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1. More on projections and orthogonal subspaces

Here’s a question. How do you find (a basis for) the orthogonal subspace of a subspace?

Fact 1. Let A be a size m× n matrix. Then col(A)⊥ = null(AH).

Proof. Suppose x ∈ col(A)⊥. Let a1, . . . , an ∈ Cm be the columns of A. Then, aH1 , . . . , a
H
n

are the rows of AH . Hence aH1 x, . . . , a
H
n x are the entries of AHx. But for each i we have

aHi x = 〈x, ai〉 = 0

Hence x ∈ null(AH). The opposite direction follows from the same translation; if x ∈
null(AH), then x is orthogonal to each of the column vectors of A. But then x is orthogonal
to anything in their span. �

Corollary 1. If V is a subspace of Cn, then dim(V ) + dim(V ⊥) = n.

Proof. Let v1, . . . , vm be a basis for V , and let A be the n × m matrix with columns
v1, . . . , vm. Then V = col(A), and V ⊥ = col(A) = null(AH). But the column rank of A
and the row rank of AH are the same (why?); so by the rank-nullity theorem,

dim(V ) + dim(V ⊥) = rank(AH) + nullity(AH) = n

�

Example. Find a basis for the orthogonal subspace of
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Theorem 1. Let V be a subspace of Cn. Then,

(1) PV : Cn → Cn is a well-defined linear transformation.
(2) If v ∈ V then PV (v) = v.
(3) If w ∈ V ⊥ then PV (w) = 0.
(4) If PV is the matrix which implements PV , then PV is a projection matrix.

Proof. What we mean in (1) is, if we used two different orthonormal bases {u1, . . . , uk}
and {û1, . . . , ûk} for V , would we get the same output always? That is, do we have

k∑
i=1

〈x, ui〉ui =
k∑
i=1

〈x, ûi〉 ûi

for all x ∈ Cn? The proof is not really significant so long as you understand the problem.

For (2), recall that for any v ∈ V ,

v =
k∑
i=1

〈v, ui〉ui

where u1, . . . , uk is any orthonormal basis for V . The right-hand-side is our definition of
PV (v) (now that we know it makes sense).

For (3), let w ∈ V ⊥. Then

PV (w) =
k∑
i=1

〈w, ui〉ui = 0 · u1 + · · ·+ 0 · uk = 0

�

Theorem 2. Let V be a subspace of Cn. Then for every x ∈ Cn, x = PV (x)+(x−PV (x))
is the unique decomposition of x into vectors in V and V ⊥.

Proof. To see that this pair is the only one that works, say v ∈ V and w ∈ V ⊥ is another
pair of vectors, such that x = v + w. Then we have

PV (x) = PV (v + w) = PV (v) + PV (w) = v + 0 = v

But then w = x− v = x− PV (x) as well. �

Proof of (4). Let x ∈ Cn, and write P = PV . Let x = v+w be the unique decomposition
of x into vectors from V and V ⊥ respectively. Then,

Px = P (v + w) = Pv + Pw = v + 0 = v

On the other hand,
P 2x = P (Px) = Pv = v = Px

So Px = P 2x for all x ∈ Cn, and as we’ve seen this implies P = P 2.



Now let x, y ∈ Cn be given. Say x = v+w and y = s+ t, where v, s ∈ V and w, t ∈ V ⊥.
Then,

〈Px, y〉 = 〈P (v + w), s+ t〉 = 〈v + 0, s+ t〉 = 〈v, s〉+ 〈v, t〉 = 〈v, s〉
Similarly,〈

PHx, y
〉

= 〈x, Py〉 = 〈v + w,P (s+ t)〉 = 〈v + w, s+ 0〉 = 〈v, s〉+ 〈w, s〉 = 〈v, s〉

Hence 〈Px, y〉 =
〈
PHx, y

〉
for all x, y ∈ Cn. This implies P = PH .

�

2. Eigenvalues and Orthogonality

Definition. A matrix A ∈ Mn(C) is Hermitian if AH = A. A is symmetric if A> = A.
Note that if A is a real matrix then A is symmetric if and only if A is Hermitian.

Theorem 3. Suppose A is Hermitian, and λ, µ ∈ C are distinct eigenvalues for A. Then
Vλ ⊥ Vµ.

Proof. Let v ∈ Vλ and w ∈ Vµ be given. Then,

〈Av,w〉 = 〈λv, w〉 = λ 〈v, w〉
and also,

〈Av,w〉 =
〈
v, AHw

〉
= 〈v, Aw〉 = 〈v, µw〉 = µ̄ 〈v, w〉

By a problem on HW5, λ and µ are actually real numbers; so in particular, µ̄ = µ, and
we have

λ 〈v, w〉 = µ 〈v, w〉
Since λ 6= µ, 〈v, w〉 = 0. �

Definition. Let A ∈Mn(C), and let λ be an eigenvalue of A. The geometric multiplicity
of λ (with respect to A) is dim(Vλ). The algebraic multiplicity of λ (with respect to A) is
the number of times λ appears as a root in the characteristic polynomial of A.

Example. Let

A =

2 0 0
0 5 0
0 0 5


Then spec(A) = {2, 5}. The geometric multiplicity of 2, with respect to A, is 1; whereas
the geometric multiplicity of 5 with respect to A is 2. ({e1} is a basis for the eigenspace
of 2, and {e2, e3} is a basis for the eigenspace of 5.) The characteristic polynomial of A is

pA(λ) = det(λI − A) = (λ− 2)(λ− 5)2

hence the algebraic multiplicities are 1 (for 2) and 2 (for 5).

Fact 2. The sum of the algebraic multiplicities of the eigenvalues of an n × n matrix A
is exactly n.



Proof. We’ve seen that the characteristic polynomial of A has degree exactly n; since the
eigenvalues of A are the roots of pA, it follows that their multiplicities must sum up to
n. �

The same is not true for the geometric multiplicities. The shift matrix provides the
canonical example. (As you should see on HW5.)

Example. Let

A =

(
0 0
1 0

)
The characteristic polynomial of A is λ2 − (−1) · 0 = λ2, hence the only eigenvalue of A
is 0, with algebraic multiplicity 2. The eigenspace is exactly null(A), which has a basis of
{e1}. Hence the geometric multiplicity of 0 with respect to A is 1.


