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ABSTRACT. We study several cardinal, and ordinal–valued functions that are
relatives of Hanf numbers. Letκ be an infinite cardinality, and letT ⊆ Lκ+,ω

be a theory of cardinality≤ κ, and letγ be an ordinal≥ κ+. Consider
(1) µ∗T (γ, κ) := min{µ∗ : ∀ϕ ∈ L∞,ω, with rk(ϕ) < γ, if T has the(ϕ, µ∗)-

order property thenthere exists a formulaϕ
′
(x; y) ∈ Lκ+,ω, such that for

everyχ ≥ κ, T has the(ϕ
′
, χ)-order property}.

(2) µ∗(γ, κ) := sup{µ∗T (γ, κ) | T ∈ Lκ+,ω}.
We discuss several other related functions, sample results are:
· It turns out that ifT has the(ϕ, µ∗(γ, κ))-order propery for someϕ ∈
L∞,ω, with rk(ϕ) < γ thenfor everyχ > κ we have thatI(χ, T ) = 2χ

holds.
· For everyκ and γ as above there exists an ordinalδ∗(γ, κ) such that
µ∗(γ, κ) = iδ∗(γ,κ),
· δ∗(γ, κ) ≤ (|γ|κ)+,
· for κ with uncountable cofinality, we have thatδ∗(γ, κ) > |γ|κ and
· the ordinalδ∗(γ, κ) is bounded below by the Galvin–Hajnal rank of a re-

duced product.
For many cardinalities we have better bounds, some of the bounds obtained

using Shelah’spcf theory. The functionµ∗(γ, κ) is used to compute bounds to
the values of the functionµ(λ, κ) we studied in a previous paper.

Date: June 9, 1998.
The authors thank the United States - Israel Binational Science foundation for supporting this

research as well as the Mathematics department of Rutgers University where part of this research
was carried out.

Partially supported by the United States-Israel Binational Science Foundation and by the National
Science Fundation, NSF-DMS97-04477.

This paper replaces item # 259 from Shelah’s list of publications.
1



2 RAMI GROSSBERG AND SAHARON SHELAH

1. INTRODUCTION

Let χ be an infinite cardinality, and suppose thatT ⊆ Lχ,ω (notice that
whenχ = ω we are dealing with first-order theories).

The fundamental meta-problem in the area of classification theory can be
stated as:

Problem 1.1. What is the structure ofMod(T )?

A more precise (and concrete) test-question is:

Problem 1.2. What are the possible functionsI(·, T ) : Card → Card? (where
I(λ, T ) stands for the number of isomorphism types of models forT of cardinality
λ).

A much more precise (and a very difficult) particular case of 1.2 is the
following

Conjecture 1.3. (Shelah about 1976) Letψ ∈ Lω1,ω be given. If there exists a
cardinalityµ > iω1 such thatI(µ, ψ) = 1 then for everyµ > iω1 , I(µ, ψ) = 1
holds.

A possible approach to Problem 1.1 and its relatives, is to try to imitate
Classification theory for elementary classes (see [Sh c]). Namely it would be desir-
able to find properties parallel tostability, superstabilityetc. Much work has been
done in the last 25 years (see for example – [Sh 48],[Sh 87a], [Sh 87b],[Sh 88],[Sh 300],
[Sh 394] [MaSh],[GrSh2], or [Sh 299] for a general survey). In this article we con-
centrate in dealing with the parallel (for infinitary languages) to instability. The
following can be viewed as a definition of stability for first-order theories:

Fact 1.4. ([Sh 16]) Let T be a complete first-order theory. The following are
equivalent:

(1) T is unstable
(2) There exist a formulaϕ(x; y) ∈ L(T ), a modelM for T , and a set{an :

n < ω} ⊆ M such that̀ (x) = `(y) = `(an) for everyn < ω, and for all
n, k < ω we haven < k ⇐⇒M |= ϕ[an; ak].

Condition 2 in Fact 1.4 is called theorder-property. One of the important
properties of unstable theories is the following:

Fact 1.5. [Sh 12]LetT be a complete first-order theory. IfT is unstable then for
everyµ > |T | we have thatI(µ, T ) = 2µ.

An inspection of the proof of 1.5 shows that the hypothesis thatT is a
complete first-order unstable theory could be replaced by the following property:
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(∗)T

There is an expansionL′ of L(T ) with built-in Skolem functions and an
L′-structureM , a “formula”ϕ(x; y) , and there exists
I := {ai : i < ω} ⊆M a sequence ofL′-indiscernibles such that`(x) =
`(y) = `(an) for all n < ω,M is the Skolem Hull ofI,M ¹ L(T ) |= T
and

n < m⇐⇒M |= ϕ[an; am] holds for every n,m < ω.

By “formula” we mean thatϕ is in any logic (over the vocabularyL′) such thatϕ
is preserved by isomorphisms ofL(T )-structures.

The condition in Fact 1.4 seems to be a natural candidate for a definition of
instability for infinitary logics. Since the compactness theorem fails even forLω1,ω

the next definition is the replacement of the (the first-order) order-property.

Definition 1.6. Let T ⊆ Lχ,ω, ϕ(x; y) ∈ L∞,ω, and letµ be a cardinality.

(1) We say thatM has the(ϕ, µ)-order propertyiff there exists{ai : i < µ} ⊆
M such that̀ (x) = `(y) = `(ai) < ω, and for everyi, j < µ we have
i < j ⇐⇒ M |= ϕ[ai; aj ].

(2) T has the(ϕ, µ)-order propertyiff there existsM |= T such thatM has the
(ϕ, µ)-order property.

(3) T has the(ϕ,∞)-order propertyiff T has the(ϕ, µ)-order property for
everyµ.

(4) Letλ andµ be cardinalities, we say that
T has the(Lλ,ω, µ)-order propertyiff there existsϕ ∈ Lλ,ω such thatT has
the(ϕ, µ)-order property.

Remark 1.7. (1) In light of the last definition, Fact 1.4 can be restated as (for
first-order completeT ): T is unstable iffT has the(Lω,ω,ℵ0)-order prop-
erty.

(2) It is not difficult to see (using [Mo], see 1.10 below) that the following
implication is true: IfT has the(Lλ+,ω,∞)-order property then(∗)T holds.

A natural question to ask in this context is: Given a theoryT and a cardi-
nality µ, doesT have the(Lλ+,ω, µ)-order property? The main object of study in
[GrSh1] was the functionµ(λ, κ). The followingµ∗(λ, κ) is a relative ofµ(λ, κ)
from [GrSh1].

Definition 1.8. Let κ ≤ λ.

(1) Letψ ∈ Lκ+,ω, µ∗ψ(λ, κ) := min{µ∗ : ∀ϕ ∈ Lλ+,ω if ψ has the(ϕ, µ∗)-
order property,then there exists a formulaϕ

′
(x; y) ∈ Lκ+,ω, such thatψ

has the(ϕ
′
,∞)-order property}.

(2) µ∗(λ, κ) := sup{µ∗ψ(λ, κ) | ψ(x; y) ∈ Lκ+,ω}.
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Remark 1.9. The idea behind Definition 1.8 is that whenψ has the
(Lλ+,ω, µ

∗(λ, κ))-order property then (by Remark 1.7 and(∗)ψ) for everyχ >
κ I(χ, ψ) = 2χ.

Already in [Sh 16] Shelah realized the importance of the above concept,
it did not appear there explicitly. Only in [Gr] (see [GrSh1]) these functions were
identified. The previous definition is a generalization of one from [GrSh1], see
Definition 1.8. Shelah’s fundamental result from [Sh 16] can be restated as:

Fact 1.10. ([Sh 16])For everyκ ≤ λ, we haveµ∗(λ, κ) ≤ µ0(λ, 1)1.

Recall thatµ0(λ, 1) ≤ i(2λ)+ and for someλ’s we have equality. The
functionµ∗ is very different fromµ0: The following is a dramatic improvement
(for κ = ℵ0) of Fact 1.10:

Theorem 1.11. ([GrSh1])For everyλ ≥ ℵ0, we haveµ∗(λ,ℵ0) ≤ iλ+ .

It turns out that even for first-order theories the above question is interest-
ing (for κ = |L| = ℵ0, T is a complete first-order theory inL, we could ask what
is an upper bound ofµ∗T (λ,ℵ0)?). Since there are cases whenT is stable (i.e. there
is no first-order formula defining anω-sequence in a model ofT ) but still T has
a hidden instability (like in the case of stable theories without the omitting-types
order property).

There is a natural class of examples of theories that do not have a first-order
formula exemplifying the order-property but do have an infinitary order property.
Any stable first-order theory that has the omitting types order-property has the
(Lω1,ω,∞)-order property but not the(Lω,ω,ℵ0)-order property (see [Sh 200]).

Already from Morley’s omitting-types theorem it follows that givenT and
ϕ as above there existsµ := µ(T, ϕ) such that ifT has the(ϕ, µ)-order property
then∀λ ≥ χ, T has the(ϕ, λ)-order property. The bound obtained from repeating
the argument in the proof of Morley’s omitting types theorem (see [Sh 16]) is:
µ(T, ϕ) ≤ max{Hanf(T ), Hanf(ϕ)}. WhereHanf(T ) andHanf(ϕ) are the
Hanf numbers ofT and the logic containingϕ (respectively).

Let χ > ℵ0 (T still may be first-order). Our object is to find upper bounds
onµ. It turns out that forϕ ∈ L∞,ω −Lχ,ω there is a cardinalityµ∗ := µ∗(T, ϕ)2,
such that the following implication holds: IfT has the(ϕ, µ∗)-order property then
there exists a formulaϕ′ ∈ Lχ,ω (it is a collapse ofϕ) such thatT has the(ϕ′, λ)-
order property for everyλ ≥ χ.

1µ0(λ, λ) is the usual Morley number to be introduced in Definition 2.2 below. It is known that
µ0(λ, λ) = µ0(λ, 1)

2The surprise is that oftenµ∗(T, ϕ) is much smaller thanµ(T, ϕ).
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In this paper we present a systematic study of several cardinal and ordi-
nal valued functions related to the infinitary order property. This is a continua-
tion of [GrSh1], we deal with similar problems and improve many results. This
is achieved via a generalization of the original problem (dealing with new cases)
while obtaining often better estimates to earlier bounds. The reader is not expected
to be familiar with [GrSh1].

Notation: Everything is standard. Oftenx, y, andz will denote free
variables or finite sequences of variables, whenx is a sequencè(x) denote its
length. It should be clear from the context whether we deal with variables or se-
quences of variables.L will denote a similarity type (also known as-language or
signature),∆ will stand for a set ofL formulas. M andN will stand for L -
structures,|M | the universe of the structureM , ‖M‖ the cardinality of the uni-
verse ofM . Given a fixed structureM , subsets of its universe will be denoted
by A, B, C, andD. So when we writeA ⊆ M we really mean thatA ⊆ |M |,
while N ⊆ M stands for “N is a submodel ofM ”. Let M be a structure. By
a ∈ M we meana ∈ |M |, whena is a finite sequence of elements thena ∈ M
stands for “all the elements of the sequencea are elements of|M |”. For cardi-
nalitiesκ ≤ λ, let S<κ(λ) := {X ⊆ λ : |X| < κ}. WhenT is a first-order
theory,Γ denotes a set ofT -types over the empty set (not necessarily complete
types). EC(T,Γ) := {M : M |= T, ∀p ∈ Γ M omits the typep}. When
T is first-order,L ⊆ L(T ), andΓ is a set ofT -types byPC(T,Γ, L) we de-
note the following{M ¹ L : M |= T, ∀p ∈ Γ M omits the typep}; namely
EC(T,Γ) = PC(T,Γ, L(T )). λ, µ, κ, andχ will stand for infinite cardinalities;
α, β, γ, δ, ζ, andξ are ordinals. References of the form “Theorem IV 3.12” are to
[Sh c]. Forϕ ∈ L∞,ω, letSub(ϕ) be the set of subformulas ofϕ, now let

