21-241 MATRICES AND LINEAR TRANSFORMATIONS
 SUMMER 12012
 COURSE NOTES
 DAY 5

PAUL MCKENNEY

Definition 1. A linear equation with a constant term of zero, ie of the form

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=0
$$

is called homogeneous. A system of linear equations is called homogeneous if each of its equations is homogeneous.

Note that a homogeneous system always has at least one solution, namely the zero vector.

Lemma 1. Let A be an $m \times n$ matrix. If A is left-invertible then the only solution to the homogeneous system $A x=0$ is the zero vector.

Proof. Let B be a left-inverse for A. (Why is it incorrect to talk about A^{-1} here?) Then if s is any solution to the homogeneous system $A x=0$, we have

$$
s=I s=(B A) s=B(A s)=B 0=0
$$

So in fact, 0 is the only solution.

The proof of the following lemma will have to wait for a later date. I'll give a sketch, and an example of its use.

Lemma 2. Suppose a system $A x=b$, where A is $m \times n$, has at least one solution, $p \in \mathbb{R}^{n}$. Let k be the number of free variables in some echelon form of the system $A x=b$. Then there exist solutions $h_{1}, \ldots, h_{k} \in \mathbb{R}^{n}$ to the homogeneous equation $A x=0$, such that

$$
\left\{s \in \mathbb{R}^{n} \mid A s=b\right\}=\left\{p+c_{1} h_{1}+\cdots+c_{k} h_{k} \mid c_{1}, \ldots, c_{k} \in \mathbb{R}\right\}
$$

Proof sketch. The main idea here is that if $h \in \mathbb{R}^{n}$ is any solution to the homogeneous system $A x=0$, then

$$
A(p+h)=A p+A h=A p+0=A p=b
$$

and then so is $p+h$. Moreover if any $s \in \mathbb{R}^{n}$ is a solution to $A x=b$, then

$$
A(s-p)=A s-A p=b-b=0
$$

and so $s-p$ is a solution to the homogeneous system $A x=0$. This tells us that a vector $s \in \mathbb{R}^{n}$ is a solution to $A x=b$ if and only if it's of the form $p+h$, where h is a solution
to the homogeneous system $A x=0$. To see that there are fixed vectors $h_{1}, \ldots, h_{k} \in \mathbb{R}^{n}$ which generate the solutions to $A x=0$ will require more work; it essentially falls out of back-substitution.

Example. The system

$$
\begin{array}{r}
x+z+w=2 \\
2 x-y+w=1 \\
x+y+3 z+2 w=5
\end{array}
$$

has a solution $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)$. What about the homogeneous system? It reduces to

$$
\begin{aligned}
x+z+w & =0 \\
y+2 z+w & =0 \\
0 & =0
\end{aligned}
$$

Then the solution set to the homogeneous system is

$$
\left\{\left.z\left(\begin{array}{c}
-1 \\
-2 \\
1 \\
0
\end{array}\right)+w\left(\begin{array}{c}
-1 \\
-1 \\
0 \\
1
\end{array}\right) \right\rvert\, z, w \in \mathbb{R}\right\}
$$

and so the solution set to the original system of equations is

$$
\left\{\left.\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right)+z\left(\begin{array}{c}
-1 \\
-2 \\
1 \\
0
\end{array}\right)+w\left(\begin{array}{c}
-1 \\
-1 \\
0 \\
1
\end{array}\right) \right\rvert\, z, w \in \mathbb{R}\right\}
$$

Lemma 3. Suppose R is an invertible, $n \times n$ matrix in reduced row echelon form. Then $R=I$.

Proof. Consider the homogeneous system $R x=0$. If there were any free variables in this system, then there would be a nonzero vector $h \in \mathbb{R}^{n}$ such that $R h=0$. But as R is invertible, by the lemma above this can't happen. So there can't be any free variables in this system. Since R is in reduced row echelon form, this means exactly that $R=I_{n}$.

Lemma 4. If A and B are square, invertible matrices of the same size, then $A B$ is also invertible. Moreover, $(A B)^{-1}=B^{-1} A^{-1}$.

Proof. We have

$$
(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}=A I A^{-1}=A A^{-1}=I
$$

and

$$
\left(B^{-1} A^{-1}\right)(A B)=B^{-1}\left(A^{-1} A\right) B=B^{-1} I B=B^{-1} B=I
$$

Corollary 1. If A_{1}, \ldots, A_{k} are square, invertible matrices of the same size, then $A_{1} A_{2} \cdots A_{k}$ is also invertible, and $\left(A_{1} \cdots A_{k}\right)^{-1}=A_{k}^{-1} \cdots A_{1}^{-1}$.

