
21-241 MATRICES AND LINEAR TRANSFORMATIONS
SUMMER 1 2012
COURSE NOTES

JUNE 27

PAUL MCKENNEY

Here’s some neat facts about diagonalizable matrices.

Fact 1. If A = S−1DS, where D is diagonal and S is invertible, then the diagonal values
of D are exactly the eigenvalues of A, and the columns of S are eigenvectors of A with
associated eigenvalue the corresponding diagonal entry of D.

Fact 2. Suppose A is diagonalizable, and its only eigenvalue is λ. Then A = λI.

Proof. We have A = S−1DS, where D is diagonal, and its entries are the eigenvalues of
A. Since λ is the only one, D = λI. But then,

A = S−1(λI)S = λ(S−1IS) = λS−1S = λI

�

Lemma 1. Suppose A = S−1DS, where S is invertible. Then Ak = S−1DkS for any k.

The following theorem is known as the Spectral Mapping Theorem, and it holds for all
square matrices A. I’ll only be able to prove it for the diagonalizable ones.

Fact 3. Let A ∈ Mn(C), and let p(z) be some polynomial in z. Let λ1, . . . , λn be the
eigenvalues of A, possibly with multiplicity. Then p(A) (the result of substituting A for
z, and I for the constant 1, in p(z)) has eigenvalues p(λ1), . . . , p(λn).

Proof for diagonalizable A. Say p(z) = ckz
k + ck−1z

k−1 + · · ·+ c1z + c0. Let A = S−1DS,
where S is invertible and D diagonal, with diagonal entries λ1, . . . , λn. Then

p(A) = ckA
k + ck−1A

k−1 + · · ·+ c1A+ c0I

= ckS
−1DkS + ck−1S

−1Dk−1S + · · ·+ c1S
−1DS + c0I

= S−1(ckD
k + ck−1D

k−1 + · · ·+ c1D + c0I)S = S−1p(D)S

Now note that since D is diagonal, Dt is just the diagonal matrix whose entries are those
of D, taken to the power t. Hence the matrix

ckD
k + ck−1D

k−1 + · · ·+ c1D + c0I

is diagonal, and its ith diagonal entry is

ckλ
k
i + ck−1λ

k−1
i + · · ·+ c1λi + c0 · 1 = p(λi)

1



Then these are the eigenvalues of p(A), since p(A) = S−1p(D)S. �

This corollary is known as the Cayley-Hamilton theorem. Again, it’s known to be true
for all square matrices A, but I’ll only prove it for the diagonalizable ones.

Corollar. Let A be a square matrix, and let pA be its characteristic polynomial. Then
pA(A) is the zero matrix.

Proof for diagonalizable A. By the spectral mapping theorem, the eigenvalues of pA(A)
are pA(λ1), . . . , pA(λn) where λ1, . . . , λn. But pA(λi) = 0, for all i! So the only eigenvalue
of pA(A) is 0. Now, if A is diagonalizable, then it’s easy to see that pA(A) is, too (the
same calculation we did above for the spectral mapping theorem). Hence pA(A) = 0I =
0n×n. �


