21-241 MATRICES AND LINEAR TRANSFORMATIONS **SUMMER 1 2012** COURSE NOTES **JUNE 20**

PAUL MCKENNEY

1. Change of basis continued

Yesterday I promised to show you an easy way of computing the representation of a given linear transformation T with respect to an arbitrary basis.

Fact 1. Suppose $T : \mathbb{C}^n \to \mathbb{C}^n$ is a linear transformation, and A is its standard matrix (ie, its representation with respect to the standard basis). If $\mathscr{B} = (b_1, \ldots, b_n)$ is any other (ordered) basis for \mathbb{C}^n , then

$$\operatorname{rep}_{\mathscr{B}}(T) = S^{-1}AS$$

where S is the $n \times n$ matrix whose columns are b_1, \ldots, b_n .

Proof. Since A is the standard matrix of T,

 $T(b_i) = Ab_i$

Let $\begin{pmatrix} \lambda_{1j} \\ \vdots \\ \lambda_{nj} \end{pmatrix}$ be the representation of Ab_j in the basis b_1, \ldots, b_n , is the unique sequence of coefficients such that

 $Ab_{i} = \lambda_{1i}b_{1} + \dots + \lambda_{ni}b_{n}$

Then $\operatorname{rep}_{\mathscr{B}}(T)$ is the $n \times n$ matrix with entries λ_{ij} .

Now, note that $Se_j = b_j$, and hence $S^{-1}b_j = e_j$. Then,

$$(S^{-1}AS)e_j = S^{-1}Ab_j = S^{-1}(\lambda_{1j}b_1 + \dots + \lambda_{nj}b_n) = \lambda_{1j}e_1 + \dots + \lambda_{nj}e_n = \begin{pmatrix}\lambda_{1j}\\ \vdots\\ \lambda_{nj}\end{pmatrix}$$

The leftmost side of the equation above is just the *j*th column of $S^{-1}AS$; the rightmost side is the *j*th column of $\operatorname{rep}_{\mathscr{R}}(T)$.

Example. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the reflection across the line L which makes an angle of θ with the x-axis. Find the matrix of T with respect to the standard basis, and the basis

$$\mathscr{B} = \left(\begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}, \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix} \right)$$

Solution. In the standard basis the matrix is

$$\begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix}$$

(This was a homework problem from homework 2.) In the alternate basis it's

$$\begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}^{-1} \begin{pmatrix} \cos(2\theta) & \sin(2\theta)\\ \sin(2\theta) & -\cos(2\theta) \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$$
Which turns out to be
$$\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$

2. DIAGONALIZATION

Definition. A matrix A is *diagonalizable* if it is similar to some diagonal matrix D. In this case, if $A = SDS^{-1}$, then we say that S *diagonalizes* A.

We like matrices that are diagonalizable.

Fact 2. If D is a diagonal matrix with diagonal entries d_1, \ldots, d_n , then

• spec $(D) = \{d_1, \ldots, d_n\},\$

•
$$p_D(\lambda) = (\lambda - d_1) \cdots (\lambda - d_n)$$
, and

• A basis for the eigenspace of λ (with respect to D) is given by

 $\{e_i \mid i \text{ is such that } d_i = \lambda\}$

Corollary 1. If A is diagonalizable, and λ is an eigenvalue of A, then the algebraic and geometric multiplicities of λ (with respect to A) are the same.

Proof. By the above fact, this is true for diagonal matrices, and it's preserved by similarity (by a theorem from yesterday). \Box

Example. If n > 1, then the $n \times n$ shift matrix S is not diagonalizable.

Proof. S has only one eigenvalue: 0. Its algebraic multiplicity is n, whereas its geometric multiplicity is 1. Since they're not the same S can't be diagonalizable.