rk(ϕ) :=
{

0 if ϕ is atomic
Sup{rk(χ) + 1 : χ ∈ Sub(ϕ)} otherwise.
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2. REVIEW

C.C. Chang in [Ch] have made the following fundamental observation:

Fact 2.1. Let κ be an infinite cardinality, and letL be a similarity type of cardi-
nality no more thanκ. Givenψ ∈ Lκ+,ω, there exist a similarity typeL′ ⊇ L, a
first-order theoryT in L′, and a set ofT -typesΓ (all three of cardinality less or
equal toκ) such thatMod(ψ) = PC(T,Γ, L).

Instead of studyingMod(ψ) directly for an infinitary theoryψ it is enough
to consider a class of reducts of models of a first-order theory that omits a set of
types.

W. Hanf and M. Morley [Mo], have recognized the importance of the fol-
lowing concept:

Definition 2.2. Let T be a first-order theory, and letΓ be a set ofT -types.
The Morley number3 of T andΓ, is the following:

(1) µ0(T,Γ) := min{µ : ∃M ∈ EC(T,Γ) ‖M‖ ≥ µ ⇒ ∀χ ≥ |T | ∃N ∈
EC(T,Γ) of cardinality≥ χ}.

(2) Letλ, κ be cardinalities.
µ0(λ, κ) := sup{µ0(T,Γ) : |T | ≤ λ, Γ a set ofT -types of cardinality
≤ κ}4.

Morley (among other things) have shown thatµ0(ℵ0,ℵ0) = iω1 . His most
general result is stated as Theorem 2.4 below. Shelah in [Sh 78] have dealt with
what is an interpolant ofµ0(T,Γ) andµ0(λ, κ):

µ0(T, κ) := sup{µ0(T,Γ) : Γ a set ofT -types, |Γ| ≤ κ}.

It is not difficult to conclude from the proof of Morley’s categoricity theo-
rem that whenT is a countable andℵ0-stable theory thenµ0(T, ·) ≤ ℵ1. Shelah in
[Sh 78] studied the effect that stability ofT has on the upper bounds onµ0(T, κ).
This work was continued about ten years later by Hrushovski and Shelah in [HrSh].

In this paper, since our main goal is the study of unstable theories (or the-
ories that are not stable in a weak sense) we will ignore the effect that the stability
of T may have on the functionµ0(T, κ).

The modern era in the study of Hanf numbers begun with the paper of Bar-
wise and Kunen [BaKu]. They studied systematically the relationship between the
functionµ0 and the first ordinal that exemplify the undefinability of well ordering

3Some authors call this the Hanf number ofT and theΓ
4We hope that the reader is not bothered by this abuse of notation. We are using the same letter

µ0 to denote entirely different (but related) functions. They can be distinguished by the type of the
arguments they take.
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in classes of models that omit a set of types. Below we recall an ordinal-valued
functionδ0(λ, κ) that is related toµ0(λ, κ) in a nice way.

Definition 2.3. Let λ andκ be infinite cardinalities,T varies over consistent first-
order theories such thatL(T ) ⊇ {P,<} whenP is a unary predicate and
T `“< linearly ordersP ”.
δ0(λ, κ) := min{δ : |T | ≤ λ,Γ a set ofT -types,|Γ| ≤ κ if for everyδ

′
< δ

there existsM ∈ EC(T,Γ) such thatotp(PM , <M ) ≥ δ′ thenthere
existsN ∈ EC(T,Γ) s.t. (PN , <N ) is not well ordered}.

The following is a restatement of Morley’s “other” important theorem:

Fact 2.4. (Theorem VII 5.5)µ0(λ, κ) = iδ0(λ,κ).

The following ordinal and cardinal-valued functions are from§4 of [GrSh1]:

Definition 2.5. SupposeT is a first-order theory such thatL(T ) is containing the
predicates{<,P} and

T ` [< is a linear order] ∧ [ <¹ P is a linear order on the unary predicateP ].

(1) δ1(θ, λ, κ) := min{δ : Γ a set ofT -types, |Γ| ≤ λ, |T | ≤ κ
if ∀δ′ < δ ∃M ∈ EC(T,Γ) with otp(PM , <M ) ∈ On ∩ θ+ and
otp(M−P,<M ) ≥ δ′ , then∃N ∈ EC(T,Γ) s.t.otp(PN , <N ) ∈ On∩κ+

and(N − PN , <N ) is not well ordered}.
(2) µ1(θ, λ, κ) := min{µ : Γ| ≤ λ, |T | ≤ κ Γ a set ofT -types, if ∃M ∈

EC(T,Γ) ‖M‖ ≥ µ with otp(PM , <M ) ∈ On ∩ θ+ thenfor everyχ ≥
κ ∃N ∈ EC(T,Γ) of cardinality at leastχ such thatotp(PN , <N ) ∈
On ∩ κ+ }.

(3) Whenθ = λ we will omit the first parameter-θ

In an analogous way to Fact 2.4 we can prove the following equality:

Theorem 2.6. For everyκ ≤ λ ≤ θ we haveµ1(θ, λ, κ) = iδ1(θ,λ,κ).

From now on we concentrate on the case thatθ = λ and work with the
functionsδ1(λ, κ) andµ1(λ, κ). The arguments for the functions with three param-
eters are essentially similar (they require an additional technical effort, but require
no new ideas). Note that by 2.1 working with two parameter functions is sufficient
for Lλ+,ω. The new point is that we are able to show thatµ1(λ, κ) ≥ iδ1(λ,κ). The
proof of Theorem 2.6 is similar to that of Theorem VII 5.5, we skip its proof, since
later we will prove a related theorem (Th. 3.6) whose proof is similar (but is little
harder).

The next proposition provides a lower bound forδ1(λ, κ), it follows im-
mediately from the definitions (in Theorem 3.8 a better lower bound is obtained).

Proposition 2.7. For λ ≥ κ we have thatδ1(λ, κ) ≥ δ1(κ, κ) ≥ δ0(κ, κ) =
δ0(κ, 1).
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In the following proposition the connection between the last definition and
the order property is clarified.

Theorem 2.8. Letκ ≤ λ, be cardinalities.iλ+ ≤ µ∗(λ, κ) ≤ µ1(λ, κ).

Proof. First we show thatµ∗(λ, κ) ≤ µ1(λ, κ). Let ψ ∈ Lκ+,ω, andϕ(x; y) ∈
Lλ+,ω be given. Supposeψ has the(ϕ, µ1(λ, κ))-order property we need to find a
formulaϕ′ ∈ Lκ+,ω such thatψ has the(ϕ′,∞)-order property.

By Fact 2.1 there exists a first-order theoryT in a similarity typeL(T ) that
extendsL, and there is a setΓ of T -types of cardinality≤ κ such thatPC(T,Γ, L) =
Mod(ψ). By following the inductive definition of the formulaϕ we may identify
ϕ with a functionf from the setP into the setL∪ {∧,¬, (, ),=} ∪ {xi : i < κ}.

Let χ be a regular large enough such that

{Lλ+,ω, Lκ+,ω, T,Γ, L, ϕ, f, P, ψ, λ
+, µ1(λ, κ), δ1(λ, κ)} ∪ µ1(λ, κ) ⊆ H(χ).

In addition we require that the structure〈H(χ),∈〉 reflects all the relevant prop-
erties of the above sets. LetP be the rank of the formulaϕ, note that it is an
ordinal less thanλ+. Let A′ ≺ 〈H(χ),∈, . . . 〉 of cardinalityµ1(λ, κ) such that
µ1(λ, κ)A′ = µ1(λ, κ) (soµ1(λ, κ) + 1 ⊆ A′), fix a bijectionG from µ1(λ, κ)
onto the universe ofA′, and letA := 〈A′, G〉. By the definition ofµ1(λ, κ), for
everyχ ≥ κ there existsBχ ≡ A of cardinalityχ such thatBχ omits the types
from Γ, κBχ = κ, andP is an ordinal less thanκ+ (just apply the Mostowski
collapse onBχ). UsingPBχ , andfBχ we know (inBχ) thatϕBχ ∈ LBχ

κ+,ω, but

sinceκBχ = κ we have thatϕBχ ∈ Lκ+,ω is a formula as required in the definition
of µ∗(λ, κ).

To see thatµ∗(λ, κ) ≥ iλ+ : It is enough to show that for everyα < λ+

there exist a sentenceψα ∈ Lκ+,ω, and a formulaϕα ∈ Lλ+,ω such thatψα has the
(ϕα,iα)-order property andψα does not have the (Lκ+,ω,∞)-order property.

Before proving this we need several tools.

Notation: The sentenceψα will be defined as a the theory of a well
founded tree. We deal with well-founded trees whose vertices are decreasing se-
quences of ordinals, the root of the treeT is denoted byrt(T), for an element
x ∈ T letSucT(x) stand for the set of immediate succssesors ofx, andT[x] stands
for the subtree ofT consisting of the elements that are greater or equal tox.

Definition 2.9. LetT be a well founded tree.

(1) Forx ∈ T letDpT(x) = β thedepth ofx in T defined by induction onβ:
(a) if SucT(x) = thenDpT(x) = 0.
(b) if for everyy ∈ SucT(x) we haveDpT(y) < β, and for everyγ < β

there existsz ∈ SucT(x) of such thatDpT(z) ≥ γ thenDpT(x) = β.
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(2) Thedepth ofT isDp(T) := sup{ DpT(x) : x ∈ T}.
Proposition 2.10. LetT be a well-founded tree,Dp(T) = DpT(rt(T)).

Proof. Trivial. ¤2.10

Claim. For everyα there exists a well-founded treeTα of depthα such that
‖Tα‖ ≤ |α|+ ℵ0.

Proof. By induction onα:

Forα = 0; Simply letT0 := 〈〉.

Forα = β + 1; SupposeTβ is a tree of depthβ.
LetTα := {〈〉} ∪ {〈〉̂ η : η ∈ Tβ}. The order onTα is the obvious.

Forα a limit ordinal; By the induction hypothesis let{Tβ : β < α} be
pairwise disjoint trees, each of depthβ.
DefineTα to be the tree{〈〉} ∪ {〈〉̂ η : η ∈ Tβ , β < α}. ¤2

Definition 2.11. (1) LetT1, T2 be well-founded trees, and letα be an ordinal.
By induction onα define whenT1 ≈α T2:
(a) Forα = 0, alwaysT1 ≈α T2.
(b) For α 6= 0, if for every β < α and for everyx1 ∈ SucT1(rt(T1))

there existsx2 ∈ SucT2(rt(T2)) such thatT1[x1] ≈β T2[x2], and for
everyx2 ∈ SucT2(rt(T2)) there existsx1 ∈ SucT1(rt(T1)) such that
T2[x2] ≈β T1[x1].

