
Finance Stoch (2008) 12: 1–19
DOI 10.1007/s00780-007-0053-5

Optimal importance sampling with explicit formulas
in continuous time

Paolo Guasoni · Scott Robertson

Received: 14 October 2006 / Accepted: 23 June 2007 / Published online: 19 September 2007
© Springer-Verlag 2007

Abstract In the Black–Scholes model, consider the problem of selecting a change
of drift which minimizes the variance of Monte Carlo estimators for prices of path-
dependent options.

Employing large deviations techniques, the asymptotically optimal change of drift
is identified as the solution to a one-dimensional variational problem, which may be
reduced to the associated Euler–Lagrange differential equation.

Closed-form solutions for geometric and arithmetic average Asian options are pro-
vided.

Keywords Monte Carlo methods · Variance reduction · Importance sampling ·
Large deviations

Mathematics Subject Classification (2000) 91B28 · 60F10 · 65C05

1 Introduction

Monte Carlo simulation is the method of choice for pricing complex derivatives, such
as path-dependent options or contracts which rely upon several underlying assets. The
main reason for the popularity of this method is ease of implementation, which only
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requires the ability to generate sample paths of the asset price and evaluating the
corresponding derivative payoffs.

From a computational viewpoint, an option pricing problem is usually reduced
to the evaluation of the expected payoff EP [G] under a certain risk-neutral proba-
bility P , which is unique in a complete market, and, in general, it may be chosen
according to several optimality criteria. The usual Monte Carlo estimate of EP [G]
is obtained by the sample average Ḡn = 1

n

∑n
i=1 Gi from an iid sample (Gi)

n
i=1 of

the payoff. When G is square-integrable, the central limit theorem implies that an
asymptotic confidence interval for EP [G] is given by

(

Ḡn − qα

σn√
n
, Ḡn + qα

σn√
n

)

,

where σ 2
n = 1

n

∑n
i=1(Gi − Ḡn)

2 is the sample variance of (Gi)
n
i=1, and qα is the

(1 − α/2)-quantile of the standard normal distribution.
In practice, many derivative contracts are designed to offer a payout in a specific

event of interest to the buyer, and otherwise expire with no value, which means that an
event with small probability accounts for most of the option price. In such a situation,
this confidence interval can be very unreliable for two reasons. First, the large vari-
ance of G may require a prohibitively large number of simulations n for a prescribed
accuracy. Second, even a relatively large sample is likely to miss rare but large pay-
offs, generating a low Ḡn combined with a low σ 2

n . This creates the perverse effect
of a deceptively narrow confidence interval, which in most cases grossly misses the
true expectation EP [G]. To put it differently, if a small event accounts for a large
fraction of the price, then it accounts for an even larger fraction of the variance, and
the normal asymptotics are very inaccurate.

Importance sampling is a variance reduction method which addresses this prob-
lem by simultaneously changing the probability P and the payoff G as to retain the
same expected value, while significantly reducing variance. In a nutshell, if Q is a
probability equivalent to P and H = GdP

dQ
, then

EP [G] = EQ[H ].

Thus, an optimal choice of Q should minimize the variance under the new probability
Q of the new payoff H ,

VarQ

(

G
dP

dQ

)

= EP

[

G2 dP

dQ

]

− EP [G]2. (1.1)

As a matter of fact, dQ
dP

= G
EP [G] achieves zero variance but, unfortunately, EP [G]

is the unknown in the first place, so in this generality the problem of selecting an
optimal change of measure is ill-posed.

Thus, one has to minimize (1.1) over a subclass of equivalent probabilities, se-
lected as to add little overhead to the simulation of the payoff. But even once such a
restriction is made, the variance in (1.1) is very unlikely to have a closed-form solu-
tion, unless EP [G] already has one. Hence, in practice one considers an asymptotic
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approximation of (1.1), and minimizes this quantity over the chosen class of proba-
bilities.

An heuristic approach, which goes back to [13], is to consider a large deviations
approximation of the variance in (1.1). Then the probability which minimizes the as-
ymptotic variance has proved to be very successful in reducing variance in a broad
range of applications. Nevertheless, Glasserman and Wang [8] showed a number of
examples where large deviations heuristics fail. The caveat, pointed out by Dupuis
and Wang [5], is that large deviations lead to several candidates for optimality, de-
pending on the class of changes of probability considered. If the class is too small,
then asymptotic optimality may fail. If it is too large, then the “optimal” change of
measure may greatly increase the computational burden of simulation.

Here the main modeling dilemma is between the class of deterministic, or “open-
loop”, changes of measure and that of adaptive, or “feedback” ones. The former class
has negligible impact on simulation speed, but its asymptotic optimality properties
are unclear. For the latter class, asymptotic optimality holds in great generality [5, 6],
but the overall speed increase is less clear.

To devise efficient importance sampling schemes, Glasserman et al. [9] considered
a discretization of the usual Black–Scholes model on a time grid t1, . . . , tn, so that
any option payoff can be approximated as a function of n real variables. Then they
showed that the variance of (1.1) can be approximated with the Laplace method for
integrals, and studied the problem of minimizing this asymptotic variance through a
deterministic change of drift. As already mentioned, the choice of a deterministic drift
is motivated by its efficient implementation, which translates variance reduction into
speed increase. On the other hand, it requires a careful evaluation of the asymptotic
optimality properties.

From an applied viewpoint, the crucial question is the calculation of the optimal
drift, identified in [9] as the solution to a fixed point problem, which must be solved
numerically through an iterative procedure.

This paper takes the approach of [9] to a continuous-time setting, where the op-
timal deterministic drift in the Black–Scholes model is identified as the solution of
a one-dimensional variational problem. In continuous time—and this is the major
advantage of this approach—the variational problem reduces to the familiar Euler–
Lagrange ODE. In the case of Asian options, considered also in [9], the optimal
change of drift even admits closed-form solutions.

From the mathematical viewpoint, the continuous time setting poses a more chal-
lenging environment. The Laplace approximation of integrals, which roughly cor-
responds to a large deviations principle in R

n, must be replaced by the sample-
path large deviations result of Schilder [12] combined with Varadhan’s integral
lemma [16], and a number of technical estimates are required to fully justify their
application.

At an intuitive level, the main idea of the paper is briefly summarized in Sect. 2
with an heuristic argument, which in spite of its audacity provides the right answer.
Section 3 contains the rigorous formulation of the problem and the main results, leav-
ing the proof to the appa. If the payoff G is a continuous function of the price path,
and satisfies a mild growth condition, then there exists a “candidate optimal” drift
which solves a one-dimensional variational problem. This candidate is indeed optimal
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if it satisfies a given equality, which may involve solving another one-dimensional
variational problem.

Section 4 studies in detail the case of Asian options. For a geometric average
call option, the optimal change of drift is simply the parabola (4.5) below, while
for an arithmetic average option, the optimal change of drift is given by the more
complicated formula (4.12). Although the two expressions seem rather different, the
optimal drifts for geometric and arithmetic average options are in fact very close
(Fig. 1), as their similar payoffs would suggest.

The last observation highlights another important aspect of this methodology. It is
developed in the simple Black–Scholes model, but it provides useful guidance also
in the presence of more complex features, such as stochastic volatility, which are
akin to perturbations in the option payoff. Just as the optimal drift of an arithmetic
average Asian option is very similar to its geometric counterpart, its optimal drift in
a stochastic volatility model will conceivably be close to that in the Black–Scholes
model, at least for current volatility parameters and near expiration.

Some numerical examples follow, illustrating the effectiveness of the method. The
best performance is achieved for out-of-the money options, but the variance reduction
is six- to ten-fold even for at-the-money strikes.

2 Heuristics

Recall three classic “formulas”. The first one is the heuristic representation (due to
Feynman) of the Wiener measure on C([0, T ];R) (for a detailed discussion, see [14]):

P(dx) = c exp

(

−1

2

∫ T

0
ẋ2
t dt

)

dx.

The second formula is the Cameron–Martin representation of the change of measure
induced by the translation x �→ x + h on the Wiener space:

dQh

dP
(x) = exp

(∫ T

0
ḣt dxt − 1

2

∫ T

0
ḣ2

t dt

)

. (2.1)

Finally, recall the Laplace method for the approximation of integrals:

∫ +∞

−∞
(
f (x)

)
dx ≈ 1

c

(
max

x
f (x)

)
. (2.2)

Combining these formulas to approximate the second moment in (1.1) yields

EP

[

G2 dP

dQh

]

≈ exp

(

max
x

(

2F(x) + 1

2

∫ T

0
(ẋt − ḣt )

2 dt −
∫ T

0
ẋ2
t dt

))

, (2.3)

where F = logG. Thus, minimizing asymptotic variance leads to the problem

min
h

max
x

(

2F(x) + 1

2

∫ T

0
(ẋt − ḣt )

2 dt −
∫ T

0
ẋ2
t dt

)

. (2.4)



Optimal importance sampling with explicit formulas 5

Swapping the order of optimization, the minimax problem above reduces to

max
h

(

2F(h) −
∫ T

0
ḣ2

t dt

)

, (2.5)

which is a classical one-dimensional variational problem. Formally, the correspond-
ing Euler–Lagrange equation becomes

DF(h) + ḧ = 0, (2.6)

where DF is understood as a Fréchet derivative.
Needless to say, the above argument is heuristic at best and a wild guess at

worst. Indeed, it involves derivatives of non-differentiable Brownian paths, it applies
Laplace asymptotics in infinite dimensions, and assumes the validity of a minimax
result. In spite of all these issues, up to some mild assumptions on F this characteri-
zation of the optimal drift is essentially correct, and the next section (along with the
appa) makes this result precise.

3 Main result

Assume that the price of the underlying asset (St ) follows the Black–Scholes model
under some risk-neutral probability P , i.e.,

St = S0e
(r−σ 2/2)t+σWt , (3.1)

where Wt is a standard Brownian motion, r the interest rate, and σ the volatility.
Denote by

WT ≡ {
x ∈ C

([0, T ],R
) : x(0) = 0

}

the Wiener space of continuous functions on [0, T ] vanishing at zero. This space is
endowed with the topology of uniform convergence and with the usual Wiener mea-
sure P , defined on the completion of the Borel σ -field FT , under which the coordi-
nate process Wt(x) = xt is a standard Brownian motion with respect to (Ft )t∈[0,T ],
the usual augmentation of the natural filtration of W .

