21-241 MATRICES AND LINEAR TRANSFORMATIONS
 SUMMER 12012
 COURSE NOTES
 DAY 4

PAUL MCKENNEY

Definition 1. A matrix A is in reduced row echelon form (rref) if
(1) Every zero row in A is below every nonzero row.
(2) The leading term in any nonzero row in A is strictly to the right of all the leading terms in the rows above it.
(3) The leading term in a nonzero row in A is a 1 , and is the only nonzero entry in its column.

A system of linear equations $A x=b$ is in reduced row echelon form if and only if A is.
Definition 2. Let A be an $m \times n$ matrix.
(1) An $n \times m$ matrix B such that $B A=I_{n}$ is called a left inverse for A.
(2) An $n \times m$ matrix C such that $A C=I_{m}$ is called a right inverse for A.
(3) An $n \times m$ matrix D which is both a left inverse and a right inverse for A is called an inverse for A.

If A has a left inverse or right inverse, A is called left-invertible or right-invertible respectively. A is called invertible if it is both left-invertible and right-invertible.

Notice that, on the face of it, a matrix may be invertible but have no inverse. The following result should correct our doubt about that.
Fact 1. Suppose A is invertible, and B and C are a left inverse and a right inverse for A, respectively. Then $B=C$, and hence A has an inverse.

Proof. We have

$$
B=B I=B(A C)=(B A) C=I C=C
$$

We also get a uniqueness theorem out of this, which will allow us to make the following definition.

Corollary 1. Suppose A is invertible. Then there is exactly one inverse for A.

Proof. If B and C are inverses for A, then in particular, B is a left inverse and C a right inverse. Then $B=C$ by the above fact.

Definition 3. If A is an invertible matrix, then A^{-1} is the unique inverse of A.
Theorem 1. Let A be an $m \times n$ matrix. Then the following are equivalent.
(1) For any choice of constants b_{1}, \ldots, b_{m}, the system of linear equations

$$
\begin{array}{r}
a_{11} x_{1}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+\cdots+a_{2 n} x_{n}=b_{2} \\
\\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}=b_{m}
\end{array}
$$

has at least one solution.
(2) For every $b \in \mathbb{R}^{m}$, there is some $s \in \mathbb{R}^{n}$ such that $A s=b$.
(3) $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is surjective.
(4) A is right-invertible.

Proof. The equivalence of (1), (2), and (3) is just a recapitulation of the definitions in play. The real work is in proving they're equivalent to (4).

I'll prove (2) is equivalent to (4). First, assume (2); we'll prove (4). Consider the standard basis vectors in \mathbb{R}^{m};

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right) \cdots e_{m}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

By our assumption, there are vectors $s_{1}, \ldots, s_{m} \in \mathbb{R}^{n}$ such that $A s_{1}=e_{1}, \ldots, A s_{m}=e_{m}$. Now let B be the matrix with columns s_{1}, \ldots, s_{m}, in that order. Then B is $n \times m$, and for any $i, j, B_{i j}=\left(s_{j}\right)_{i}$, the i th entry of column vector s_{j}. Then for all $i, j \leq m$, we have

$$
(A B)_{i j}=\sum_{k=1}^{n} A_{i k} B_{k j}=\sum_{k=1}^{n} A_{i k}\left(s_{j}\right)_{k}=\left(A s_{j}\right)_{i}=\left(e_{j}\right)_{i}=I_{i j}
$$

so $A B=I$.
Now assume (4), and let B be a right inverse for A. Let $b \in \mathbb{R}^{m}$ be given. Then

$$
A(B b)=(A B) b=I b=b
$$

and so there is some $s \in \mathbb{R}^{n}$ such that $A s=b$, namely $s=B b$.

