21-241 MATRICES AND LINEAR TRANSFORMATIONS SUMMER 1 2012 COURSE NOTES DAY 2

PAUL MCKENNEY

Definition 1. An $m \times n$ matrix A is an array (a_{ij}) of real (or complex) numbers, indexed by natural numbers i and j, with $1 \le i \le m$ and $1 \le j \le n$, written like this;

(a_{11})	a_{12}	• • •	a_{1n}
a_{21}	a_{22}	•••	a_{2n}
:		۰.	÷
a_{m1}	a_{m2}	• • •	a_{mn} /

A column vector is simply an $m \times 1$ matrix for some m, whereas a row vector is a $1 \times n$ matrix for some n. m is called the *height* of the column vector and n the width of the row vector. We'll write $\mathbb{R}^{m \times n}$ for the set of all $m \times n$ matrices; we'll often identify $\mathbb{R}^{m \times 1}$ with \mathbb{R}^m and $\mathbb{R}^{1 \times n}$ with \mathbb{R}^n .

If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then their *product* AB is the $m \times p$ matrix C with entries

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \qquad 1 \le i \le m \quad 1 \le j \le p$$

If A is $m \times n$ and B is $p \times q$ where $n \neq p$, we leave AB undefined. If $\lambda \in \mathbb{R}$ and A is a matrix with entries a_{ij} , then λA is the matrix with entries λa_{ij} .

The $n \times n$ identity matrix I_n is the matrix

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & \ddots & \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

We will often drop the n subscript when there is no possibility of confusion (and sometimes even when there is).

We will often be working with *linear combinations* of column (or row) vectors, ie, expressions of the form

$$\lambda_1 a_1 + \dots + \lambda_n a_n$$

where $\lambda_i \in \mathbb{R}$ for each *i*, and a_1, \ldots, a_n are all column vectors of the same height. It's very useful to note that if *A* is an $m \times n$ matrix and *x* is a column vector of height *n*, then Ax is a linear combination of the columns a_1, \ldots, a_n of *A*;

$$x_1a_1 + \cdots + x_na_n$$

Fact 1. The following hold for all matrices A, B, and C (so long as the sizes make sense), and all $\lambda \in \mathbb{R}$.

(AB)C = A(BC). (Associativity.)
 (2) A(B+C) = AB + AC. (Distributivity.)
 (3) λ(AB) = (λA)B = A(λB). (Commutativity of scalar multiplication.)
 (4) λ(A+B) = λA + λB. (Distributivity of scalar multiplication.)
 (5) If A is m × n, then AI_n = A and I_mA = A. (Identity.)

Proof of (1). First, notice that (for either product to make sense) the sizes of A, B, and C must be $m \times n$, $n \times p$, and $p \times q$ respectively, for some m, n, p, q. The products (AB)C and A(BC) both have size $m \times q$. Now for any $i \leq m$ and $j \leq q$, we have

$$((AB)C)_{ij} = \sum_{k=1}^{p} (AB)_{ik}C_{kj}$$
$$= \sum_{k=1}^{p} \left(\sum_{\ell=1}^{n} A_{i\ell}B_{\ell k}\right)C_{kj}$$
$$= \sum_{k}\sum_{\ell} A_{i\ell}B_{\ell k}C_{kj}$$
$$= \sum_{\ell}\sum_{k} A_{i\ell}B_{\ell k}C_{kj}$$
$$= \sum_{\ell=1}^{n} A_{i\ell} \left(\sum_{k=1}^{p} B_{\ell k}C_{kj}\right)$$
$$= \sum_{\ell=1}^{n} A_{i\ell}(BC)_{\ell j}$$
$$= (A(BC))_{ij}$$

Proof of (5). I'll just prove that $AI_n = A$. The other equation is similar (though you should work it out on your own anyway). First notice that AI_n has size $m \times n$. Now if $i \leq m$ and $j \leq n$,

$$(AI)_{ij} = \sum_{k=1}^{n} A_{ik} I_{kj}$$

(Here I've dropped the subscript on I_n .) By definition, $I_{kj} = 1$ if k = j, and $I_{kj} = 0$ if $k \neq j$. Hence the only term in the above sum which is nonzero is the term where k = j, and that term is A_{ij} . Hence $(AI)_{ij} = A_{ij}$ for all i and j.

Fact 2. For all *n*, there are $n \times n$ matrices *A* and *B* such that $AB \neq BA$.

A system of linear equations can be written as a single equation involving matrices and vectors; namely, the system

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

can be written as Ax = b, where A is the $m \times n$ matrix with entries a_{ij} , x is the column vector with entries x_i , and b is the column vector with entries b_i . We also sometimes represent the entire system as a matrix;

(a_{11})	a_{12}	• • •	a_{1n}	$b_1 \setminus$
a_{21}	a_{22}	• • •	a_{2n}	b_2
:		·		:
a_{m1}	a_{m2}		a_{mn}	b_m

We write $(A \mid b)$ for this matrix, and call it *augmented* (by b).

You can perform row operations on a matrix, and it's just as you would expect from the above. The interesting thing is that each row operation can be implemented by multiplication by a certain matrix. For instance, if E is the following matrix, where the zeros along the diagonal occur in rows i and j (and all blank entries are zero), then EAis the result of swapping rows i and j in A.

$$\begin{pmatrix} 1 & & & & \\ & \ddots & & & & \\ & & 0 & 1 & & \\ & & \ddots & & & \\ & & 1 & 0 & & \\ & & & & \ddots & \\ & & & & & 1 \end{pmatrix}$$

The other row operations are realized by the following matrices.

$$\begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & \lambda & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & \lambda & & \\ & & & \ddots & & \\ & & & & 1 & \\ & & & & & \ddots & \\ & & & & & & 1 \end{pmatrix}$$

Question. Which matrix implements which row operation?

We call these *elementary matrices*. They are all *square*; that is, they have size $n \times n$ for some n. In each case, to perform a row operation on an $m \times n$ matrix A, we multiply A on the left by its corresponding $m \times m$ elementary matrix E, to get EA. Multiplication by E on the right (assuming m = n; otherwise this doesn't even make sense) would perform a column operation on A. If Fact 2 did not convince you to be careful of which way you multiply matrices, then this should.

Fact 3. If E is an $m \times m$ elementary matrix, then there is an $m \times m$ elementary matrix F such that FE = I.

Proof. We saw in the proof of Theorem 1, from day one, that every row operation is reversible. So let F be the elementary matrix which implements the reverse of the row operation that E implements. Then we have F(EA) = A for all $m \times n$ matrices A, for all n. By associativity, this means (FE)A = A for all $m \times n$ matrices A, for all n. It's not too hard to show from this that FE = I. (It suffices, in fact, to consider just one matrix A, of size $m \times m$. Which one is it?)