21-241 MATRICES AND LINEAR TRANSFORMATIONS
 SUMMER 12012
 COURSE NOTES
 JUNE 20

PAUL MCKENNEY

1. Change of basis continued

Yesterday I promised to show you an easy way of computing the representation of a given linear transformation T with respect to an arbitrary basis.

Fact 1. Suppose $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a linear transformation, and A is its standard matrix (ie, its representation with respect to the standard basis). If $\mathscr{B}=\left(b_{1}, \ldots, b_{n}\right)$ is any other (ordered) basis for \mathbb{C}^{n}, then

$$
\operatorname{rep}_{\mathscr{B}}(T)=S^{-1} A S
$$

where S is the $n \times n$ matrix whose columns are b_{1}, \ldots, b_{n}.

Proof. Since A is the standard matrix of T,

$$
T\left(b_{j}\right)=A b_{j}
$$

Let $\left(\begin{array}{c}\lambda_{1 j} \\ \vdots \\ \vdots \lambda_{n j}\end{array}\right)$ be the representation of $A b_{j}$ in the basis b_{1}, \ldots, b_{n}, ie the unique sequence of coefficients such that

$$
A b_{j}=\lambda_{1 j} b_{1}+\cdots+\lambda_{n j} b_{n}
$$

Then $\operatorname{rep}_{\mathscr{B}}(T)$ is the $n \times n$ matrix with entries $\lambda_{i j}$.
Now, note that $S e_{j}=b_{j}$, and hence $S^{-1} b_{j}=e_{j}$. Then,

$$
\left(S^{-1} A S\right) e_{j}=S^{-1} A b_{j}=S^{-1}\left(\lambda_{1 j} b_{1}+\cdots+\lambda_{n j} b_{n}\right)=\lambda_{1 j} e_{1}+\cdots+\lambda_{n j} e_{n}=\left(\begin{array}{c}
\lambda_{1 j} \\
\vdots \\
\lambda_{n j}
\end{array}\right)
$$

The leftmost side of the equation above is just the j th column of $S^{-1} A S$; the rightmost side is the j th column of $\operatorname{rep}_{\mathscr{B}}(T)$.
Example. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the reflection across the line L which makes an angle of θ with the x-axis. Find the matrix of T with respect to the standard basis, and the basis

$$
\mathscr{B}=\left(\binom{\cos \theta}{\sin \theta},\binom{-\sin \theta}{\cos \theta}\right)
$$

Solution. In the standard basis the matrix is

$$
\left(\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right)
$$

(This was a homework problem from homework 2.) In the alternate basis it's

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)^{-1}\left(\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

Which turns out to be

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

2. Diagonalization

Definition. A matrix A is diagonalizable if it is similar to some diagonal matrix D. In this case, if $A=S D S^{-1}$, then we say that S diagonalizes A.

We like matrices that are diagonalizable.
Fact 2. If D is a diagonal matrix with diagonal entries d_{1}, \ldots, d_{n}, then

- $\operatorname{spec}(D)=\left\{d_{1}, \ldots, d_{n}\right\}$,
- $p_{D}(\lambda)=\left(\lambda-d_{1}\right) \cdots\left(\lambda-d_{n}\right)$, and
- A basis for the eigenspace of λ (with respect to D) is given by

$$
\left\{e_{i} \mid i \text { is such that } d_{i}=\lambda\right\}
$$

Corollary 1. If A is diagonalizable, and λ is an eigenvalue of A, then the algebraic and geometric multiplicities of λ (with respect to A) are the same.

Proof. By the above fact, this is true for diagonal matrices, and it's preserved by similarity (by a theorem from yesterday).

Example. If $n>1$, then the $n \times n$ shift matrix S is not diagonalizable.
Proof. S has only one eigenvalue: 0 . Its algebraic multiplicity is n, whereas its geometric multiplicity is 1 . Since they're not the same S can't be diagonalizable.