In this setting, a derivative contract can be identified with a functional G of the
price path (St )t∈[0,T ], but ease of presentation suggests describing it as a function of
the shocks process (Wt )t∈[0,T ].

Definition 3.1 A payoff is a non-negative functional G : WT �→ R+, continuous in
the uniform topology.

Example 3.2 Consider the arithmetic average Asian option. Its payoff is given by
( 1
T

∫ T

0 St dt − K)+, which corresponds to the functional

G(x) =
(

1

T

∫ T

0
S0e

(r−σ 2/2)t+σxt dt − K

)+
.
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Denote by F = logG, taking values in R ∪ {−∞}, and define by

HT ≡
{

h ∈ AC[0, T ] : h(0) = 0,

∫ T

0
ḣ2

t dt < ∞
}

the Cameron–Martin space of absolutely continuous functions with square integrable
derivative. For any deterministic drift h ∈ HT , consider the stochastic exponential

E
(∫ ·

0
ḣs dWs

)

t

= exp

(∫ t

0
ḣs dWs − 1

2

∫ t

0
ḣ2

s ds

)

, (3.2)

which induces an equivalent probability measure Qh via the Radon–Nikodým deriv-
ative dQh/dP = E(

∫ ·
0 ḣt dWt)T . Under Qh the process W̃t ≡ Wt − ht is a standard

Brownian motion by the classical Cameron–Martin theorem (or simply by Itô’s for-
mula). The objective function is the second moment in (1.1), i.e.,

EP

[

G2 dP

dQh

]

= EP

[

exp

(

2F(W) −
∫ t

0
ḣs dWs + 1

2

∫ t

0
ḣ2

s ds

)]

.

When Monte Carlo simulation is necessary to estimate EP [G], the above quantity is,
in general, intractable. Instead, as in [9], one considers the small-noise asymptotics

L(h) = lim sup
ε↓0

ε logEP

[

exp

(
1

ε

(

2F
(√

εW
) −

∫ T

0

√
εḣt dWt + 1

2

∫ T

0
ḣ2

t dt

))]

,

which correspond to approximating (1.1) with eL(h).

Definition 3.3 An asymptotically optimal drift is a solution to the problem

min
h∈HT

L(h). (3.3)

The goal is to find a deterministic expression for L(h), which becomes suitable
for optimization. This is possible under the following

Assumption 3.4 F : WT �→ R ∪ {−∞} is continuous and satisfies

F(x) ≤ K1 + K2 max
t∈[0,T ]

|xt |α (3.4)

for some constants K1, K2 > 0, and α ∈ (0,2).

Remark 3.5 Condition (3.4) requires that, roughly speaking, the log payoff is sub-
quadratic in the supremum of the log price. This is the case for virtually all options
of practical interest.
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Theorem 3.6 Let F satisfy Assumption 3.4. Then:

(i) If h ∈ HT , and ḣ has finite variation, then

L(h) = sup
x∈HT

(

2F(x) + 1

2

∫ T

0
(ẋt − ḣt )

2 dt −
∫ T

0
ẋ2
t dt

)

(3.5)

(ii) For all h ∈ HT , there exists maximizers to both (3.5) and (3.6) below:

sup
x∈HT

(

2F(x) −
∫ T

0
ẋ2
t dt

)

(3.6)

(iii) If ĥ is a solution to (3.6), then ĥ is asymptotically optimal if

L(ĥ) = 2F(ĥ) −
∫ T

0

˙̂
h

2

t dt (3.7)

Furthermore, if (3.7) holds then ĥ is the unique solution of (3.6).

Theorem 3.6 yields the following method to find an asymptotically optimal drift.
First, find ĥ by solving the Euler–Lagrange equation of (3.6). Then, ĥ is an asymptot-
ically optimal drift if it has a derivative with finite variation and satisfies the minimax
condition (3.7). This is certainly the case when F is a concave functional, and then
the standard minimax result for concave-convex functions applies. In general, one
has to solve a new variational problem to evaluate L(ĥ), which also reduces to an
Euler–Lagrange ODE.

Once ĥ is found, (3.2) and the Cameron–Martin theorem imply that

EP [G] = E
Qĥ

[

exp

(

F(W̃ + ĥ) −
∫ T

0

˙̂
ht dW̃t − 1

2

∫ T

0

˙̂
h

2

t dt

)]

, (3.8)

where W̃ is a standard Brownian motion under Qĥ. Thus, in the new Monte Carlo

simulation the drift of St changes from r to r + σ
˙̂
ht , while the payoff is rescaled by

the factor exp(− ∫ T

0
˙̂
htdW̃t − 1

2

∫ T

0
˙̂
h

2

t dt).

Remark 3.7 In this paper, (3.7) embodies the delicate issue of whether asymptotic
optimality holds, and, in general, the answer depends on the functional considered. In
the case of the arithmetic average Asian option, the value L(ĥ) can only be evaluated
numerically, and (3.7) can be established with several significant digits, but not with
absolute certainty.

