21-241 MATRICES AND LINEAR TRANSFORMATIONS
 SUMMER 12012
 COURSE NOTES
 JUNE 26

PAUL MCKENNEY

Lemma 1. If A is Hermitian, $\lambda_{1}, \ldots, \lambda_{k}$ are the eigenvalues of A, and $V=V_{\lambda_{1}} \oplus \cdots \oplus V_{\lambda_{k}}$, then V and V^{\perp} are both invariant for A.

Theorem 1. If A is Hermitian, then A is diagonalizable by a unitary matrix.

Proof. Let's say $\lambda_{1}, \ldots, \lambda_{k}$ are the eigenvalues of A, without repeats, and their geometric multiplicities are g_{1}, \ldots, g_{k}. Let

$$
V=V_{\lambda_{1}} \oplus \cdots \oplus V_{\lambda_{k}}
$$

The lemma we proved yesterday tells us that V and V^{\perp} are both invariant for A.
Let $v_{1}^{i}, \ldots, v_{g_{i}}^{i}$ be an orthonormal basis for $V_{\lambda_{i}}$; then the list

$$
v_{1}^{1}, \ldots, v_{g_{1}}^{1}, v_{1}^{2}, \ldots, v_{g_{2}}^{2}, \ldots, v_{1}^{k}, \ldots, v_{g_{k}}^{k}
$$

is an orthonormal basis for V. Let $m=\sum g_{i}$. Then $\operatorname{dim}(V)=m$, so $\operatorname{dim}\left(V^{\perp}\right)=n-m$.
If $m=n$, then we're done, for the above list of eigenvectors must be a basis for \mathbb{C}^{n}, and a theorem we've stated before (but not proven) says that this is equivalent to diagonalizability. In the remainder of the proof we will assume that $m<n$, and eventually get a contradiction. The work we do therein will also show how to see that A is diagonalizable when $m=n$, so if you didn't believe the theorem before, that should convince you.

Let w_{1}, \ldots, w_{n-m} be an orthonormal basis for V^{\perp}; then

$$
v_{1}^{1}, \ldots, v_{g_{1}}^{1}, v_{1}^{2}, \ldots, v_{g_{2}}^{2}, \ldots, v_{1}^{k}, \ldots, v_{g_{k}}^{k}, w_{1}, \ldots, w_{n-m}
$$

is an orthonormal basis for \mathbb{C}^{n}. Label these vectors u_{1}, \ldots, u_{n}, in the order above, and let U be the unitary matrix whose columns are u_{1}, \ldots, u_{n}.

Now consider the matrix $U^{H} A U$. Its (i, j)-entry is

$$
\left\langle U^{H} A U e_{j}, e_{i}\right\rangle=\left\langle A U e_{j}, U e_{i}\right\rangle=\left\langle A u_{j}, u_{i}\right\rangle
$$

Let's work out what these entries are in the various cases.

	$\left\langle A u_{j}, u_{i}\right\rangle$	v_{p}^{1}	v_{p}^{2}	u_{i} \cdots	v_{p}^{k}	w_{p}
u_{j}	v_{q}^{1}	λ_{1}	0	\ldots	0	0
	v_{q}^{2}	0	λ_{2}	\cdots	0	0
	\vdots					
	v_{q}^{k}	0	0	\ldots	λ_{k}	0
	w_{q}	0	0	\cdots	0	$\left\langle A w_{q}, w_{p}\right\rangle$

It follows that

$$
U^{H} A U=\left(\begin{array}{lllll}
\lambda_{1} I_{g_{1}} & & & & \\
& \lambda_{2} I_{g_{2}} & & & \\
& & \ddots & & \\
& & & \lambda_{k} I_{g_{k}} & \\
& & & & \hat{A}
\end{array}\right)
$$

where \hat{A} is the $n-m \times n-m$ matrix with entries $\left\langle A w_{j}, w_{i}\right\rangle$. Now as we've seen before, p_{A} and $p_{U^{H} A U}$ are the same. But clearly,

$$
p_{U^{H} A U}(z)=\left(z-\lambda_{1}\right)^{g_{1}} \cdots\left(z-\lambda_{k}\right)^{g_{k}} \operatorname{det}\left(z I_{n-m}-\hat{A}\right)
$$

Since the roots of $p_{U^{H} A U}$ and p_{A} are the same, and $\lambda_{1}, \ldots, \lambda_{k}$ are the roots of p_{A}, it follows that

$$
p_{\hat{A}}(z)=\operatorname{det}\left(z I_{n-m}-\hat{A}\right)=\left(z-\lambda_{1}\right)^{a_{1}} \cdots\left(z-\lambda_{k}\right)^{a_{k}}
$$

where a_{i} is the algebraic multiplicity of λ_{i} with respect to \hat{A}. (Note that a_{i} may be 0 .)
Let \hat{v} be an eigenvector of \hat{A}. (We're using here our assumption that $m<n$, to even talk about \hat{A}; if $m=n$ then its size would be " 0×0 ".) Let v be the vector

$$
v=U\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
\hat{v}_{1} \\
\vdots \\
\hat{v}_{n-m}
\end{array}\right)
$$

It follows that v is an eigenvector of A, with eigenvalue the same as that of \hat{v} with respect to \hat{A}. But, if $p \leq m$,

$$
\left\langle v, u_{p}\right\rangle=\left\langle U\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\vdots \\
0 \\
\hat{v}_{1} \\
\vdots \\
\hat{v}_{n-m}
\end{array}\right), U e_{p}\right\rangle=\left\langle\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\vdots \\
0 \\
\hat{v}_{1} \\
\vdots \\
\hat{v}_{n-m}
\end{array}\right),\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)\right\rangle=0
$$

so $v \perp u_{p}$ for all $p \leq m$. But then v is orthogonal to every eigenspace of A (since u_{p}, for $p \leq m$, lists basis vectors for all the eigenspaces of A); in particular, if λ_{i} is the eigenvalue associated to v, then $v \perp V_{\lambda_{i}}$. Then $v=0$, but this is a contradiction.