(2) A treeT is calledsimpleiff there are no distinctx1, x2 ∈ SucT(rt(T)) such
thatDpT(x1) = DpT(x2) andT[x1] ≈DpT(x1) T[x2].

Proposition 2.12. LetT1,T2 be trees, and letα be an ordinal. IfT1 ≈α T2 then
one of the following conditions holds:

(1) Dp(T1) = Dp(T2), or
(2) Dp(T1) ≥ α andDp(T2) ≥ α.

Proof. Easy, by induction onα. ¤2.12

Claim. For every ordinalα there exists a family of simple trees{Ti : i < iα},
such that for everyi < iα

(1) ‖Ti‖ ≤ iα,
(2) i 6= j ⇒ Ti 6≈ω+α Tj ,
(3) Dp(Ti) = ω + α+ 1.

Proof. By induction onα:

Forα = 1; First constructℵ0 simple trees{Tn ⊆ ω> ω : n < ω} such
thatT0 := {〈〉}, Tn+1 := {〈n + 1〉} ∪ Tn when the order is an extention of the
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order onTn; 〈〉 is the root, and〈n + 1〉 is a new immediate successor of the root
incomparable with the elements ofSucTn(〈〉). Now for everyA ⊂ ω let

TA := {〈ω〉̂ η : η ∈ Tn, n ∈ A} ∪ {ν ∈ Tk : k 6∈ A}.

The order ofTA is defined as follows:〈ω〉 is a new immediate sucessor of
the root, the elements〈ω〉̂ η andν are pairwise incomparable whenη ∈ Tn, (n ∈
A) andν ∈ Tk, (k 6∈ A), and we require that
〈ω〉̂ η1 < 〈ω〉̂ η2 ⇔ η1 <Tn η2.
In order to see thatA 6= B ⊆ ω ⇒ TA 6≈ω+α TB: W.l.o.g. we may assume that
∃n ∈ A−B. SinceTA[〈ω, n〉] 6≈ω TB[ν] for anyν ∈ SucTB (〈ω〉) (this is because
Tk andTn are inequivalent fork 6= n).

Forα 6= 1; By the inductive hypothesis let{{Tβi : i < iβ} : β < α} be
disjoint trees satisfying the statement of the Theorem. Denote byS the set{〈β, i〉 :
i < iβ, β < α}. Fix an injective mapping fromS into On − Sup(

⋃
β,i T

β
i ),

denote byγβ,i the image of the pair〈β, i〉. For everyγ < α, and for everyA ⊆ S
cardinalityiγ define

TA := {〈〉} ∪ {〈γβ,i〉̂ η : η ∈ Tβi , 〈β, i〉 ∈ A}.

The order onTA is defined in the natural way:〈〉 is the root, and

〈β, i〉̂ η1 <TA 〈β, i〉̂ η2 iff η1 <Tβi
η2.

The verification thatDp(TA) = ω+α+ 1 is left to the reader. SupposeA 6= B ⊆
iα both of cardinalityiβ for someβ < α. We need to show thatTA 6≈ω+α TB.
W.l.o.g. there existsγβ,i ∈ A − B. Since〈γβ,i〉̂ η : η ∈ Tβi } is a subtree ofTA
and for allj < iβ we have thatj 6= i ⇒ Tβi 6≈ω+β Tβj , from the definition of the
relation≈, and the fact that it follows that there is no ordinalε such that the tree
{ε̂ η : η ∈ Tβi } does not appear as a subtree ofTB it is clear thatTA 6≈ω+α TB.
¤2

Back to the proof of Theorem 2.8: Letα < λ+ be given. By Claim 2 there
exists a family of nonequivalent simple trees{Ti : i < iα}. By renaming, we
may assume that the above trees do not contain sequences of ordinals which are
less thaniα. We define a new tree:Mα its set of elements consists of

{〈〉} ∪ {〈i〉 : i < iα} ∪ {〈i, i′〉̂ η : η ∈ Ti′ , i′ < i, i < iα}.

We can viewMα as a partially ordered set (by “being initial segment”). We
view Mα as a model in a languge consisting of single function symbol: A unary
functionf whose interpretation is the predessor of its argument (if the argument is
the root than the value is defined to be the root). Notice that the following formula
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(of Lω1,ω),
∨
k<ω[x = fk(y)]5 defines the relation of “being an initial segment” on

well founded trees.

Let ψα :=
∧
Thω,ω(Mα) ∧ (∀x)

∨
n<ω[fn(x) = 〈〉]. Namelyψα is the

first-order theory ofMα together with the statement that say that every element is
of finite distance from the root.

Let ϕα(x,y) be the following statement:x,y ∈ Suc(〈〉), and for every
x′ ∈ Suc(x) there existsy′ ∈ Suc(y) such thatT[x′] ≈ω+α+1 T[y′], and there
existsy′ ∈ Suc(y) such that for everyx′ ∈ Suc(x) we have thatT[x′] 6≈ω+α+1

T[y′] holds.

In order to complete the proof of Theorem 2.8, it suffices to prove the
following:

Sub Claim 2.13. (1) ϕα(x, y) ∈ Lλ+,ω,
(2) Mα has the(ϕα,iα)-order property,
(3) There do not exist a formulaϕ′(x, y) ∈ Lκ+,ω such that

ψα has the(ϕ′(x,y),∞)-order property.

Proof. (1) LetT be a well founded tree, and letα < λ+ be given, it is enough
to show by induction onα that there exists a formulaχ(x, y) ∈ Lλ+,ω such
that for everya, b ∈ T we have thatT |= χ[a, b] iff T[a] ≈α T[b]. It is easy
to check that the relation≈α is definable inLλ+,ω.

(2) Check that for everyi1, i2 < iα we have that
i1 < i2 iff Mα |= ϕα[〈i1〉, 〈i2〉].

(3) For the sake of contradiction suppose that there exists a formulaϕ′(x,y) ∈
Lκ+,ω such thatψα has the(ϕ′,∞)-order property. Suppose thatγ is a limit
ordinal< κ+ such that the formulaϕ′ has quantifier depth< γ. Denote by
µ the cardinality(iγ+1(|L|))+. LetN |= ψα be a model of cardinalityµ
such that there exists{ai : i < µ} such that̀ (x) = `(y) = `(ai) = n < ω
and for everyi1, i2 < µ we havei1 < i2 ⇐⇒ N |= ϕ′[ai1 ,ai2 ] holds. For
everyi < µ fix 〈bil : l < n〉 = ai. By theLω1,ω-part of the definition of
ψα we have thatN |= (∀x)

∨
m<ω f

m(x) = fm+1(x). For everyc ∈ N let
m(c) := min{m : N |= fm(c) = fm+1(c)}.

Sinceµ is regular, after renaming we may assume that for everyl < n
there arekl < ω such that for everyi < µ we havem(bil) = kl. By
increasingn we may assume that for everyi < µ we have thatf(bil) ∈
{bik : k < n}, and for everyi1, i2 < µ and everyl1, l2 < n we have

N |= f(bi1l1 ) = bi1l2 ⇐⇒ N |= f(bi2l1 ) = bi2l2

∧
N |= bi1l1 = bi1l2 ⇐⇒ N |= bi2l1 = bi2l2 .

We may also assume that〈bl : l < n〉 has no repeatition. By the∆-system
lemma there existss ⊆ n such that for everyi1, i2 < µ and everyl1, l2 < n
we have thatbi1l1 = bi2l2 ⇐⇒ l1 = l2 ∈ s.

5Whenfk(y) stands forf(· · · f(y) · · · ) k-many times.
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Let Φγ be the set ofL∞,ω formulas of quantifier depth< γ with finitely
many free variables. Clearly|Φγ | ≤ iγ(|L|) and|P (Φγ)| ≤ iγ+1(|L|) <
µ = cf(µ).

Let tpγ(b0, . . . , bm−1;M) := {ϕ(x̄) ∈ Φγ : M |= ϕ[b0, . . . , bm−1]}.
Without loss of generality we may assume that for everyi, j < µ we have
tpγ(bi0, . . . , b

i
m−1;N) = tpγ(bj0, . . . , b

j
m−1;N).

We will obtain a cotradiction to the assumption thatψα has the(ϕ′,∞)-
order property by proving the following:

Claim. For everyi, j < µ we have

N |= ϕ′[bi0, . . . , b
i
n−1, b

j
0, . . . , b

j
n−1] ⇐⇒ N |= ϕ′[bj0, . . . , b

j
n−1, b

i
0, . . . , b

i
n−1]

Proof. LetB = {bαl : l ∈ s}
¤2.13

Remark 2.14. In Definition 2.5 we have introduced a third parameter, but
since it does not add anything of substance (just complicates the notation
that may be already little heavy) we decided to limit our treatment to the
above particular case. At the end of this section we discuss several general-
izations.

Theorem 2.8 provides a better upper bound than the one in Fact 1.10:

Corollary 2.15. For everyκ ≤ λ, we haveµ∗(λ, κ) ≤ iδ1(λ,κ).

Remark 2.16. Using Facts 1.10 and 2.15, one can show thatδ1(λ, κ) ≤
δ0(λ, κ) for κ ≤ λ. In [GrSh1] we have shown that in many instances the
ordinalδ1(λ, κ) is much smaller thanδ0(λ, λ) [e.g. whenκ = ℵ0, we have
thatδ1(λ, κ) = λ+, while forλ = iω1 , we haveδ0(λ, λ) > 2λ. ]
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3. CONNECTION WITH THE GALVIN -HAJNAL RANK

In Theorem 2.6 we reduced the problem of finding estimates forµ1(·, ·)
to finding bounds forδ1(·, ·). In Fact 3.2, below we state a result from
[GrSh1], first we need the following:

Definition 3.1. For uncountableκ, andλ ≥ κ, denote by

κ∗ :=
{
κ if cfκ = ℵ0

κ+ if cfκ > ℵ0.

cov(λ, κ) := min{|F | : F ⊆ S<κ∗(λ), ∀X ∈ S<κ∗(λ) ∃{wl : l < ω} ⊆
F , such thatX ⊆ ⋃l<ω wl}.

Clearlycov(λ, κ) ≤ λκ. But oftencov(λ, κ) < λκ. In [Sh g] Shelah has
a more general function. Ourcov(λ, κ) is the same ascov(λ, κ∗, κ∗,ℵ1)
from Definition II 5.2 of [Sh g].

Fact 3.2. (Theorem 4.4 of [GrSh1]) Letκ ≤ λ be infinite cardinalities.

(a) if κ = ℵ0 thenδ1(λ, κ) ≤ λ+.
(b) if cfκ > ℵ0 thenδ1(λ, κ) ≤ (cov(λ, κ) + 2κ)+.
(c) if cfκ = ℵ0 thenδ1(λ, κ) ≤ (cov(λ, κ) + 2<κ + ℵ0)+.

Note that the above inocent looking results are quite powerfull! E.g. By
a result of [Sh g] (from Chapter XI),
if (∀µ < χ)[µκ < λ]

∧
cf(χ) = ℵ0

∧
χ ≤ λ < χδ+ω1 then we have that

cov(λ, κ) = λ, thusµ1(λ, κ) ≤ iλ+ , while using Morley’s methods we get
only µ1(λ, κ) ≤ i(2λ)+ .

The following is a generalization of the cardinal–valued function we have
introduced in Definition 1.8. Here instead of assuming thatϕ(x; y) is an
Lλ+,ω formula we look at allϕ ∈ L∞,ω with quantifier depth< γ, we take
into consideration only the rank of the formulaϕ.

Definition 3.3. Let κ be an infinite cardinality, and letγ be anordinal
greater or equal toκ+, T ∈ Lκ+,ω

(a) µ∗T (γ, κ) := min{µ∗ : ∀ϕ ∈ L∞,ω, with rk(ϕ) < γ, if T has the
(ϕ, µ∗)-order property,then∃ϕ′(x; y) ∈ Lκ+,ω, such thatT has the
(ϕ′,∞)-order property}.

(b) µ∗2(γ, κ) := sup{µ∗T (γ, κ) | T ∈ Lκ+,ω}6.

The improvement in comparison to what we have seen before is that in-
stead of limiting attention to formulas with the order-property to be from
Lλ+,ω we consider what may look as a weaker order-property, by consider-
ing formulas with the order property to be from the logicL∞,ω (with rank
bounded byγ).

6Note that similarly to what we did in the previous section with the functionµ0(·, ·) above, the
functionsµ∗(γ, κ) andµ∗(λ, κ) are different objects, we distinguish between them by using different
arguments.
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Definition 3.4. Let T,<,<P , P be as in Definition 2.5. For anordinal γ >
κ let

(a) δ2(λ, γ, κ) := min{δ : Γ is a set ofT -types ,|Γ| ≤ κ, |T | ≤ λ
if ∀δ′ < δ ∃M ∈ EC(T,Γ) with otpPM , <P

M
) < γ and

otpM − P,<) ≥ δ′ , then∃N ∈ EC(T,Γ) s.t. otp(PN , <P
N

) ∈
On ∩ κ+ and(N − PN , <N ) is not well ordered}.

(b) µ2(λ, γ, κ) := min{µ : Γ is a set ofT -types , |Γ| ≤ κ, |T | ≤
λ if ∃M ∈ EC(T,Γ) ‖M‖ ≥ µ with otp(PM , <M ) < γ then
for everyχ ≥ κ ∃N ∈ EC(T,Γ) of cardinality at leastχ such that
otp(PN , <N ) ∈ On ∩ κ+}.

(c) Whenλ = κ we may omitλ. By the discussion after Theorem 2.6
this case is interesting enough.

The following is an analog of Proposition 2.8:

Proposition 3.5. Letκ andµ be cardinalities, and letγ be an ordinal≥ κ.
Then(1)⇒ (2)⇒ (3) where

(a) µ ≥ µ2(γ, κ)
(b) for everyψ ∈ Lκ+,ω, and for everyϕ(x; y) ∈ L∞,ω of quantifier

depth < γ if ψ has the(ϕ, µ)-order propertythenthere existsϕ′ ∈
Lκ+,ω such thatψ has the(ϕ′,∞)-order property.

(c) µ ≥ iγ .

Theorem 3.6. For everyκ and every ordinalγ ≥ κ we haveµ2(γ, κ) =
iδ2(γ,κ).

Theorem 3.6 will be proved in the next section.

The following theorem connectsδ2 to the Galvin–Hajnal rank and pro-
vides a lower bound forδ2(γ, κ):

Theorem 3.7. (A lower bound):Supposeκ is an uncountable regular car-
dinality. LetJ be the ideal of nonstationary subsets ofκ. For every ordinal
γ > κ we have‖γ‖J < δ2(γ, κ), when‖γ‖J is the Galvin–Hajnal rank of
the constant functionf : κ→ γ + 1 whose value isγ.

Instead of proving the above theorem, we prove a more general result. It
turns out that the idealJ of nonstationary subsets can be replaced by almost
any other ideal satisfying rather weak conditions:

Theorem 3.8. (A better lower bound):SupposeJ is anℵ1-complete ideal
onκ such that
(*) J as an ideal is generated by≤ κ sets or at least we have
(**) there exists a modelB (of an expansion of set theory) with universe
κ, |L(B)| ≤ κ andψ(P ) ∈ Lκ+,ω, whenL = L(B) ∪ {P}, P is a unary
predicate; having the following property:⊗

J for everyA ⊆ κ, we have thatA ∈ J ⇐⇒ 〈B, A〉 |= ψ(P )
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or at least⊗−
J for everyA ⊆ κ, we have thatA ∈ J ⇐⇒ forsomeA’wehavethatA⊆

A′ ∈ J, 〈B, A′〉 |= ψ(P )

then for every ordinalγ > κ we have that‖γ‖J < δ2(γ, κ).

Remark 3.9. (a) One way to see that Theorem 3.7 is a special case of
Theorem 3.8 is by using the same argument. Another formal argu-
ment (using the statement of 3.8) we can takeB := 〈κ,<〉 andψ(P )
will say that{x : P (x)} is a closed unbounded set. This satisfy⊗−

J but not
⊗

J .
(b) Note that

⊗−
J is equivalent to: for someψ(P, R̄) ∈ Lκ+,ω, we have

thatA ∈ J ⇐⇒ (∃R̄)〈B, A〉 |= ψ(P, R̄).

