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Definition 1. An m×n matrix A is an array (aij) of real (or complex) numbers, indexed
by natural numbers i and j, with 1 ≤ i ≤ m and 1 ≤ j ≤ n, written like this;

a11 a12 · · · a1n
a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn


A column vector is simply an m× 1 matrix for some m, whereas a row vector is a 1× n
matrix for some n. m is called the height of the column vector and n the width of the
row vector. We’ll write Rm×n for the set of all m× n matrices; we’ll often identify Rm×1

with Rm and R1×n with Rn.

If A is an m× n matrix and B is an n× p matrix, then their product AB is the m× p
matrix C with entries

Cij =
n∑

k=1

AikBkj 1 ≤ i ≤ m 1 ≤ j ≤ p

If A is m × n and B is p × q where n 6= p, we leave AB undefined. If λ ∈ R and A is a
matrix with entries aij, then λA is the matrix with entries λaij.

The n× n identity matrix In is the matrix
1 0 · · · 0
0 1 · · · 0
...

. . .
0 0 · · · 1


We will often drop the n subscript when there is no possibility of confusion (and sometimes
even when there is).

We will often be working with linear combinations of column (or row) vectors, ie,
expressions of the form

λ1a1 + · · ·+ λnan
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where λi ∈ R for each i, and a1, . . . , an are all column vectors of the same height. It’s
very useful to note that if A is an m × n matrix and x is a column vector of height n,
then Ax is a linear combination of the columns a1, . . . , an of A;

x1a1 + · · ·+ xnan

Fact 1. The following hold for all matrices A, B, and C (so long as the sizes make sense),
and all λ ∈ R.

(1) (AB)C = A(BC). (Associativity.)
(2) A(B + C) = AB + AC. (Distributivity.)
(3) λ(AB) = (λA)B = A(λB). (Commutativity of scalar multiplication.)
(4) λ(A+B) = λA+ λB. (Distributivity of scalar multiplication.)
(5) If A is m× n, then AIn = A and ImA = A. (Identity.)

Proof of (1). First, notice that (for either product to make sense) the sizes of A, B, and
C must be m× n, n× p, and p× q respectively, for some m,n, p, q. The products (AB)C
and A(BC) both have size m× q. Now for any i ≤ m and j ≤ q, we have

((AB)C)ij =

p∑
k=1

(AB)ikCkj

=

p∑
k=1

(
n∑

`=1

Ai`B`k

)
Ckj

=
∑
k

∑
`

Ai`B`kCkj

=
∑
`

∑
k

Ai`B`kCkj

=
n∑

`=1

Ai`

(
p∑

k=1

B`kCkj

)

=
n∑

`=1

Ai`(BC)`j

= (A(BC))ij

�

Proof of (5). I’ll just prove that AIn = A. The other equation is similar (though you
should work it out on your own anyway). First notice that AIn has size m × n. Now if
i ≤ m and j ≤ n,

(AI)ij =
n∑

k=1

AikIkj



(Here I’ve dropped the subscript on In.) By definition, Ikj = 1 if k = j, and Ikj = 0 if
k 6= j. Hence the only term in the above sum which is nonzero is the term where k = j,
and that term is Aij. Hence (AI)ij = Aij for all i and j. �

Fact 2. For all n, there are n× n matrices A and B such that AB 6= BA.

A system of linear equations can be written as a single equation involving matrices and
vectors; namely, the system

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

can be written as Ax = b, where A is the m× n matrix with entries aij, x is the column
vector with entries xi, and b is the column vector with entries bi. We also sometimes
represent the entire system as a matrix;

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

. . .
...

am1 am2 · · · amn bm


We write (A | b) for this matrix, and call it augmented (by b).

You can perform row operations on a matrix, and it’s just as you would expect from
the above. The interesting thing is that each row operation can be implemented by
multiplication by a certain matrix. For instance, if E is the following matrix, where the
zeros along the diagonal occur in rows i and j (and all blank entries are zero), then EA
is the result of swapping rows i and j in A.

1
. . .

0 1
. . .

1 0
. . .

1





The other row operations are realized by the following matrices.


1

. . .
λ

. . .
1





1
. . .

1 λ
. . .

1
. . .

1


Question. Which matrix implements which row operation?

We call these elementary matrices. They are all square; that is, they have size n×n for
some n. In each case, to perform a row operation on an m×n matrix A, we multiply A on
the left by its corresponding m×m elementary matrix E, to get EA. Multiplication by
E on the right (assuming m = n; otherwise this doesn’t even make sense) would perform
a column operation on A. If Fact 2 did not convince you to be careful of which way you
multiply matrices, then this should.

Fact 3. If E is an m×m elementary matrix, then there is an m×m elementary matrix
F such that FE = I.

Proof. We saw in the proof of Theorem 1, from day one, that every row operation is
reversible. So let F be the elementary matrix which implements the reverse of the row
operation that E implements. Then we have F (EA) = A for all m×n matrices A, for all
n. By associativity, this means (FE)A = A for all m × n matrices A, for all n. It’s not
too hard to show from this that FE = I. (It suffices, in fact, to consider just one matrix
A, of size m×m. Which one is it?) �


