21-241 MATRICES AND LINEAR TRANSFORMATIONS
 SUMMER 12012
 COURSE NOTES
 MAY 29

PAUL MCKENNEY

Definition. A subset S of \mathbb{R}^{n} is called a subspace (of \mathbb{R}^{n}) if:
(1) $0 \in S$.
(2) For all $x \in S$, and $\lambda \in \mathbb{R}, \lambda x$ is also in S.
(3) For all $x, y \in S, x+y$ is also in S.

Note that the second condition implies the first, so long as S is nonempty. Thus the first condition is just there to ensure that a subspace is nonempty.

Fact 1. If S is a subspace of \mathbb{R}^{n} and $x_{1}, \ldots, x_{k} \in S$ and $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$, then

$$
\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k} \in S
$$

Example. Let A be an $m \times n$ matrix. Then

$$
\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}
$$

is a subspace of \mathbb{R}^{n}. This is called the null space of A and is denoted by $\operatorname{null}(A)$. On the other hand,

$$
\left\{A x \mid x \in \mathbb{R}^{n}\right\}
$$

is a subspace of \mathbb{R}^{m}, and is called the range space of A, written $\operatorname{ran}(A)$.
Definition. Let S be a subspace of \mathbb{R}^{n}. A subset $X \subseteq S$ of S is said to span S if for every $s \in S$, there are some $x_{1}, \ldots, x_{k} \in X$ and $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ such that

$$
s=\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k}
$$

If $X \subseteq \mathbb{R}^{n}$, then the span of X is the set

$$
\operatorname{span}(X)=\left\{\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k} \mid k \in \mathbb{N} \wedge x_{1}, \ldots, x_{k} \in X \wedge \lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}\right\}
$$

This last definition provides us with a wealth of examples of subspaces of \mathbb{R}^{n}.
Fact 2. If X is any subset of \mathbb{R}^{n} then $\operatorname{span}(X)$ is a subspace of \mathbb{R}^{n}.

It's easy to see that if $X \subseteq Y \subseteq \mathbb{R}^{n}$, then $\operatorname{span}(X) \subseteq \operatorname{span}(Y)$. However, the converse doesn't hold. In fact, we have the following example where $X \nsubseteq Y$ and $Y \nsubseteq X$, but $\operatorname{span}(X)=\operatorname{span}(Y)$.

Example. Consider the following two finite subsets of \mathbb{R}^{3}.

$$
X=\left\{\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)\right\} \quad Y=\left\{\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
2 \\
4 \\
-3
\end{array}\right)\right\}
$$

Then we have $\operatorname{span}(X)=\operatorname{span}(Y)$.
The proof of the above is made much easier using the following, which we call the "linear combination lemma."
Lemma 1. Let $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$ be vectors in \mathbb{R}^{n}. If each of y_{1}, \ldots, y_{ℓ} is a linear combination of x_{1}, \ldots, x_{k} then so is any linear combination of y_{1}, \ldots, y_{ℓ}.

Proof. The hardest part of this proof is figuring out what the statement of the lemma is, in formal terms. We have our vectors $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$; suppose y_{1}, \ldots, y_{ℓ} are vectors in \mathbb{R}^{n}, each of which is a linear combination of x_{1}, \ldots, x_{k};

$$
y_{i}=\lambda_{i 1} x_{1}+\cdots+\lambda_{i k} x_{k} \quad 1 \leq i \leq \ell
$$

Now suppose $z=\mu_{1} y_{1}+\cdots+\mu_{\ell} y_{\ell}$ is a linear combination of y_{1}, \ldots, y_{ℓ}. Then,

$$
\begin{aligned}
z & =\sum_{i=1}^{\ell} \mu_{i} y_{i} \\
& =\sum_{i=1}^{\ell} \mu_{i} \sum_{j=1}^{k} \lambda_{i j} x_{j} \\
& =\sum_{j=1}^{k} \sum_{i=1}^{\ell} \mu_{i} \lambda_{i j} x_{j} \\
& =\sum_{j=1}^{k}\left(\sum_{i=1}^{\ell} \mu_{i} \lambda_{i j}\right) x_{j}
\end{aligned}
$$

