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The following theorem is the usual reason why we care about a basis; it represents a
nice way of coding a subspace.

Theorem 1. Let A = {a1, . . . , ak} be a basis for some subspace S of Rn; then for any
b ∈ S, there is a unique sequence of coefficients λ1, . . . , λk ∈ R such that

b = λ1a1 + · · ·+ λkak

Proof. Since A is a basis for S, span A = S, and so there is some sequence of coefficients
λ1, . . . , λk ∈ R such that

b = λ1a1 + · · ·+ λkak

Now if µ1, . . . , µk ∈ R is another sequence of coefficients such that

b = µ1a1 + · · ·+ µkak

then we have
(λ1 − µ1)a1 + · · ·+ (λk − µk)ak = 0

Thus by linear independence of A , λi − µi = 0 for all i, and so λi = µi for all i. �

We’ve already (essentially) seen the proofs of the following lemmas, through various
other results throughout the course, but they deserve another look. They’ll also play an
important role in the theorems we prove today.

Lemma 1. Let R be an m× n matrix in reduced row-echelon form. If m < n, then there
is a nonzero vector s ∈ Rn such that Rs = 0. In other words,

null(R) 6= {0}

Proof. The number of variables in the system Rx = 0 is exactly n. There can be at most
m-many of them that are leading variables (since there can only be one leading variable
per row); hence if m < n, then there are some variables in this system which are free.
Then by choosing any nonzero value for this free variable, and solving for the others, we
get a nonzero solution to Rx = 0. �

Lemma 2. Let A and B be m × n matrices which are row-equivalent. Then null(A) =
null(B).
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Proof. SupposeA andB are row-equivalent. Then there are elementary matrices E1, . . . , Ek

such that B = Ek · · ·E1A. So if s ∈ null(A), then

Bs = (Ek · · ·E1A)s = Ek · · ·E1(As) = Ek · · ·E10 = 0

and so s ∈ null(B). This shows null(A) ⊆ null(B). Similarly, there are elementary ma-
trices F1, . . . , F` such that A = F` · · ·F1B, and the same argument proves that null(B) ⊆
null(A). �

Corollary 1. If A is an m× n matrix and m < n, then null(A) 6= {0}.

Proof. Let R be the reduced row echelon form of A. Then by Lemma 1, null(R) 6= {0},
since R has more columns than rows. Since A and R are row-equivalent, by Lemma 2,
null(A) = null(R). So we’re done. �

Theorem 2. Let a1, . . . , an ∈ Rm be distinct vectors, and let A be the m×n matrix whose
columns are a1, . . . , an. Then the following are equivalent;

(i) {a1, . . . , an} is linearly independent,
(ii) A is left-invertible.

The following are also equivalent (though not equivalent to the above two statements)

(1) span{a1, . . . , an} = Rm,
(2) A is right-invertible.

Proof. I’ll just prove (i) is equivalent to (ii). First, suppose {a1, . . . , an} is linearly inde-
pendent. Note that for all s ∈ Rn,

As = s1a1 + · · ·+ snan

and therefore if As = 0, by linear independence it must be that s = 0; in other words,
null(A) = {0}. Now let R be the reduced row echelon form of A; then null(R) = null(A) =
{0} by Lemma 2. It follows that R has the following form;

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

...
0 0 · · · 0


Let L = R>, ie the n×m matrix

1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0
...

...
. . .

...
0 0 · · · 1 · · · 0





Then LR = In. Since R = EA for some matrix E, we get (LE)A = In, and so A is
left-invertible.

Now suppose A is left-invertible, say with left inverse B. If λ1, . . . , λn ∈ R are such
that

λ1a1 + · · ·+ λnan = 0

then λ1...
λn

 = I

λ1...
λn

 = BA

λ1...
λn

 = B(λ1a1 + · · ·+ λnan) = B0 = 0

and hence λ1 = · · · = λn = 0. �

Corollary 2. Let A be an m× n matrix. Then A is invertible if and only if its columns
make up a basis for Rm.

Example. Is the following set a basis for R4?


1
3
0
0

 ,


2
4
0
0

 ,


0
0
1
4

 ,


0
0
1
6




Theorem 3. Let k ≥ 1 and let S be any subspace of Rk. Then any two bases for S have
the same size.

Proof. Let A = {a1, . . . , an} and B = {b1, . . . , bm} be two bases for S. Let A and B be
the k × n and k ×m matrices whose columns are a1, . . . , an and b1, . . . , bm respectively.
By Theorem 1, we can write bi uniquely as a linear combination of a1, . . . , an;

bi = λi1a1 + · · ·+ λinan

Let L be the m×n matrix with entries λij. Then the above proves that B = AL. Since B
is left-invertible, so is L; for if C is a left inverse for B, then (CA)L = C(AL) = CB = I.
So null(L) = {0}. Then by Corollary 1, L can’t have more columns than rows, ie, n ≤ m.

By symmetry (swapping A with B and performing the same argument) we see that
m ≤ n. Then m = n. �

Now we can make the following definition.

Definition. If S is a subspace of Rn, then dim(S), the dimension of S, is the unique size
of any basis for S.

And now we can finally prove that all invertible matrices are square!

Corollary 3. If A is an invertible matrix then A must be square.



Proof. Suppose A is m × n and invertible. Then its columns form a basis for Rm, by
Theorem 2. There are n of them; there are also m many standard basis vectors for Rm.
Therefore m = n by Theorem 3. �


