A Course in Model Theory II:

Classification Theory for First-Order Theories¹

Rami Grossberg

DEPARTMENT OF MATHEMATICAL SCIENCES, CARNEGIE MELLON UNI-VERSITY, PITTSBURGH, PA 15213

E-mail address: rami@cmu.edu

¹This **preliminary draft** is dated from June 26, 2008. In case your copy is more than three months old, please destroy it and contact me for a current version. www.math.cmu.edu/~rami ©Rami Grossberg

Contents

Preface Acknowledgments Course outlines	7 11 13
 Chapter 1. Stability Introduction 1. Ranks Forking and Independence 2. Characterizations of stable theories 3. Definability of types 4. On the function D[θ(x; a), Δ, μ⁺] 5. The finite cover property 6. Simple theories 	15 15 15 36 39 42 58 60
 Chapter 2. Stability in algebra Introduction 1. Definable groups 2. Superstable fields are algebraically closed 3. Algebraic and model-theoretic dimensions 4. The indecomposability theorem 5. Model Theory of algebraically closed fields 6. An application to differentially closed fields* 	61 61 62 67 67 70
Chapter 3. Strong splitting and averages Introduction1. The independence and strict order properties2. Strong splitting and the stability spectrum	75 75 76 82
 Chapter 4. Splitting, dividing and forking in arbitrary theories Introduction 1. Forking 2. Indiscenible sequences based on a set* 	85 85 85 98
 Chapter 5. Theories without the independence property Chapter 6. Forking calculus in simple theories Introduction General notion of independence Forking in Simple Theories Ranks and Simple Theories Shelah's Boolean Algebra Semi simple theories 	109 111 112 120 128 135 144
Chapter 7. Forking in stable theories Introduction	147 147

CONTENTS

 Finite equivalence relations theorem The stability spectrum theorem 	147 152
 Chains of saturated models Canonical bases and C^{eq} 	155
Chapter 8. Abstract theory of dependence	157
Introduction	157
Chapter 9. Orthogonality calculus	159
Introduction	159
1. Regular types	159
2. Weight 3. Unidimensional theories	159 159
5. Ondinensional theories	157
Chapter 10. Morley's theorem for uncountable theories	161
Introduction	161
1. Weakly minimal formulas	101
2. Athorne proof 3. A third proof?	162
5. A tind proof.	102
Chapter 11. Prime models	163
Introduction	163
1. Isolation notions and existence	163
2. Uniqueness	166
Chapter 12. The Hrushovski-Zilber group configuration	169
Introduction	169
1. Basics	169
2. Unidimensional theories are superstable	169
3. Laskowski s proof of categoricity	169
Chapter 13. The main gap	171
Introduction	171
1. stable systems	171
2. otop and dop	172
5. good systems 4. Tree decomposition theorem	172
4. The decomposition deorem	172
Chapter 14. Non structure theory	173
Introduction	173
1. Unstable theories	177
 Unsuperstable theorems on trees Combinatorial theorems on trees 	1/8
4. The generalized order property	191
	205
Chapter 15. Stable domination	205
Introduction	205
Chapter 16. A miniguide to the literature	207
Chapter 17. Open Problems	209
Introduction	209
1. Main Gap for uncountable theories	209
2. Other problems	209
Chapter 18. Historical comments	213

4

Appendix.	Bibliography	221
Appendix.	Index	231