21-241 MATRICES AND LINEAR TRANSFORMATIONS SUMMER 1 2012 COURSE NOTES DAY 3

PAUL MCKENNEY

Definition 1. A linear transformation is a function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that for all $x, y \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$,

- (1) T(x+y) = T(x) + T(y), and
- (2) $T(\lambda x) = \lambda T(x)$.

Fact 1. (a) If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, $x_1, \ldots, x_k \in \mathbb{R}^n$, and $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$, then

$$T(\lambda_1 x_1 + \dots + \lambda_k x_k) = \lambda_1 T(x_1) + \dots + \lambda_k T(x_k)$$

- (b) If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then T(0) = 0.
- (c) If $\lambda \in \mathbb{R}$ and $S, T : \mathbb{R}^n \to \mathbb{R}^m$ are linear transformations, then so are the functions S + T and λT defined by

$$(S+T)(x) = S(x) + T(x)$$
 $(\lambda T)(x) = \lambda(T(x))$ $x \in \mathbb{R}^n$

Example. The following are all linear transformations.

- (1) The identity map id: $\mathbb{R}^n \to \mathbb{R}^n$ which takes $x \in \mathbb{R}^n$ to itself.
- (2) The map which rotates a point x in the plane \mathbb{R}^2 around the origin by a fixed angle θ .
- (3) The map which takes a given $x \in \mathbb{R}^n$ to $Ax \in \mathbb{R}^m$, where A is a fixed $m \times n$ matrix.

It is an important fact that the last example is completely representative of all linear transformations.

Theorem 1. If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then there is some $m \times n$ matrix A such that for all $x \in \mathbb{R}^n$,

$$T(x) = Ax$$

Moreover such an A is unique; ie, there is exactly one $m \times n$ matrix A such that the above holds for all $x \in \mathbb{R}^n$.

Proof. We will make use of the following vectors in \mathbb{R}^n , which you will get to know very well over the course of the semester;

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \qquad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} \qquad \cdots \qquad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

These are called the standard basis vectors for \mathbb{R}^n . Now let $a_i = T(e_i)$ for each $i \leq n$. Then each a_i is a column vector in \mathbb{R}^m . Let A be the $m \times n$ matrix whose ith column (from left to right) is a_i . We'll show that this A works, ie,

$$\forall x \in \mathbb{R}^n \quad T(x) = Ax$$

To see this, let $x \in \mathbb{R}^n$ be given. Then

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

$$= \begin{pmatrix} x_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ x_2 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ x_n \end{pmatrix}$$

$$= x_1 e_1 + x_2 e_2 + \dots + x_n e_n$$

Hence, by Fact 1,

$$T(x) = T(x_1e_1 + \dots + x_ne_n) = x_1T(e_1) + \dots + x_nT(e_n) = x_1a_1 + \dots + x_na_n = Ax$$

Since $x \in \mathbb{R}^n$ was given, this proves that there is a matrix A which implements T. To show uniqueness, ie that there is at most one such A, suppose both A and B are $m \times n$ matrices which implement T. Then,

$$\forall x \in \mathbb{R}^n \quad Ax = T(x) = Bx$$

Now we look again at the standard basis vectors; we have $Ae_i = T(e_i) = Be_i$ for each $i \leq n$. Notice that Ae_i and Be_i are the *i*th columns of A and B respectively. Hence the *i*th column of A is equal to the *i*th column of B, for each $i \leq n$; it follows then that A = B.

Definition 2. The *standard matrix* of a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is the unique $m \times n$ matrix A such that T(x) = Ax for all $x \in \mathbb{R}^n$.

Example. Let's work out the standard matrix of the linear transformation R_{θ} which rotates a point $x \in \mathbb{R}^2$ around the origin (counterclockwise) by a fixed angle θ . By the proof of the above theorem, to find the columns of this matrix we need only find $R_{\theta}(e_1)$ and $R_{\theta}(e_2)$, where $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. In this case e_1 is the unit vector in the x direction; so by trigonometry, rotation by the angle θ brings us to the point $\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$.

Some geometric pondering also shows that rotating e_2 , the unit vector in the y direction, by the angle θ brings us to $\begin{pmatrix} -\sin\theta\\\cos\theta \end{pmatrix}$. Hence the standard matrix for T is

$$\begin{pmatrix}
\cos\theta & -\sin\theta \\
\sin\theta & \cos\theta
\end{pmatrix}$$