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Definition 1. A linear equation with a constant term of zero, ie of the form

a1x1 + · · ·+ anxn = 0

is called homogeneous. A system of linear equations is called homogeneous if each of its
equations is homogeneous.

Note that a homogeneous system always has at least one solution, namely the zero
vector.

Lemma 1. Let A be an m×n matrix. If A is left-invertible then the only solution to the
homogeneous system Ax = 0 is the zero vector.

Proof. Let B be a left-inverse for A. (Why is it incorrect to talk about A−1 here?) Then
if s is any solution to the homogeneous system Ax = 0, we have

s = Is = (BA)s = B(As) = B0 = 0

So in fact, 0 is the only solution. �

The proof of the following lemma will have to wait for a later date. I’ll give a sketch,
and an example of its use.

Lemma 2. Suppose a system Ax = b, where A is m×n, has at least one solution, p ∈ Rn.
Let k be the number of free variables in some echelon form of the system Ax = b. Then
there exist solutions h1, . . . , hk ∈ Rn to the homogeneous equation Ax = 0, such that

{s ∈ Rn | As = b} = {p+ c1h1 + · · ·+ ckhk | c1, . . . , ck ∈ R}

Proof sketch. The main idea here is that if h ∈ Rn is any solution to the homogeneous
system Ax = 0, then

A(p+ h) = Ap+ Ah = Ap+ 0 = Ap = b

and then so is p+ h. Moreover if any s ∈ Rn is a solution to Ax = b, then

A(s− p) = As− Ap = b− b = 0

and so s− p is a solution to the homogeneous system Ax = 0. This tells us that a vector
s ∈ Rn is a solution to Ax = b if and only if it’s of the form p + h, where h is a solution
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to the homogeneous system Ax = 0. To see that there are fixed vectors h1, . . . , hk ∈ Rn

which generate the solutions to Ax = 0 will require more work; it essentially falls out of
back-substitution. �

Example. The system

x + z + w = 2

2x− y + w = 1

x+ y + 3z + 2w = 5

has a solution

(
0
0
1
1

)
. What about the homogeneous system? It reduces to

x + z + w = 0

y + 2z + w = 0

0 = 0

Then the solution set to the homogeneous system isz

−1
−2
1
0

+ w


−1
−1
0
1


∣∣∣∣∣∣∣∣ z, w ∈ R


and so the solution set to the original system of equations is


0
0
1
1

+ z


−1
−2
1
0

+ w


−1
−1
0
1


∣∣∣∣∣∣∣∣ z, w ∈ R


Lemma 3. Suppose R is an invertible, n× n matrix in reduced row echelon form. Then
R = I.

Proof. Consider the homogeneous system Rx = 0. If there were any free variables in this
system, then there would be a nonzero vector h ∈ Rn such that Rh = 0. But as R is
invertible, by the lemma above this can’t happen. So there can’t be any free variables in
this system. Since R is in reduced row echelon form, this means exactly that R = In. �

Lemma 4. If A and B are square, invertible matrices of the same size, then AB is also
invertible. Moreover, (AB)−1 = B−1A−1.

Proof. We have

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I



and

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I

�

Corollary 1. If A1, . . . , Ak are square, invertible matrices of the same size, then A1A2 · · ·Ak

is also invertible, and (A1 · · ·Ak)−1 = A−1
k · · ·A

−1
1 .

Proof. By induction on k. This proof is routine, but I’ll include it here just to give an
example of such a routine. When k = 1 the statement is trivial. So suppose it holds for k.
To prove it for k + 1, let A1, . . . , Ak, Ak+1 be square, invertible matrices of the same size.
Then A1 · · ·Ak is invertible and (A1 · · ·Ak)−1 = A−1

k · · ·A
−1
1 by the induction hypothesis.

Hence by the above lemma, (A1 · · ·Ak)Ak+1 is invertible, and

((A1 · · ·Ak)Ak+1)
−1 = A−1

k+1(A1 · · ·Ak)−1 = A−1
k+1(A

−1
k · · ·A

−1
1 )

Hence the statement is proven for k + 1, and by induction it holds for all k. �

Lemma 5. If A is an invertible matrix, then so is A−1, and (A−1)−1 = A.

Proof. We have

AA−1 = I A−1A = I

simply by definition of A−1. Then A is both a left and right inverse for A−1. �

We’ve already essentially seen the following result, but I’ll repeat the proof for clarity.

Lemma 6. If E is an elementary matrix, then E is invertible, and E−1 is the elementary
matrix which implements the row operation that reverses that which E implements.

Proof. Suppose E is m×m. Let F be the (m×m) elementary matrix which implements
the reverse of the row operation E implements. (I’m not calling it E−1 yet because that
would be presumptuous.) Then (EF )A = A and (FE)A = A for all m × n matrices A,
for all n. In particular, with A = Im, we get

EF = (EF )Im = Im FE = (FE)Im = Im

�

Theorem 1. Let A be a square matrix. Then A is invertible if and only if A is row-
equivalent to I.

Proof. Let R be the reduced row echelon form of A. Since we can obtain R from A by
row operations, there are elementary matrices E1, . . . , Ek such that

R = EkEk−1 · · ·E1A

As we’ve seen before, elementary matrices are invertible. Hence by the above, R is
invertible, and square. Then R is actually I.



If A is row-equivalent to I, then there are elementary matrices E1, . . . , Ek such that

EkEk−1 · · ·E1A = I

Then

A = IA = (EkEk−1 · · ·E1)
−1(EkEk−1 · · ·E1)A = (EkEk−1 · · ·E1)

−1I = (EkEk−1 · · ·E1)
−1

�

The proof of the theorem above actually gives us a way of computing the inverse of a
square matrix. I’ll summarize it in this fact.

Fact 1. Let A be an invertible matrix, and let E1, . . . , Ek be elementary matrices reducing
A to I, ie, such that

EkEk−1 · · ·E1A = I

Then A−1 = EkEk−1 · · ·E1I. In terms of row-operations, to find the inverse of A, we start
with I and apply the same row operations we used to reduce A to I.

Typically, when finding the inverse of A, one performs row operations on A and I in
parallel, as in the following example.

Example. Let A = ( 2 7
1 4 ). Then we compute A−1 using the following.(

2 7
1 4

) (
1 0
0 1

)
ρ1 ↔ ρ2

(
1 4
2 7

) (
0 1
1 0

)
ρ2 → ρ2 − 2ρ1

(
1 4
0 −1

) (
0 1
1 −2

)
ρ1 → ρ1 + 4ρ1

(
1 0
0 −1

) (
4 −7
1 −2

)
ρ2 → −ρ2

(
1 0
0 1

) (
4 −7
−1 2

)
Now to check, we compute; (

2 7
1 4

)(
4 −7
−1 2

)
=

(
1 0
0 1

)
So it worked!


