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Definition. A subset S of Rn is called a subspace (of Rn) if:

(1) 0 ∈ S.
(2) For all x ∈ S, and λ ∈ R, λx is also in S.
(3) For all x, y ∈ S, x+ y is also in S.

Note that the second condition implies the first, so long as S is nonempty. Thus the
first condition is just there to ensure that a subspace is nonempty.

Fact 1. If S is a subspace of Rn and x1, . . . , xk ∈ S and λ1, . . . , λk ∈ R, then

λ1x1 + · · ·+ λkxk ∈ S

Example. Let A be an m× n matrix. Then

{x ∈ Rn | Ax = 0}
is a subspace of Rn. This is called the null space of A and is denoted by null(A). On the
other hand,

{Ax | x ∈ Rn}
is a subspace of Rm, and is called the range space of A, written ran(A).

Definition. Let S be a subspace of Rn. A subset X ⊆ S of S is said to span S if for
every s ∈ S, there are some x1, . . . , xk ∈ X and λ1, . . . , λk ∈ R such that

s = λ1x1 + · · ·+ λkxk

If X ⊆ Rn, then the span of X is the set

span(X) = {λ1x1 + · · ·+ λkxk | k ∈ N ∧ x1, . . . , xk ∈ X ∧ λ1, . . . , λk ∈ R}

This last definition provides us with a wealth of examples of subspaces of Rn.

Fact 2. If X is any subset of Rn then span(X) is a subspace of Rn.

It’s easy to see that if X ⊆ Y ⊆ Rn, then span(X) ⊆ span(Y ). However, the converse
doesn’t hold. In fact, we have the following example where X 6⊆ Y and Y 6⊆ X, but
span(X) = span(Y ).
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Example. Consider the following two finite subsets of R3.

X =


 1

3
−2

 ,

 1
1
−1

 ,

 0
2
−1

 Y =


 1

3
−2

 ,

 1
1
−1

 ,

 2
4
−3


Then we have span(X) = span(Y ).

The proof of the above is made much easier using the following, which we call the
“linear combination lemma.”

Lemma 1. Let x1, . . . , xk ∈ Rn be vectors in Rn. If each of y1, . . . , y` is a linear combi-
nation of x1, . . . , xk then so is any linear combination of y1, . . . , y`.

Proof. The hardest part of this proof is figuring out what the statement of the lemma is,
in formal terms. We have our vectors x1, . . . , xk ∈ Rn; suppose y1, . . . , y` are vectors in
Rn, each of which is a linear combination of x1, . . . , xk;

yi = λi1x1 + · · ·+ λikxk 1 ≤ i ≤ `

Now suppose z = µ1y1 + · · ·+ µ`y` is a linear combination of y1, . . . , y`. Then,

z =
∑̀
i=1

µiyi

=
∑̀
i=1

µi

k∑
j=1

λijxj

=
k∑

j=1

∑̀
i=1

µiλijxj

=
k∑

j=1

(∑̀
i=1

µiλij

)
xj

So z is also a linear combination of x1, . . . , xk, namely the one whose coefficient for xj is∑̀
i=1

µiλij

�

Lemma 2. Suppose S is a subspace of Rn, and X ⊆ S. Then span(X) ⊆ S.

Proof. Suppose y ∈ span(X); then there are x1, . . . , xk ∈ X and λ1, . . . , λk ∈ R such that
y = λ1x1 + · · ·+ λkxk. But x1, . . . , xk ∈ S, and so

y = λ1x1 + · · ·+ λkxk ∈ S
�



Definition. If A is an m×n matrix with columns c1, . . . , cn ∈ Rm, and rows r1, . . . , rm ∈
Rn, then we write

col(A) = span{c1, . . . , cn} row(A) = span{r1, . . . , rm}

We call col(A) and row(A) the column space and row space of A, respectively.

Fact 3. If A is any matrix, then ran(A) = col(A).

Proof. Suppose A is m× n and c1 . . . , cn ∈ Rm are the column vectors of A. We’ve seen
before that if x ∈ Rn, then

Ax = x1c1 + · · ·+ xncn

The right-hand side of the above equation is a member of col(A), since it’s a linear
combination of the columns of A. Since x ∈ Rn was arbitrary, this shows ran(A) ⊆ col(A).
Now if y ∈ col(A), then y is a linear combination of the columns of A, and hence for some
λ1, . . . , λn ∈ R,

y = λ1c1 + · · ·+ λncn

But then by the same fact,

y = λ1c1 + · · ·+ λncn = A

λ1...
λn


and the right-hand side of this equation is in ran(A). This shows col(A) ⊆ ran(A). �

You might guess now, since row(A) and null(A) are both subspaces of Rn, that they are
equal; but you’d be wrong! They are related, but we won’t see how for a while yet. For
now, let’s see how we can phrase a problem related to spanning sets in terms of Gaussian
elimination.

Example. Let

X =




0
1
−2
3

 ,


2
4
6
0

 ,


3
−5
7
−1




Is the vector b =

(
2
3
5
7

)
in the span of X?

To solve this, let

A =


0 2 3
1 4 −5
−2 6 7
3 0 −1


Then b is in the span of X if and only if there is some x ∈ R3 such that Ax = b.



Example. Let X be the following set.
0

2
1

 ,

 1
1
−1

 ,

 0
2
−1


Prove that span(X) = R3.

To prove this it suffices to prove that the following matrix is right-invertible;

A =

0 1 0
2 1 2
1 −1 −1


for which it suffices to prove that A is fully invertible;0 1 0

2 1 2
1 −1 −1

 1 0 0
0 1 0
0 0 1


ρ2 → ρ2 − ρ1
ρ3 → ρ3 + ρ1

0 1 0
2 0 2
1 0 −1

  1 0 0
−1 1 0
1 0 1


ρ2 → ρ2 − 2ρ3

0 1 0
0 0 4
1 0 −1

  1 0 0
−3 1 −2
1 0 1


ρ1 ↔ ρ2
ρ1 ↔ ρ3

1 0 −1
0 1 0
0 0 4

  1 0 1
1 0 0
−3 1 −2


ρ3 → ρ3/4
ρ1 → ρ1 + ρ3

1 0 0
0 1 0
0 0 1

  1/4 1/4 1/2
1 0 0
−3/4 1/4 −1/2


(I computed A−1 above, but this is not necessary to prove that A is invertible; it just
suffices to show, since A is square, that A reduces to I.)


