21-241 MATRICES AND LINEAR TRANSFORMATIONS
 SUMMER 12012
 COURSE NOTES
 DAY 3

PAUL MCKENNEY

Definition 1. A linear transformation is a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that for all $x, y \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$,
(1) $T(x+y)=T(x)+T(y)$, and
(2) $T(\lambda x)=\lambda T(x)$.

Fact 1. (a) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, $x_{1}, \ldots, x_{k} \in \mathbb{R}^{n}$, and $\lambda_{1}, \ldots, \lambda_{k} \in$ \mathbb{R}, then

$$
T\left(\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k}\right)=\lambda_{1} T\left(x_{1}\right)+\cdots+\lambda_{k} T\left(x_{k}\right)
$$

(b) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then $T(0)=0$.
(c) If $\lambda \in \mathbb{R}$ and $S, T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are linear transformations, then so are the functions $S+T$ and λT defined by

$$
(S+T)(x)=S(x)+T(x) \quad(\lambda T)(x)=\lambda(T(x)) \quad x \in \mathbb{R}^{n}
$$

Example. The following are all linear transformations.
(1) The identity map id: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ which takes $x \in \mathbb{R}^{n}$ to itself.
(2) The map which rotates a point x in the plane \mathbb{R}^{2} around the origin by a fixed angle θ.
(3) The map which takes a given $x \in \mathbb{R}^{n}$ to $A x \in \mathbb{R}^{m}$, where A is a fixed $m \times n$ matrix.

It is an important fact that the last example is completely representative of all linear transformations.

Theorem 1. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then there is some $m \times n$ matrix A such that for all $x \in \mathbb{R}^{n}$,

$$
T(x)=A x
$$

Moreover such an A is unique; ie, there is exactly one $m \times n$ matrix A such that the above holds for all $x \in \mathbb{R}^{n}$.

Proof. We will make use of the following vectors in \mathbb{R}^{n}, which you will get to know very well over the course of the semester;

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \quad e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right) \quad \ldots \quad e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

These are called the standard basis vectors for \mathbb{R}^{n}. Now let $a_{i}=T\left(e_{i}\right)$ for each $i \leq n$. Then each a_{i} is a column vector in \mathbb{R}^{m}. Let A be the $m \times n$ matrix whose i th column (from left to right) is a_{i}. We'll show that this A works, ie,

$$
\forall x \in \mathbb{R}^{n} \quad T(x)=A x
$$

To see this, let $x \in \mathbb{R}^{n}$ be given. Then

$$
\begin{aligned}
x & =\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
x_{1} \\
0 \\
\vdots \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
x_{2} \\
\vdots \\
0
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
x_{n}
\end{array}\right) \\
& =x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{n} e_{n}
\end{aligned}
$$

Hence, by Fact 1,

$$
T(x)=T\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)=x_{1} T\left(e_{1}\right)+\cdots+x_{n} T\left(e_{n}\right)=x_{1} a_{1}+\cdots+x_{n} a_{n}=A x
$$

Since $x \in \mathbb{R}^{n}$ was given, this proves that there is a matrix A which implements T. To show uniqueness, ie that there is at most one such A, suppose both A and B are $m \times n$ matrices which implement T. Then,

$$
\forall x \in \mathbb{R}^{n} \quad A x=T(x)=B x
$$

Now we look again at the standard basis vectors; we have $A e_{i}=T\left(e_{i}\right)=B e_{i}$ for each $i \leq n$. Notice that $A e_{i}$ and $B e_{i}$ are the i th columns of A and B respectively. Hence the i th column of A is equal to the i th column of B, for each $i \leq n$; it follows then that $A=B$.
Definition 2. The standard matrix of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the unique $m \times n$ matrix A such that $T(x)=A x$ for all $x \in \mathbb{R}^{n}$.

Example. Let's work out the standard matrix of the linear transformation R_{θ} which rotates a point $x \in \mathbb{R}^{2}$ around the origin (counterclockwise) by a fixed angle θ. By the proof of the above theorem, to find the columns of this matrix we need only find $R_{\theta}\left(e_{1}\right)$ and $R_{\theta}\left(e_{2}\right)$, where $e_{1}=\binom{1}{0}$ and $e_{2}=\binom{0}{1}$. In this case e_{1} is the unit vector in the x direction; so by trigonometry, rotation by the angle θ brings us to the point $\binom{\cos \theta}{\sin \theta}$.

Some geometric pondering also shows that rotating e_{2}, the unit vector in the y direction, by the angle θ brings us to $\binom{-\sin \theta}{\cos \theta}$. Hence the standard matrix for T is

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

