
21-241 MATRICES AND LINEAR TRANSFORMATIONS
SUMMER 1 2012
COURSE NOTES

JUNE 19

PAUL MCKENNEY

Let {x1, . . . , xk} be a basis for some subspace V of Cn. We’ve seen before that any
vector v in V can be written uniquely as a linear combination of x1, . . . , xk;

v = λ1x1 + · · ·+ λkxk

Definition. Let B = {b1, . . . , bn} be a basis for Cn. If x ∈ Cn, then the representation

of x in the basis b1, . . . , bn is the unique vector

( λ1
...
λn

)
in Cn such that

x = λ1b1 + · · ·+ λnbn

We refer to this vector as repB(x).

Definition. Let B = {b1, . . . , bn} be a basis for Cn, and let T : Cn → Cn be a linear
transformation. The matrix of T with respect to b1, . . . , bn is the unique n × n matrix A
such that, for all x ∈ Cn,

repB(T (x)) = A repB(x)

Equivalently, A is the matrix with entries

Aij = (repB(bj))i

We refer to this matrix as repB(T ).

Example. Let L be the subspace of R2 spanned by ( 1
1 ). Compute the matrix of PL with

respect to the (ordered) standard basis E = (e1, e2), and the basis

B =

(
1√
2

(
1
1

)
,

1√
2

(
1
−1

))

Solution. The first is

repE (PL) =

(
1/2 1/2
1/2 1/2

)
The second is simply

repB(PL) =

(
1 0
0 0

)
�
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How are these matrices related? They both represent the same linear transformation
PL, but how does this fact present itself in the algebra of the matrices themselves?

Definition. Two square matrices A and B are similar, written A ∼s B, if there is some
invertible S such that A = SBS−1.

Fact 1. ∼s is an equivalence relation.

Theorem 1. Let A and B be square matrices, of the same size. Then the following are
equivalent.

(1) A and B are similar.
(2) A and B represent the same linear transformation.

Example. Let T : R3 → R3 be the linear transformation

T

xy
z

 =

y + z
x+ z
x+ y


Find the matrix of T with respect to the standard basis, and the basis 1

−1
0

 ,

 1
1
−2

 ,

1
1
1


Solution. In the standard basis, the matrix of T is0 1 1

1 0 1
1 1 0


whereas in the alternate basis, the matrix of T is−1 0 0

0 −1 0
0 0 2


�

In physics one often studies “coordinate-free” properties of linear transformations; ie,
properties that are invariant under a change of basis. The idea is that physical laws
should be independent of the observer.

Theorem 2. If A and B are similar, then spec(A) = spec(B). Moreover, the (algebraic
and geometric) multiplicity of each eigenvalue with respect to A is the same as that with
respect to B.

I’ll prove the theorem below, but first I need a lemma.

Lemma 1. If S is an invertible matrix then det(S−1) = det(S)−1.



Proof. We have det(S) det(S−1) = det(SS−1) = det(I) = 1. �

Proof of Theorem 2. Say A = SBS−1. Then,

pA(λ) = det(λI − A) = det(λSIS−1 − SBS−1) = det(S(λI −B)S−1)

= det(S) det(λI −B) det(S)−1 = det(λI −B) = pB(λ)

So A and B have the same characteristic polynomial. This shows that they have the
same eigenvalues and their eigenvalues have the same algebraic multiplicities. As for the
geometric multiplicities, notice that for all λ,

col(λI −B) = col(S(λI −B)) row(S(λI −B)) = row(S(λI −B)S−1)

Hence, rank(λI−B) = rank(λI−A). By the rank-nullity theorem, this implies nullity(λI−
B) = nullity(λI −A). But the nullity of λI −B is simply the geometric multiplicity of λ
with respect to B, and analogously for A. �

Of course, the eigenspaces may change under a change of basis. Both of the examples
from above are typical in this regard.


