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Our aim for tomorrow is to prove the following theorem, which I often call the spectral
theorem.

Theorem. If A is a Hermitian matrix, then A is diagonalizable by a unitary matrix.

Today we’ll develop the background necessary for the proof of this theorem. It starts
with the following definition.

Definition. Let V1, . . . , Vk be subspaces of Cn, such that Vi ⊥ Vj for i 6= j. Then their
orthogonal sum is the subspace

V1 ⊕ · · · ⊕ Vk = {v1 + · · ·+ vk | v1 ∈ V1, . . . , vk ∈ Vk}

Example 1. Let’s take the lines L = span{
(

1
2
3

)
} and K = span{

(
1
1
−1

)
} in R3. Then

L ⊥ K. Their orthogonal sum is the plane

L⊕K = {v + w | v ∈ L ∧ w ∈ K} = span


1

2
3

 ,

 1
1
−1


Lemma 1. Suppose V andW are subspaces of Cn, such that V ⊥ W . Then dim(V⊕W ) =
dim(V )+dim(W ), and moreover if X is an orthonormal basis for V and Y an orthonormal
basis for W , then X ∪ Y is an orthonormal basis for V ⊕W .

Corollary 1. If Vi ⊥ Vj for i 6= j, and Xi is an orthonormal basis for Vi, then X1∪· · ·∪Xk

is an orthonormal basis for V1 ⊕ · · · ⊕ Vk.
Corollary 2. If V is a subspace of Cn, then dim(V ) + dim(V ⊥) = n.

Definition. A subspace V ⊆ Cn is invariant for a matrix A ∈Mn(C) if

∀v ∈ V Av ∈ V
Lemma 2. If V is invariant for A, and A is Hermitian, then so is V ⊥.

Proof. Let w ∈ V ⊥. Then for all v ∈ V ,

〈Aw, v〉 =
〈
w,AHv

〉
= 〈w,Av〉 = 0

since Av ∈ V . Hence Aw ∈ V ⊥. �
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Note. Let A ∈Mn(C) be a Hermitian matrix. Suppose V is an invariant subspace for A;
thus V ⊥ is too by the above lemma. Let v1, . . . , vk and w1, . . . , w` be orthonormal bases
for V and V ⊥ respectively; then k + ` = n, and

v1, . . . , vk, w1, . . . , w`

is an orthonormal basis for Cn. Let U be the matrix whose columns are v1, . . . , vk, w1, . . . , w`.
Then U is a unitary matrix. We’d like to look at UHAU . Its (i, j)-entry is〈

UHAUej, ei
〉

= 〈AUej, Uei〉
and Uej and Uei are the jth and ith columns of U , respectively. Say i ≤ k and j > k.
Then Uei is one of the v’s, and Uej is one of the w’s; so in particular, Uei ∈ V , whereas
Uej ∈ V ⊥. Since V ⊥ is invariant for A, AUej ∈ V ⊥ too, so

〈AUej, Uei〉 = 0

Similarly, if i > k but j ≤ k, then AUej ∈ V and Uei ∈ V ⊥, so

〈AUej, Uei〉 = 0

This means that A has the block form

A =

(
Â 0k×`

0`×k Ǎ

)
where Â is some k × k matrix, and Ǎ is some `× ` matrix.

Lemma 3. If A is a Hermitian matrix, λ1, . . . , λk are its eigenvalues (without repetition),
and

V = Vλ1 ⊕ · · · ⊕ Vλk
then V and V ⊥ are invariant subspaces for A.

Proof. Let v ∈ V . Then v = v1 + · · ·+ vk for some v1 ∈ Vλ1 , . . . , vk ∈ Vλk . Now,

Av = A(v1 + · · ·+ vk) = Av1 + · · ·+ Avk = λ1v1 + · · ·+ λkvk

Since vi ∈ Vλi , so is λivi. Hence Av ∈ V . This proves that V is an invariant subspace for
A. That V ⊥ is also invariant follows from this and the above lemma. �


