21-241 MATRICES AND LINEAR TRANSFORMATIONS SUMMER 1 2012 COURSE NOTES JUNE 25

PAUL MCKENNEY

Our aim for tomorrow is to prove the following theorem, which I often call the spectral theorem.

Theorem. If A is a Hermitian matrix, then A is diagonalizable by a unitary matrix.

Today we'll develop the background necessary for the proof of this theorem. It starts with the following definition.

Definition. Let V_1, \ldots, V_k be subspaces of \mathbb{C}^n , such that $V_i \perp V_j$ for $i \neq j$. Then their *orthogonal sum* is the subspace

$$V_1 \oplus \cdots \oplus V_k = \{v_1 + \cdots + v_k \mid v_1 \in V_1, \dots, v_k \in V_k\}$$

Example 1. Let's take the lines $L = \operatorname{span}\left\{\begin{pmatrix} 1\\2\\3 \end{pmatrix}\right\}$ and $K = \operatorname{span}\left\{\begin{pmatrix} 1\\1\\-1 \end{pmatrix}\right\}$ in \mathbb{R}^3 . Then $L \perp K$. Their orthogonal sum is the plane

$$L \oplus K = \{v + w \mid v \in L \land w \in K\} = \operatorname{span}\left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \end{pmatrix} \right\}$$

Lemma 1. Suppose V and W are subspaces of \mathbb{C}^n , such that $V \perp W$. Then $\dim(V \oplus W) = \dim(V) + \dim(W)$, and moreover if X is an orthonormal basis for V and Y an orthonormal basis for W, then $X \cup Y$ is an orthonormal basis for $V \oplus W$.

Corollary 1. If $V_i \perp V_j$ for $i \neq j$, and X_i is an orthonormal basis for V_i , then $X_1 \cup \cdots \cup X_k$ is an orthonormal basis for $V_1 \oplus \cdots \oplus V_k$.

Corollary 2. If V is a subspace of \mathbb{C}^n , then $\dim(V) + \dim(V^{\perp}) = n$.

Definition. A subspace $V \subseteq \mathbb{C}^n$ is *invariant* for a matrix $A \in M_n(\mathbb{C})$ if

$$\forall v \in V \quad Av \in V$$

Lemma 2. If V is invariant for A, and A is Hermitian, then so is V^{\perp} .

Proof. Let $w \in V^{\perp}$. Then for all $v \in V$,

$$\langle Aw, v \rangle = \langle w, A^H v \rangle = \langle w, Av \rangle = 0$$

since $Av \in V$. Hence $Aw \in V^{\perp}$.

Note. Let $A \in M_n(\mathbb{C})$ be a Hermitian matrix. Suppose V is an invariant subspace for A; thus V^{\perp} is too by the above lemma. Let v_1, \ldots, v_k and w_1, \ldots, w_ℓ be orthonormal bases for V and V^{\perp} respectively; then $k + \ell = n$, and

$$v_1,\ldots,v_k,w_1,\ldots,w_\ell$$

is an orthonormal basis for \mathbb{C}^n . Let U be the matrix whose columns are $v_1, \ldots, v_k, w_1, \ldots, w_\ell$. Then U is a unitary matrix. We'd like to look at $U^H A U$. Its (i, j)-entry is

$$\langle U^H A U e_j, e_i \rangle = \langle A U e_j, U e_i \rangle$$

and Ue_j and Ue_i are the *j*th and *i*th columns of U, respectively. Say $i \leq k$ and j > k. Then Ue_i is one of the *v*'s, and Ue_j is one of the *w*'s; so in particular, $Ue_i \in V$, whereas $Ue_j \in V^{\perp}$. Since V^{\perp} is invariant for A, $AUe_j \in V^{\perp}$ too, so

$$\langle AUe_i, Ue_i \rangle = 0$$

Similarly, if i > k but $j \leq k$, then $AUe_j \in V$ and $Ue_i \in V^{\perp}$, so

$$\langle AUe_j, Ue_i \rangle = 0$$

This means that A has the block form

$$A = \begin{pmatrix} \hat{A} & 0_{k \times \ell} \\ 0_{\ell \times k} & \check{A} \end{pmatrix}$$

where \hat{A} is some $k \times k$ matrix, and \check{A} is some $\ell \times \ell$ matrix.

Lemma 3. If A is a Hermitian matrix, $\lambda_1, \ldots, \lambda_k$ are its eigenvalues (without repetition), and

$$V = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_k}$$

then V and V^{\perp} are invariant subspaces for A.

Proof. Let
$$v \in V$$
. Then $v = v_1 + \dots + v_k$ for some $v_1 \in V_{\lambda_1}, \dots, v_k \in V_{\lambda_k}$. Now
 $Av = A(v_1 + \dots + v_k) = Av_1 + \dots + Av_k = \lambda_1 v_1 + \dots + \lambda_k v_k$

Since $v_i \in V_{\lambda_i}$, so is $\lambda_i v_i$. Hence $Av \in V$. This proves that V is an invariant subspace for A. That V^{\perp} is also invariant follows from this and the above lemma. \Box