim infT→∞ LTt ] = 1, which implies

limT→∞ EP̂y [|LTt − 1|
]

= 0 by Scheffé’s lemma. As shown in (4.13), LTt =

E
(∫

ahTy /h
T dŴ

)
t
. Lemma 3.9 thus yields

P̂y − lim
T→∞

[∫
a
hTy
hT

dŴ ,

∫
a
hTy
hT

dŴ

]
t

= 0.

Observing that ‖∆‖2 is a constant, the previous identity implies that

P̂y − lim
T→∞

[∫
ahTy /h

T∆dB̂,

∫
ahTy /h

T∆dB̂

]
t

= 0,

whence P̂y-limT→∞
∫ t
0
ahTy /h

T∆dB̂ = 0, which implies

P̂y − lim
T→∞

E
(∫

ahTy /h
T∆dB̂

)
t

= 1,

i.e., the second term on the left-hand-side of (4.20) also converges to 1. This
concludes the proof of (4.20).

Proof (Proof of Theorem 2.18) Let ε > 0. Let AT ∈ Ft denote either of the

events
{

supu∈[0,t] |rTu − 1| ≥ ε
}

,
{[
ΠT , ΠT

]
≥ ε
}

. According to Proposition

2.5, limT→∞ PT,y [AT ] = 0. For t ≥ 0 and y ∈ E, Lemma 2.17 shows that P̂y−
limT→∞ dPT,y/dP̂y

∣∣
Ft

= 1. Lemma 4.2 shows that P̂y and Py are equivalent

on Ft for t ≥ 0. Thus, the result follows by Lemma 2.6 taking QT = PT,y,
Q̃ = P̂y and Q = Py.

Proof (Proof of Theorem 2.19) A similar argument to the one in the proof

of Lemma 2.17, combined with (4.18), yields that P̂y-limT→∞X0,T
t /X̂t = 1.

On the other hand, Theorem 2.18 part a), combined with the equivalence

between P and P̂y, implies that P̂y-limT→∞X1,T
t /X0,T

t = 1. Hence the last

two identities combined give P̂y-limT→∞ r̂Tt = 1. Now recall that π̂ is the
optimal portfolio for the logarithmic investor under P̂y, it then follows from
the numéraire property of X̂ that r̂T· is a P̂y-supermartingale, which implies

that limT→∞ EP̂y [|r̂Tt − 1|
]

= 0, by Fatou’s lemma and Scheffé’s lemma. As

a result, the statements follow applying Lemma 3.9 under the probability P̂y,
and remain valid under the equivalent probability Py (as in Lemma 2.6).

Proof (Proof of Corollary 2.20) Given any t > 0 and a compact domain D ⊂ E
with smooth boundary, recall that limT→∞ hT (t, y) =

∫
E
v̂(z)m̂(z)dz from

(4.8). Moreover, hT is bounded on [0, t)×D uniformly in T , since (4.6) holds
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(see also Remark 4.5) and v̂ is continuous and strictly positive on D. Fur-
thermore, hT satisfies the differential expression ∂th

T + Lv̂,0hT = 0 which
is uniformly elliptic in [0, t) × D. It then follows from the Schauder inte-
rior estimate (see e.g. (Friedman, 1964, Chapter 3, Theorem 15)), for any
sequence of (hT )T>t, there exists a further subsequence, say (hTn)n≥0, such
that hTn (resp. hTny ) converges to

∫
E
v̂(z)m̂(z)dz (resp. 0), uniformly in any

subdomain of [0, t) ×D. Taking derivative with respect to y on both sides of
hT (t, y) = vT (t, y)/(eλc(T − t)v̂(y)) yields

hTy
hT

=
vTy
vT
− v̂y

v̂
.

It then follows that for any sequence of (vT )T>0, there exists a further sub-
sequence (vTn)n≥0 such that vTny /vTn converges to v̂y/v̂ locally uniformly in
[0, t)×D. However, this implies that the previous convergence must hold along
the entire sequence of T . Otherwise, there exist ε, δ > 0, t̃ < t, a subdomain
D̃ ⊂ D, and a subsequence (Tm)m≥0, such that max[δ,t̃]×D̃ |vTmy /vTm− v̂y/v̂| ≥
ε for each m. However, this contradicts with the fact that there exists a further
subsequence along which the previous norm converges to zero. As a result,

lim
T→∞

vTy
vT

=
v̂y
v̂
, locally uniformly in [0,∞)× E,

since the choice of t and D are arbitrary. This confirms the statement after
combined with (2.18) and (2.21).

Proof (Proof of Lemma 2.21)
Clearly, if p < 0 and µ1 6= 0 then Λ ≥ 0 and Θ > 0. If 0 < p < 1 and

µ0 = 0 then Λ = (bθ − a2/2)2 ≥ 0. Furthermore the condition that Θ > 0 is
equivalent to (b+ qaρµ1)2 + a2qµ2

1/δ > 0.
Given Λ ≥ 0, Θ > 0, that (v̂, λc) solve (2.20) and satisfy both (2.27)

and the first equality in (2.28) all follow from (Guasoni and Robertson, 2012,
Proposition 27). It thus remains to show that A > −1 and B > 0. Consider
first when p < 0, µ1 6= 0. Here, q < 0 implies a2qµ2

0/δ ≥ 0 which gives√
Λ ≥ |bθ−a2/2−qaρµ0| and hence a2A =

√
Λ+(bθ−a2/2−qaρµ0) ≥ 0 > −a2.

Similarly, since a2qµ2
1/δ > 0 it follows that

√
Θ > |b + qaρµ1| and hence

a2B =
√
Θ + (b+ qaρµ1) > 0. This completes part i). As for part ii) assume

that 0 < p < 1 and µ0 = 0, µ1 6= 0. Since Λ = (bθ − a2/2)2 it clearly holds
that a2A = 2a2(bθ − a2/2) ≥ 0 > −a2. Lastly, note that b + qaρµ1 = 0 is
incompatible with (b + qaρµ1)2 + a2qµ2

1/δ > 0 since q < 0. Thus, assume
b + qaρµ1 6= 0 and set R = a2qµ2

1/(δ(b + qaρµ1)2). Note that q < 0 and
(b+ qaρµ1)2 + a2qµ2

a/δ > 0 imply −1 < R < 0. Furthermore

B = |b+ qaρµ1|
(√

1 +R+ sign(b+ qaρµ1)
)
,

and hence B > 0 if an only if b+ qaρµ1 > 0. This completes part ii).
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changes in information structure, probabilistic views and investment con-
straints. Stochastic Process. Appl., 120(3):331–347, 2010.
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