On the contrary, a violation of (3.7) immediately detects a case where asymptotic
optimality fails, because a strict inequality, unlike an equality, can be established
numerically with sufficient accuracy.

Dupuis and Wang [5] show that, in a discrete time setting with iid returns, asymp-
totic optimality holds under very mild conditions for adaptive, i.e., path-dependent
drifts. The main problem with such drifts is the substantial overhead required by their
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implementation, which requires the recursive calculation of the change of drift for
each simulated path. Thus, variance reduction gains must be split between the de-
creased number of simulations, and the increased time for each simulation.

By contrast, a deterministic drift requires virtually no overhead, as the same drift
is added to all paths, with no extra calculations involved. Considering the substantial
variance reduction obtained in the next section with a deterministic drift, the addi-
tional performance gain from a path-dependent drift appears unclear.

4 Asian options

This section employs Theorem 3.6 to find explicit formulas for the asymptotically op-
timal changes of drift, for geometric and arithmetic average Asian options. As men-
tioned in the introduction, the relevance of these examples goes beyond the specific
model considered, as the asymptotically optimal changes of drift derived under the
Black–Scholes assumptions can be very effective (although not optimal any more)
even in more complex models.

For example, the geometric average option considered in the first example allows
an explicit solution (see [10]) in the Black–Scholes model, so Monte Carlo is not
necessary. However, the introduction of a minimal imperfection such as a dividend
may require simulation, which is much more efficient when performed under the
optimal drift for the option without dividend.

Similarly, for the arithmetic average option in the second example one may resort
to alternative numerical methods (see, for example, [3, 7], and the references therein).
Again, the latter formulas are not valid under model perturbations, while Monte Carlo
simulation may easily accommodate them, and a change of drift greatly increases its
efficiency.

Example 4.1 (Geometric average) Denoting by St the asset price at time t , and by K

the strike price, the payoff of a geometric average Asian option is

(
e

1
T

∫ T
0 logSt dt − K

)+
.

Letting a = σ/T and c = K
S0

exp(−(r − σ 2

2 ) T
2 ), rewrite this payoff as

G(x) = K

c

(
ea

∫ T
0 xt dt − c

)+
. (4.1)

To check Assumption 3.4, note that F(x) = −∞ on the set G(x) = 0, while on the
set G(x) > 0, it is sufficient to choose α = 1,K1 = log K

c
,K2 = aT . Also, (3.7) is

certainly satisfied since F is concave. Now, rewrite (3.6) as

max
x∈HT

(

2 log
(
ea

∫ T
0 xt dt − c

) −
∫ T

0
ẋ2
t dt

)

. (4.2)

The corresponding Euler–Lagrange equation is

ẍt = −β, (4.3)
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where

β = a
exp(

∫ T

0 xt dt)

exp(
∫ T

0 xt dt) − c
. (4.4)

Hence, all solutions are of the form

xt = −β

2
t2 + γ t (4.5)

and, therefore, belong to H̃T . The maximizing solution is found by choosing β and γ

that simultaneously solve (4.4) and (4.2). More precisely, substituting (4.5) into (4.4)
yields

γ (β) = aT 3β − 6 log(
β−a
cβ

)

3aT 2
(4.6)

and for this value of γ (β), (4.2) is solved by maximizing over β > a. The optimal β̂

is unique by strict concavity, and is found implicitly via the equation

aβ̂T 3 + 3 log

(
β̂ − a

cβ̂

)

= 0. (4.7)

This β̂ satisfies γ
(
β̂
) = β̂T and, therefore, x̂t = − β̂

2 t2 + β̂T t .

Example 4.2 (Arithmetic average) The payoff is now ( 1
T

∫ T

0 St dt −K)+, which leads
to the functional

G(x) = d

(∫ T

0
exp(axt + bt) dt − c

)+
(4.8)

with a = σ , b = r − 1
2σ 2, c = K T

S0
, and d = S0

T
. Furthermore, Assumption 3.4 holds

with α = 1, K1 = logd + log(
exp(bT )−1

b
), and K2 = a. In this case, the variational

problem (3.6) becomes

max
x∈HT

(

2 logd + 2 log

(∫ T

0
exp(axt + bt) dt − c

)

−
∫ T

0
ẋ2
t dt

)

, (4.9)

and the Euler–Lagrange equation is

ẍt = λ exp(axt + bt), (4.10)

where

λ = − a
∫ T

0 exp(axt + bt) dt − c
. (4.11)

Equation (4.10) admits the family of solutions

xt = β − b

a
t − 2

a
log

(
exp(βt) + γ

1 + γ

)

. (4.12)
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Substituting (4.12) into (4.11), the parameters (β, γ ) are linked to λ by the condition

λ = − 2γβ2

a(1 + γ )2
. (4.13)

Eliminating λ from (4.13) and (4.11) yields

2γβ2

a(1 + γ )2
= aβ(exp(βT ) + γ )

(1 + γ )(exp(βt) − 1) − cβ(exp(βT ) + γ )
. (4.14)

For fixed β , (4.14) defines a cubic polynomial in γ which yields an explicit solu-
tion. Denote by β̂ the maximizer, and by γ̂ and x̂ the corresponding parameter and
solution.

To check (3.7), maximize the functional

2 logd + 2 log

(∫ T

0
exp(axt + bt) dt − c

)

+ 1

2

∫ T

0
(ẋt − ˙̂xt )

2 dt −
∫ T

0
ẋ2
t dt

(4.15)
over x ∈ HT . Here the Euler–Lagrange ODE is

ẍt = 2λ exp(axt + bt) − ¨̂xt , (4.16)

where λ is defined as in (4.11).
This ODE does not admit an explicit solution, except in the trivial case λ = 0.

However, a numerical integration of the Euler–Lagrange equation shows that (3.7)
holds with several significant digits.

5 Numerical results

Consider an arithmetic average Asian option with parameters T = 1, r = 5%, σ =
25%, S0 = 50, K = 70, as in [9], and compare the results of the simulation under
three different drifts: the risk-neutral drift, corresponding to usual Monte Carlo sim-
ulation, and the asymptotically optimal drifts for an Asian call option of arithmetic
and geometric average type. The price paths in the absence of random shocks are
plotted in Fig. 1 and show that the arithmetic and geometric drifts are indeed very
similar, although the closed form expression is much simpler (in fact, quadratic) in
the geometric case.

Table 1 shows the results of a typical simulation for an arithmetic average Asian
option, for different choices of drift and sample size. Note that the approximate theo-
retical price obtained by both the Turnbull and Wakeman [15] and Levy [11] formulas
is 5.06, and heavily underprices the option. The reason is that both approximations
are derived by at-the-money Taylor expansions, which become inaccurate for out-of-
the-money strikes.

Since the option is of arithmetic average type, the lowest standard error is obtained
with the arithmetic drift, immediately followed by the geometric. Even for small sam-
ple sizes, the variance obtained with the optimal arithmetic drift is only slightly lower
than that obtained from the geometric drift, which offers a much simpler alternative.
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Fig. 1 The plots represent the
time-evolution (in years) of an
asset price (in dollars), in the
absence of random shocks,
under the Black–Scholes model
with initial price 50, interest rate
5%, volatility 25%, with
risk-neutral drift (dotted line),
and asymptotically optimal
drifts for an Asian call option
with strike 70 of geometric
average (solid line) and
arithmetic average (dashed line)
type

Table 1 Monte Carlo estimators of an arithmetic Asian option price using different changes of drift.
Prices are in cents. Parameter values are T = 1, r = 5%, S0 = 50, K = 70, σ = 25%. The arithmetic and
geometric drifts are given by (4.9) and (4.2), respectively. Simulations are performed with a time-increment
of 1/252, corresponding to one business day

Sample size Arithmetic Geometric Risk-neutral

100,000 6.16 6.21 6.0

(0.021) (0.022) (0.22)

20,000 6.26 6.33 5.9

(0.048) (0.050) (0.44)

5,000 6.2 6.2 6

(0.095) (0.098) (1.1)

Table 2 compares the performance, in terms of variance reduction, of the two drifts
across a range of strikes and volatilities. The performance gap increases with the
strike, and decreases with volatility. These observations have a common explanation
in terms of moneyness, since both a larger strike and a lower volatility cause the
option to become more out-of-the-money, and then the role of the drift in reshaping
the payoff distribution becomes more critical.

6 Conclusion

Importance sampling can greatly improve the performance of Monte Carlo methods
in option pricing, but its success hinges on a change of probability (or, equivalently, of
drift) which is both effective in reducing variance, and parsimonious in computational
effort.

Although simulation ultimately takes place in a discrete-time setting, as in [9],
this paper employs the continuous-time formulation to identify the asymptotically
optimal change of drift as the solution of a variational problem. Furthermore, closed-
form solutions are derived for Asian options.

The role of the optimal change of drift in reducing variance is twofold. First, it
serves as a Girsanov transformation to perform importance sampling. Second, as ob-
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Table 2 Variance reduction ratios across strikes and volatilities. Parameter values are T = 1, r = 5%,
S0 = 50 and each simulation is performed with 1,000,000 paths. Variance ratios are obtained dividing the
variance of the risk-neutral sample by the variance of the geometric and arithmetic samples, respectively.
Reported option prices and standard errors are from the arithmetic sample, and are quoted in cents. Only
significant digits are reported

Volatility Strike Price (Std. err.) Variance ratios

Arithmetic Geometric

10% 50 191.8 (0.086) 6.56 6.53

60 0.397 (0.00050) 330 320

15% 50 247.1 (0.12) 7.11 7.04

60 7.51 (0.0076) 51 50

20% 50 304.0 (0.15) 7.59 7.50

60 28.00 (0.025) 26.5 26.0

70 1.063 (0.0013) 310 280

25% 50 361.3 (0.18) 8.03 7.92

60 60.35 (0.049) 20.1 19.7

70 6.17 (0.0067) 101 94

30% 50 419.3 (0.22) 8.47 8.34

60 101.1 (0.078) 17.3 16.9

70 18.17 (0.018) 56 53

80 2.75 (0.0033) 260 230

35% 50 477.2 (0.25) 8.96 8.77

60 147.3 (0.11) 16.0 15.6

70 38.03 (0.035) 39.5 37.3

80 8.84 (0.0097) 118 106

90 1.95 (0.0024) 400 330

40% 50 535.1 (0.28) 9.49 9.27

60 197.9 (0.14) 15.2 14.8

70 65.3 (0.057) 31.7 30.1

80 20.18 (0.021) 73 66

90 6.09 (0.0070) 210 170

served in [9], it provides a very effective “direction” for stratification algorithms,
which magnify the performance increase.

The optimal drifts are derived under the Black–Scholes assumptions, but can be
employed effectively also in more complex models, where explicit formulas for opti-
mal drifts may not be available.

Finally, this paper considers derivatives on a single asset, but the same methodol-
ogy could be performed with several assets, studying the problem

sup
h∈H

n
T

(
2F(h) − |ḣ|2),

which leads to a system of Euler–Lagrange ODEs formally equivalent to (2.6).
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Appendix

The proof of Theorem 3.6 is divided into several lemmas. The first one shows the
existence of solutions to problems (3.5) and (3.6), using a standard variational argu-
ment.

Lemma 7.1 Let F satisfy Assumption 3.4. Then for any h ∈ HT and M > 0 there
exists a maximizer for the problem

max
x∈HT

(

2F(x) + M

∫ T

0
(ẋt − ḣt )

2 dt − 2M

∫ T

0
ẋ2
t dt + (1 − 2M)

∫ T

0
ḣ2

t dt

)

. (7.1)

Proof Recall that if ġn → ġ weakly in L2[0, T ], then gn → g uniformly in [0, T ].
Since F is continuous in the uniform norm, it follows that it is also weakly continu-
ous. Let M > 0 and fix h ∈ HT . Rewrite (7.1) as

max
x∈HT

(
2F(x) − M‖h + x‖2

HT
+ ‖h‖2

HT

)
.

As a function of x, M‖h + x‖2
HT

is convex and finite, hence norm-continuous. Thus,
it is also weakly lower semi-continuous. Since F is weakly continuous, the func-
tion x �→ 2F(x) − M‖x + h‖2

HT
+ ‖h‖2

HT
is then weakly upper semi-continuous.

Assumption 3.4 implies that

2F(x) − M‖x + h‖2
HT

+ ‖h‖2
HT

≤ 2K1 + 2K2‖x‖α∞ − M‖x + h‖2
HT

+ ‖h‖2
HT

≤ 2K1 + 2K2T
α/2‖x‖α

HT

− M‖x + h‖2
HT

+ ‖h‖2
HT

.

Since α < 2, the coercivity property follows, i.e.,

lim‖x‖HT
→∞

(
2F(x) − M‖h + x‖2

HT
+ ‖h‖2

HT

) = −∞,

and the existence of a maximizer follows by upper semi-continuity. �

The remaining part of the proof of Theorem 3.6 requires some preliminaries on the
theory of large deviations. Summarized below are some basic definitions, mainly with
the purpose of introducing notation, while the reader is referred to the monographs
[2], [4], and [1] for an extensive treatment of this topic.

Definition 7.2 Let (X,B) be a metric space with its Borel σ -algebra, and consider a
lower semi-continuous function I : X �→ [0,+∞]. A family of measures (με)ε∈(0,δ)

satisfies a large deviations principle with good rate function I if

(i) {x ∈ X : I (x) ≤ α} is compact for all α ∈ R,
(ii) For all sets A ∈ B,

− inf
x∈A◦ I (x) ≤ lim inf

ε→0
ε logμε(A) ≤ lim sup

ε→0
ε logμε(A) ≤ − inf

x∈Ā
I (x).
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On the Wiener space the following result holds. It is originally due to Schilder [12],
while modern proofs can be found in [1, Theorem 5.2.3] and [2, Theorem 1.3.27].

Theorem 7.3 (Schilder) Let X = WT and με be the probability on WT induced by
the process

√
εW , where W is a standard Brownian motion. Then (με)ε∈(0,δ) satisfies

a large deviations principle with good rate function

I (x) =
⎧
⎨

⎩

1

2

∫ T

0
ẋ2
t dt, if x ∈ HT ,

+∞, if x ∈ WT \ HT .

(7.2)

The next result, known as Varadhan’s lemma, is the extension of the Laplace ap-
proximation for integrals to a general (infinite-dimensional) setting. A proof can be
found in [1, Theorem 4.3.1].

Lemma 7.4 (Varadhan) Let (Zε)ε∈(0,δ) be a family of X-valued random variables,
whose laws με = Zε(P ) satisfy a large deviations principle with good rate function I .
If H : X �→ R is a continuous function which satisfies

lim sup
ε→0

ε logE

[

exp

(
γ

ε
H(Zε)

)]

< ∞, (7.3)

for some γ > 1, then

lim
ε→0

ε logE

[

exp

(
1

ε
H(Zε)

)]

= sup
x∈X

(
H(x) − I (x)

)
. (7.4)

The present setting requires a slight generalization of this result, in order to allow H :
X �→ [−∞,∞) rather than H : X �→ R. The following lemma (cf. [9, Lemma 2.1])
provides the necessary extension.