Proof. By induction on k. This proof is routine, but I'll include it here just to give an example of such a routine. When $k=1$ the statement is trivial. So suppose it holds for k. To prove it for $k+1$, let $A_{1}, \ldots, A_{k}, A_{k+1}$ be square, invertible matrices of the same size. Then $A_{1} \cdots A_{k}$ is invertible and $\left(A_{1} \cdots A_{k}\right)^{-1}=A_{k}^{-1} \cdots A_{1}^{-1}$ by the induction hypothesis. Hence by the above lemma, $\left(A_{1} \cdots A_{k}\right) A_{k+1}$ is invertible, and

$$
\left(\left(A_{1} \cdots A_{k}\right) A_{k+1}\right)^{-1}=A_{k+1}^{-1}\left(A_{1} \cdots A_{k}\right)^{-1}=A_{k+1}^{-1}\left(A_{k}^{-1} \cdots A_{1}^{-1}\right)
$$

Hence the statement is proven for $k+1$, and by induction it holds for all k.
Lemma 5. If A is an invertible matrix, then so is A^{-1}, and $\left(A^{-1}\right)^{-1}=A$.

Proof. We have

$$
A A^{-1}=I \quad A^{-1} A=I
$$

simply by definition of A^{-1}. Then A is both a left and right inverse for A^{-1}.

We've already essentially seen the following result, but I'll repeat the proof for clarity.
Lemma 6. If E is an elementary matrix, then E is invertible, and E^{-1} is the elementary matrix which implements the row operation that reverses that which E implements.

Proof. Suppose E is $m \times m$. Let F be the $(m \times m)$ elementary matrix which implements the reverse of the row operation E implements. (I'm not calling it E^{-1} yet because that would be presumptuous.) Then $(E F) A=A$ and $(F E) A=A$ for all $m \times n$ matrices A, for all n. In particular, with $A=I_{m}$, we get

$$
E F=(E F) I_{m}=I_{m} \quad F E=(F E) I_{m}=I_{m}
$$

Theorem 1. Let A be a square matrix. Then A is invertible if and only if A is rowequivalent to I.

Proof. Let R be the reduced row echelon form of A. Since we can obtain R from A by row operations, there are elementary matrices E_{1}, \ldots, E_{k} such that

$$
R=E_{k} E_{k-1} \cdots E_{1} A
$$

As we've seen before, elementary matrices are invertible. Hence by the above, R is invertible, and square. Then R is actually I.

If A is row-equivalent to I, then there are elementary matrices E_{1}, \ldots, E_{k} such that

$$
E_{k} E_{k-1} \cdots E_{1} A=I
$$

Then

$$
A=I A=\left(E_{k} E_{k-1} \cdots E_{1}\right)^{-1}\left(E_{k} E_{k-1} \cdots E_{1}\right) A=\left(E_{k} E_{k-1} \cdots E_{1}\right)^{-1} I=\left(E_{k} E_{k-1} \cdots E_{1}\right)^{-1}
$$

The proof of the theorem above actually gives us a way of computing the inverse of a square matrix. I'll summarize it in this fact.

Fact 1. Let A be an invertible matrix, and let E_{1}, \ldots, E_{k} be elementary matrices reducing A to I, ie, such that

$$
E_{k} E_{k-1} \cdots E_{1} A=I
$$

Then $A^{-1}=E_{k} E_{k-1} \cdots E_{1} I$. In terms of row-operations, to find the inverse of A, we start with I and apply the same row operations we used to reduce A to I.

Typically, when finding the inverse of A, one performs row operations on A and I in parallel, as in the following example.
Example. Let $A=\left(\begin{array}{ll}2 & 7 \\ 1 & 4\end{array}\right)$. Then we compute A^{-1} using the following.

$$
\left.\begin{array}{rl}
\rho_{1} \leftrightarrow \rho_{2}
\end{array} \begin{array}{ll}
\left(\begin{array}{ll}
2 & 7 \\
1 & 4
\end{array}\right) & \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\rho_{2} \rightarrow \rho_{2}-2 \rho_{1} \\
2 & 7
\end{array}\right) \quad\left(\begin{array}{cc}
1 & 4 \\
0 & -1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Now to check, we compute;

$$
\left(\begin{array}{ll}
2 & 7 \\
1 & 4
\end{array}\right)\left(\begin{array}{cc}
4 & -7 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

So it worked!