So z is also a linear combination of x_{1}, \ldots, x_{k}, namely the one whose coefficient for x_{j} is

$$
\sum_{i=1}^{\ell} \mu_{i} \lambda_{i j}
$$

Lemma 2. Suppose S is a subspace of \mathbb{R}^{n}, and $X \subseteq S$. Then $\operatorname{span}(X) \subseteq S$.
Proof. Suppose $y \in \operatorname{span}(X)$; then there are $x_{1}, \ldots, x_{k} \in X$ and $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ such that $y=\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k}$. But $x_{1}, \ldots, x_{k} \in S$, and so

$$
y=\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k} \in S
$$

Definition. If A is an $m \times n$ matrix with columns $c_{1}, \ldots, c_{n} \in \mathbb{R}^{m}$, and rows $r_{1}, \ldots, r_{m} \in$ \mathbb{R}^{n}, then we write

$$
\operatorname{col}(A)=\operatorname{span}\left\{c_{1}, \ldots, c_{n}\right\} \quad \operatorname{row}(A)=\operatorname{span}\left\{r_{1}, \ldots, r_{m}\right\}
$$

We call $\operatorname{col}(A)$ and $\operatorname{row}(A)$ the column space and row space of A, respectively.
Fact 3. If A is any matrix, then $\operatorname{ran}(A)=\operatorname{col}(A)$.

Proof. Suppose A is $m \times n$ and $c_{1} \ldots, c_{n} \in \mathbb{R}^{m}$ are the column vectors of A. We've seen before that if $x \in \mathbb{R}^{n}$, then

$$
A x=x_{1} c_{1}+\cdots+x_{n} c_{n}
$$

The right-hand side of the above equation is a member of $\operatorname{col}(A)$, since it's a linear combination of the columns of A. Since $x \in \mathbb{R}^{n}$ was arbitrary, this shows $\operatorname{ran}(A) \subseteq \operatorname{col}(A)$. Now if $y \in \operatorname{col}(A)$, then y is a linear combination of the columns of A, and hence for some $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$,

$$
y=\lambda_{1} c_{1}+\cdots+\lambda_{n} c_{n}
$$

But then by the same fact,

$$
y=\lambda_{1} c_{1}+\cdots+\lambda_{n} c_{n}=A\left(\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n}
\end{array}\right)
$$

and the right-hand side of this equation is in $\operatorname{ran}(A)$. This shows $\operatorname{col}(A) \subseteq \operatorname{ran}(A)$.

You might guess now, since $\operatorname{row}(A)$ and $\operatorname{null}(A)$ are both subspaces of \mathbb{R}^{n}, that they are equal; but you'd be wrong! They are related, but we won't see how for a while yet. For now, let's see how we can phrase a problem related to spanning sets in terms of Gaussian elimination.

Example. Let

$$
X=\left\{\left(\begin{array}{c}
0 \\
1 \\
-2 \\
3
\end{array}\right),\left(\begin{array}{l}
2 \\
4 \\
6 \\
0
\end{array}\right),\left(\begin{array}{c}
3 \\
-5 \\
7 \\
-1
\end{array}\right)\right\}
$$

Is the vector $b=\left(\begin{array}{l}2 \\ 3 \\ 5 \\ 7\end{array}\right)$ in the span of X ?
To solve this, let

$$
A=\left(\begin{array}{ccc}
0 & 2 & 3 \\
1 & 4 & -5 \\
-2 & 6 & 7 \\
3 & 0 & -1
\end{array}\right)
$$

Then b is in the span of X if and only if there is some $x \in \mathbb{R}^{3}$ such that $A x=b$.

Example. Let X be the following set.

$$
\left\{\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right)\right\}
$$

Prove that $\operatorname{span}(X)=\mathbb{R}^{3}$.
To prove this it suffices to prove that the following matrix is right-invertible;

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
2 & 1 & 2 \\
1 & -1 & -1
\end{array}\right)
$$

for which it suffices to prove that A is fully invertible;

$$
\left.\begin{array}{rl}
\begin{array}{rl}
\rho_{2} \rightarrow \rho_{2}-\rho_{1} \\
\rho_{3} \rightarrow \rho_{3}+\rho_{1}
\end{array}\left(\begin{array}{ccc}
0 & 1 & 0 \\
2 & 0 & 2 \\
1 & -1 & -1
\end{array}\right) & \left(\begin{array}{ccc}
0 & 1 & 0 \\
2 & 1 & 2 \\
1 & 0 & -1
\end{array}\right) \\
\rho_{2} \rightarrow \rho_{2}-2 \rho_{3} \\
0 & 1 \\
0 & 0 \\
1
\end{array}\right)
$$

(I computed A^{-1} above, but this is not necessary to prove that A is invertible; it just suffices to show, since A is square, that A reduces to I.)

