21-241 MATRICES AND LINEAR TRANSFORMATIONS
 SUMMER 12012
 COURSE NOTES
 JUNE 25

PAUL MCKENNEY

Our aim for tomorrow is to prove the following theorem, which I often call the spectral theorem.

Theorem. If A is a Hermitian matrix, then A is diagonalizable by a unitary matrix.

Today we'll develop the background necessary for the proof of this theorem. It starts with the following definition.

Definition. Let V_{1}, \ldots, V_{k} be subspaces of \mathbb{C}^{n}, such that $V_{i} \perp V_{j}$ for $i \neq j$. Then their orthogonal sum is the subspace

$$
V_{1} \oplus \cdots \oplus V_{k}=\left\{v_{1}+\cdots+v_{k} \mid v_{1} \in V_{1}, \ldots, v_{k} \in V_{k}\right\}
$$

Example 1. Let's take the lines $L=\operatorname{span}\left\{\left(\begin{array}{c}1 \\ 2 \\ 3\end{array}\right)\right\}$ and $K=\operatorname{span}\left\{\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)\right\}$ in \mathbb{R}^{3}. Then $L \perp K$. Their orthogonal sum is the plane

$$
L \oplus K=\{v+w \mid v \in L \wedge w \in K\}=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)\right\}
$$

Lemma 1. Suppose V and W are subspaces of \mathbb{C}^{n}, such that $V \perp W$. Then $\operatorname{dim}(V \oplus W)=$ $\operatorname{dim}(V)+\operatorname{dim}(W)$, and moreover if X is an orthonormal basis for V and Y an orthonormal basis for W, then $X \cup Y$ is an orthonormal basis for $V \oplus W$.

Corollary 1. If $V_{i} \perp V_{j}$ for $i \neq j$, and X_{i} is an orthonormal basis for V_{i}, then $X_{1} \cup \cdots \cup X_{k}$ is an orthonormal basis for $V_{1} \oplus \cdots \oplus V_{k}$.
Corollary 2. If V is a subspace of \mathbb{C}^{n}, then $\operatorname{dim}(V)+\operatorname{dim}\left(V^{\perp}\right)=n$.
Definition. A subspace $V \subseteq \mathbb{C}^{n}$ is invariant for a matrix $A \in M_{n}(\mathbb{C})$ if

$$
\forall v \in V \quad A v \in V
$$

Lemma 2. If V is invariant for A, and A is Hermitian, then so is V^{\perp}.
Proof. Let $w \in V^{\perp}$. Then for all $v \in V$,

$$
\langle A w, v\rangle=\left\langle w, A^{H} v\right\rangle=\langle w, A v\rangle=0
$$

since $A v \in V$. Hence $A w \in V^{\perp}$.

Note. Let $A \in M_{n}(\mathbb{C})$ be a Hermitian matrix. Suppose V is an invariant subspace for A; thus V^{\perp} is too by the above lemma. Let v_{1}, \ldots, v_{k} and w_{1}, \ldots, w_{ℓ} be orthonormal bases for V and V^{\perp} respectively; then $k+\ell=n$, and

$$
v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{\ell}
$$

is an orthonormal basis for \mathbb{C}^{n}. Let U be the matrix whose columns are $v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{\ell}$. Then U is a unitary matrix. We'd like to look at $U^{H} A U$. Its (i, j)-entry is

$$
\left\langle U^{H} A U e_{j}, e_{i}\right\rangle=\left\langle A U e_{j}, U e_{i}\right\rangle
$$

and $U e_{j}$ and $U e_{i}$ are the j th and i th columns of U, respectively. Say $i \leq k$ and $j>k$. Then $U e_{i}$ is one of the v 's, and $U e_{j}$ is one of the w 's; so in particular, $U e_{i} \in V$, whereas $U e_{j} \in V^{\perp}$. Since V^{\perp} is invariant for $A, A U e_{j} \in V^{\perp}$ too, so

$$
\left\langle A U e_{j}, U e_{i}\right\rangle=0
$$

Similarly, if $i>k$ but $j \leq k$, then $A U e_{j} \in V$ and $U e_{i} \in V^{\perp}$, so

$$
\left\langle A U e_{j}, U e_{i}\right\rangle=0
$$

This means that A has the block form

$$
A=\left(\begin{array}{cc}
\hat{A} & 0_{k \times \ell} \\
0_{\ell \times k} & \hat{A}
\end{array}\right)
$$

where \hat{A} is some $k \times k$ matrix, and \check{A} is some $\ell \times \ell$ matrix.
Lemma 3. If A is a Hermitian matrix, $\lambda_{1}, \ldots, \lambda_{k}$ are its eigenvalues (without repetition), and

$$
V=V_{\lambda_{1}} \oplus \cdots \oplus V_{\lambda_{k}}
$$

then V and V^{\perp} are invariant subspaces for A.

Proof. Let $v \in V$. Then $v=v_{1}+\cdots+v_{k}$ for some $v_{1} \in V_{\lambda_{1}}, \ldots, v_{k} \in V_{\lambda_{k}}$. Now,

$$
A v=A\left(v_{1}+\cdots+v_{k}\right)=A v_{1}+\cdots+A v_{k}=\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}
$$

Since $v_{i} \in V_{\lambda_{i}}$, so is $\lambda_{i} v_{i}$. Hence $A v \in V$. This proves that V is an invariant subspace for A. That V^{\perp} is also invariant follows from this and the above lemma.