Lemma 7.5 Let H : X �→ [−∞,∞). Under the assumptions of Lemma 7.4, the fol-
lowing holds for any A ∈ B:

sup
x∈A◦

(
H(x) − I (x)

) ≤ lim inf
ε→0

ε log

(∫

A◦
exp

(
1

ε
H(Zε)

)

dμε

)

≤ lim sup
ε→0

ε log

(∫

Ā

exp

(
1

ε
H(Zε)

)

dμε

)

≤ sup
x∈Ā

(
H(x) − I (x)

)
.

Proof The second inequality is trivial, while the first one follows directly from
[1, Lemma 4.3.4], fixing x ∈ A◦ instead of x ∈ X. For the third inequality, note that
if F ≡ −∞ the result holds trivially. Assuming F is not identically −∞, let C be a
closed subset of X. For M > 0, consider the set CM = C ∩ {F(x) ≥ −M}, which is
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closed by the continuity of F . Thus, one has that
∫

C

exp

(
1

ε
F (Zε)

)

dμε =
∫

CM

exp

(
1

ε
F (Zε)

)

dμε +
∫

C\CM

exp

(
1

ε
F (Zε)

)

dμε

≤
∫

CM

exp

(
1

ε
F (Zε)

)

dμε + exp

(

−M

ε

)

με(C\CM).

Since (με)ε∈(0,δ) satisfy the LDP with good rate function I ,

lim sup
ε→0

ε log

(

exp

(

−M

ε

)

με(C\CM)

)

≤ −M − inf
x∈C\CM

I (x).

Using Varadhan’s lemma on F1CM
[1, Exercise 4.3.11],

lim sup
ε→0

ε log

(∫

CM

exp

(
1

ε
F (Zε)

)

dμε

)

≤ sup
x∈CM

(
F(x) − I (x)

)

and hence (cf. [1, Lemma 1.2.15])

lim sup
ε→0

ε log

(∫

CM

exp

(
1

ε
F (Zε)

)

dμε +
(

exp

(

−M

ε

)

με(C\CM)

))

≤ max
(

sup
x∈CM

(
F(x) − I (x)

)
,−M − inf

x∈C\CM

I (x)
)

≤ max
(

sup
x∈C

(
F(x) − I (x)

)
,−M

)
.

The claim follows, as M → ∞. �

Lemma 7.6 Let F satisfy Assumption 3.4, and define Fh : W �→ R as

Fh(x) = 2F(x) −
∫ T

0
ḣt dxt + 1

2

∫ T

0
ḣ2

t dt.

Then Fh is well-defined, norm-continuous and satisfies (7.3) for any h ∈ H̃T and
γ > 1.

Proof Since F is continuous, the continuity of Fh will follow from the continuity of
x �→ ∫ T

0 ḣ dxt . Since ḣ has finite variation on [0, T ] for each h ∈ H̃T , the integral
∫ T

0 ḣ dxt is defined path-wise in the Stieltjes sense. For any f ∈ WT , integration by
parts and the continuity of f imply that

∣
∣
∣
∣

∫ T

0
ḣ dft

∣
∣
∣
∣ =

∣
∣
∣
∣ḣ(T )f (T ) −

∫ T

0
ft dḣt

∣
∣
∣
∣ ≤ ‖f ‖WT

‖Var(ḣ),

where Var(ḣ) denotes the total variation of ḣ. Thus, continuity follows by the finite
variation assumption. To check the integrability condition (7.3), apply the Cauchy–
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Schwarz inequality to see that

ε logEP

[

exp

(
γ

ε

(

2F
(√

εW
) −

∫ T

0
ḣt d

(√
εW

)
t
+ 1

2

∫ T

0
ḣ2

t dt

))]

≤ γ

2

∫ T

0
ḣ2

t dt + ε

2
logEP

[

exp

(

− 2γ√
ε

∫ T

0
ḣt dWt

)]

+ ε

2
logEP

[

exp

(
4γ

ε
F

(√
εW

)
)]

. (7.5)

The first term is finite. For the second, observe that
∫ T

0 ḣt dWt ∼ N(0,
∫ T

0 ḣ2
t dt),

whence

lim sup
ε→0

ε

2
logEP

[

exp

(

− 2γ√
ε

∫ T

0
ḣt dWt

)]

= γ 2
∫ T

0
ḣ2

t dt < ∞.

It remains to consider the last term in (7.5). Assumption 3.4 implies that

ε

2
logEP

[

exp

(
4γ

ε
F

(√
εx

)
)]

≤ 2γK1 + ε

2
logE

[

exp

(
4γK2

ε1−α/2

(
sup

0≤t≤T

∣
∣W(t)

∣
∣
)α

)]

,

and one has to check that the last term is finite. To see this, observe that

EP

[

exp

(
4γK2

ε1−α/2

(
sup

0≤t≤T

∣
∣W(t)

∣
∣
)α

)]

≤ 2EP

[

exp

(
4γK2

ε1−α/2

(
sup

0≤t≤T

x(t)
)α

)]

≤ 4

√
2

πT

∫ ∞

0
exp

(
4γK2

ε1−α/2
bα − 1

2T
b2

)

db,

where the first inequality follows from the formula EP [X] = ∫ ∞
0 P(X ≥ b)db, com-

bined with the elementary estimate

P
(

sup
0≤t≤T

|Wt | ≥ b
)

≤ 2P
(

sup
0≤t≤T

Wt ≥ b
)
.