Proof. Let γ∗ := ‖γ‖J , and letds(γ∗) stand for the set
{ν|ν is strictly decreasing sequence of ordinals< γ∗}. There exists a fam-
ily of functions{fη : κ→ On | η ∈ ds(γ∗)} with the following properties:

(a) f〈〉 is constantlyγ.
(b) if η̂ i ∈ ds(γ∗) thenfη î <J fη, and for everyζ < κ we have
¬[fη î(ζ) < fη(ζ)]⇒ fη î(ζ) = fη(ζ) = 0.

(c) if η 6= 〈〉 then∀ζ < κ[fη(ζ) < γ].
(d) η̂ i ∈ ds(γ∗)⇒ ‖fη î‖J ≥ i.
(e) ‖f〈〉‖J = γ∗.

This is possible: Define the functionfη by induction oǹ (η):
For `(η) = 0; Let f〈〉 be the constant function as in requirement (1).
For `(η) > 0; If η̂ i ∈ ds(γ∗) then fη is defined, and by the inductive
hypothesis we have that‖fη î‖J > i (as η̂ i ∈ ds(γ∗) and‖f〈〉‖J = γ∗),
by the definition of the Galvin–Hajnal rank there existsf ′ <J fη such that
‖f ′‖J ≥ i. Now for ζ < κ let

fη î(ζ) :=
{
f ′(ζ) if f ′(ζ) < fη(ζ)
0 otherwise.

This is enough: Denote byf the sequence〈fη : η ∈ ds(γ∗)〉.
Let χ∗ be a sufficiently large regular cardinal such thatH(χ∗) conatins all
relevant sets and the structure〈H(χ∗),∈〉 reflects all relevant properties.
Let C := 〈H(χ∗),∈, <∗χ∗ , f , κ,D,B, ψ(·), J,Q, P, i〉i≤κ , when<∗χ∗ is a
well ordering of the setH(χ∗), P is the unary predicate{i : i < γ}, Q
is the unary predicate interpreted by the set{j : j < γ∗}, D interpreted
by ds(γ∗). Let T := Th(C), andΓ is a set of types consisting only of the
following type –{x ∈ κ ∧ x 6= i : i < κ}. SupposeN ∈ EC(T,Γ)
is such that(PN , <P

N
) is well ordered, and we will show that(QN , <) is

well ordered.
W.l.o.g. we may assume thatAN := {x ∈ N : N |= rk(x) ∈ P} is a

transitive set and∈N¹ AN =∈¹ AN (by taking the Mostowski’s collapse).



16 RAMI GROSSBERG AND SAHARON SHELAH

SoPN = γ′ for someγ′, and sinceN omits the type inΓ we haveκN = κ,
since the universe ofB is κ we haveBN = B. So necessarilyψ(·)N =
ψ(·).

By the axioms ofT it follows that
(*) if N |= η̂ x ∈ D thenN |= (∃X ⊆ {i < κ : fη(i) ≤ fη x̂(i)}) B |=
ψ(X). Now sinceη̂ x ∈ DN , we havefNη , f

N
η x̂ ∈ AN . So by the functions

from κ into γ′. Also ψN = ψ, by absoluness we haveN |= (∃X ⊆ {i <
κ : fη(i) ≤ fη x̂(i)}) B |= ψ(X). So by (**) we have
(*) η̂ x ∈ DN ⇒ fη x̂ <J fη.

Now if (QN , <) is not well ordered then we can find{xn ∈ QN : N |=
[xn+1 < xn]}. FromT ’s axioms it follows that there are{yn : n < ω}
such thaty0 = 〈〉, yn+1 = yn̂ xn ∈ D for all n < ω. So we have that
{fyn : κ→ γ′ | n < ω} and for everyn < ω fyn+1 <J fyn (in V ). SinceJ
is anℵ1-complete ideal we have a contradiction. We have shown that there
exists a pairT,Γ of the aproperiate cardinalities such that

(a) N ∈ EC(T,Γ), (PN , <) is well ordered⇒ (QN , <) is well or-
dered.

(b) there isN ∈ EC(T,Γ) with otp(PN , <) ≤ γ and(QN , <) of order
typeγ∗ (takeN = C).

This establishes thatγ∗ < δ2(γ, κ). ¤3.8
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4. CONCLUDING REMARKS

It is natural to ask whether the lower bound from Theorem 3.8 is equal to
the one in Fact 3.2. The following seems to be a reasonable

Conjecture 4.1. For cardinalitiesκ of uncounable cofinality andλ such that
2κ < λ we haveδ1(λ, κ) = (cov(λ, κ) + 2κ)+.

Remark 4.2. (a) Notice that whenκ is strong limit singular of cofinality
ℵ0 then the conjecture holds.

(b) Why2κ < λ – See Barwise-Kunen for independence results.
(c) The conjecture can to a large extent be traslated to a one onpcf ; it is

evident that e.g. (***) below is a sufficient condition:
(***) for any set a of≤ κ regular cardinals which are> 2κ the set

pcf(a) has cardinality at mostκ, or at least the setpcfℵ1-complete(a)
has cardinality at mostκ.

This is because by [Sh g] II 5.4 if2κ < λ thenµ = cov(λ, κ) is
the firstµ such that if{λi : i < κ} is a set of regular cardinal-
ities in the interval(2κ, λ) andJ is anℵ1-complete ideal onκ and
cf(
∏
i<κ λi, <J) is well defined then it is≤ µ.

The problem is that the ideal may not satisfy even
⊗−

J . However
by [Sh g] VII, 2.6 the idealJ is generated by a family of
≤ |pcf{λi : i < κ}| sets and even by a family of just
≤ |pcfℵ1-complete{λi : i < κ}| sets,
so we have|pcf({λi : i < κ}| ≤ κ⇒⊗

J
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