The second inequality follows from the classical distribution

P
(

sup
0≤t≤T

Wt ∈ db
)

=
√

2

πT
exp

(

− b2

2T

)

db.

Applying Lemma 7.7 below, for A = 4γK2
ε1−α/2 , B = 1

2T
, yields

∫ ∞

0
exp

(
4γ

ε1−α/2
K2b

α − 1

2T
b2

)

db

≤ exp

(
4γK2

ε1−α/2
(4γK2αT )

α
2−α ε−α/2 + 1

2T
(4γK2αT )

2
2−α ε−1

)

×
(

(4γK2αT )
1

2−α ε−1/2 +
√

2π

min( 1
T

, 1
T

(2 − α))

)

,
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which, after letting N = 4γK2αT and M = min( 1
T

, 1
T

(2 − α)), reduces to

exp

(
1

ε

1

T
N

2
2−α

(
1

α
− 1

2

))(

N
1

2−α ε−1/2 +
√

2π

M

)

.

Thus,

lim sup
ε→0

ε log

(

2

√
2

πT

∫ ∞

0
exp

(
4γ

ε1−α/2
K2b

α − 1

2T
b2

)

db

)1/2

≤ 1

2

1

T
N

2
2−α

(
1

α
− 1

2

)

< ∞,

which proves the claim. �

Lemma 7.7 Let A,B > 0, α ∈ (0,2), and set b = (αA
2B

)
1

2−α . Then the function f (b) =
Abα − Bb2 satisfies the estimate

∫ ∞

0
exp

(
f (b)

)
db ≤ exp

(
Abα − Bb2)

(

b +
√

2π

min(2B,2B(2 − α))

)

. (7.6)

Proof Note that

f ′(b) = αAbα−1 − 2Bb,

f ′′(b) = α(α − 1)Abα−2 − 2B,

f ′′′(b) = α(α − 1)(α − 2)Abα−3.

Let b be as given in the statement of the lemma and note that f ′(b) = 0 and for
b < b,f ′(b) > 0 and for b > b,f ′(b) < 0. Thus, b is the unique global maximum
of f (b). Upon inspecting the derivatives of f , it follows that f ′′(b) < −2B < 0 for
α ≤ 1, and f ′′′(b) < 0 for 1 < α < 2. This implies that for b > b,

f ′′(b) < f ′′(b) = −2B(2 − α),

and taking the Taylor expansion of f around b gives

f (b) = Abα − Bb2 + 1

2
(b − b)2f ′′(ξ(b)

)

for some ξ(b) ∈ [b, b] if b < b and ξ(b) ∈ [b, b] if b > b. Note that for b > b,
f ′′(ξ(b)) < max(−2B,−2B(2 − α)). Thus,

∫ ∞

0
exp

(
Abα − Bb2)db

=
∫ b

0
exp

(
Abα − Bb2)db +

∫ ∞

b

exp
(
Abα − Bb2)db
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≤ exp
(
Abα − Bb2)

(

b +
∫ ∞

b

exp

(

−1

2
(b − b)2 min

(
2B,2B(2 − α)

)
)

db

)

≤ exp
(
Abα − Bb2)

(

b +
∫ ∞

−∞
exp

(

− (b − b)2

2(1/min(2B,2B(2 − α)))

)

db

)

= exp
(
Abα − Bb2)

(

b +
√

2π

min(2B,2B(2 − α))

)

. �

Proof of Theorem 3.6 By Lemma 7.6, Lemma 7.5 can be applied to the set A = WT ,
which implies (i). To prove (ii), set M = 1

2 in Lemma 7.1 to prove the existence of a
maximizer for (3.5). Analogously, h ≡ 0, M = 1 yield a maximizer for (3.6).

It remains to prove (iii). In view of (i), and since
∫ T

0 (ḣt − ẋt )
2 dt ≥ 0, for any

h ∈ HT it follows that

L(h) = sup
x∈HT

(

2F(x) + 1

2

∫ T

0
(ẋt − ḣt )

2 dt −
∫ T

0
ẋ2
t dt

)

≥ sup
x∈HT

(

2F(x) −
∫ T

0
ẋ2
t dt

)

, (7.7)

which implies the inequality

inf
h∈HT

L(h) ≥ 2F(ĥ) −
∫ T

0

˙̂
h2

t dt, (7.8)

and hence ĥ is asymptotically optimal if (3.7) is satisfied. For the uniqueness part,
consider two distinct solutions h,g to (3.6). Strict convexity implies that

L(h) ≥ 2F(g) + 1

2

∫ T

0
(ġt − ḣt )

2 dt −
∫ T

0
ġ2

t dt > 2F(g) −
∫ T

0
ġ2

t dt

= 2F(h) −
∫ T

0
ḣ2

t dt,

which contradicts the optimality of h, and the uniqueness follows. �
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