21-241 MATRICES AND LINEAR TRANSFORMATIONS
 SUMMER 12012
 COURSE NOTES
 JUNE 18

PAUL MCKENNEY

1. More on projections and orthogonal subspaces

Here's a question. How do you find (a basis for) the orthogonal subspace of a subspace?
Fact 1. Let A be a size $m \times n$ matrix. Then $\operatorname{col}(A)^{\perp}=\operatorname{null}\left(A^{H}\right)$.

Proof. Suppose $x \in \operatorname{col}(A)^{\perp}$. Let $a_{1}, \ldots, a_{n} \in \mathbb{C}^{m}$ be the columns of A. Then, $a_{1}^{H}, \ldots, a_{n}^{H}$ are the rows of A^{H}. Hence $a_{1}^{H} x, \ldots, a_{n}^{H} x$ are the entries of $A^{H} x$. But for each i we have

$$
a_{i}^{H} x=\left\langle x, a_{i}\right\rangle=0
$$

Hence $x \in \operatorname{null}\left(A^{H}\right)$. The opposite direction follows from the same translation; if $x \in$ null $\left(A^{H}\right)$, then x is orthogonal to each of the column vectors of A. But then x is orthogonal to anything in their span.

Corollary 1. If V is a subspace of \mathbb{C}^{n}, then $\operatorname{dim}(V)+\operatorname{dim}\left(V^{\perp}\right)=n$.

Proof. Let v_{1}, \ldots, v_{m} be a basis for V, and let A be the $n \times m$ matrix with columns v_{1}, \ldots, v_{m}. Then $V=\operatorname{col}(A)$, and $V^{\perp}=\operatorname{col}(A)=\operatorname{null}\left(A^{H}\right)$. But the column rank of A and the row rank of A^{H} are the same (why?); so by the rank-nullity theorem,

$$
\operatorname{dim}(V)+\operatorname{dim}\left(V^{\perp}\right)=\operatorname{rank}\left(A^{H}\right)+\operatorname{nullity}\left(A^{H}\right)=n
$$

Example. Find a basis for the orthogonal subspace of

$$
\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
2 \\
2
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
1 \\
5
\end{array}\right)\right\}
$$

Theorem 1. Let V be a subspace of \mathbb{C}^{n}. Then,
(1) $\mathbb{P}_{V}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a well-defined linear transformation.
(2) If $v \in V$ then $\mathbb{P}_{V}(v)=v$.
(3) If $w \in V^{\perp}$ then $\mathbb{P}_{V}(w)=0$.
(4) If P_{V} is the matrix which implements \mathbb{P}_{V}, then P_{V} is a projection matrix.

Proof. What we mean in (1) is, if we used two different orthonormal bases $\left\{u_{1}, \ldots, u_{k}\right\}$ and $\left\{\hat{u}_{1}, \ldots, \hat{u}_{k}\right\}$ for V, would we get the same output always? That is, do we have

$$
\sum_{i=1}^{k}\left\langle x, u_{i}\right\rangle u_{i}=\sum_{i=1}^{k}\left\langle x, \hat{u}_{i}\right\rangle \hat{u}_{i}
$$

for all $x \in \mathbb{C}^{n}$? The proof is not really significant so long as you understand the problem.
For (2), recall that for any $v \in V$,

$$
v=\sum_{i=1}^{k}\left\langle v, u_{i}\right\rangle u_{i}
$$

where u_{1}, \ldots, u_{k} is any orthonormal basis for V. The right-hand-side is our definition of $\mathbb{P}_{V}(v)$ (now that we know it makes sense).

For (3), let $w \in V^{\perp}$. Then

$$
\mathbb{P}_{V}(w)=\sum_{i=1}^{k}\left\langle w, u_{i}\right\rangle u_{i}=0 \cdot u_{1}+\cdots+0 \cdot u_{k}=0
$$

Theorem 2. Let V be a subspace of \mathbb{C}^{n}. Then for every $x \in \mathbb{C}^{n}, x=\mathbb{P}_{V}(x)+\left(x-\mathbb{P}_{V}(x)\right)$ is the unique decomposition of x into vectors in V and V^{\perp}.

Proof. To see that this pair is the only one that works, say $v \in V$ and $w \in V^{\perp}$ is another pair of vectors, such that $x=v+w$. Then we have

$$
\mathbb{P}_{V}(x)=\mathbb{P}_{V}(v+w)=\mathbb{P}_{V}(v)+\mathbb{P}_{V}(w)=v+0=v
$$

But then $w=x-v=x-\mathbb{P}_{V}(x)$ as well.
Proof of (4). Let $x \in \mathbb{C}^{n}$, and write $P=P_{V}$. Let $x=v+w$ be the unique decomposition of x into vectors from V and V^{\perp} respectively. Then,

$$
P x=P(v+w)=P v+P w=v+0=v
$$

On the other hand,

$$
P^{2} x=P(P x)=P v=v=P x
$$

So $P x=P^{2} x$ for all $x \in \mathbb{C}^{n}$, and as we've seen this implies $P=P^{2}$.

Now let $x, y \in \mathbb{C}^{n}$ be given. Say $x=v+w$ and $y=s+t$, where $v, s \in V$ and $w, t \in V^{\perp}$. Then,

$$
\langle P x, y\rangle=\langle P(v+w), s+t\rangle=\langle v+0, s+t\rangle=\langle v, s\rangle+\langle v, t\rangle=\langle v, s\rangle
$$

Similarly,

$$
\left\langle P^{H} x, y\right\rangle=\langle x, P y\rangle=\langle v+w, P(s+t)\rangle=\langle v+w, s+0\rangle=\langle v, s\rangle+\langle w, s\rangle=\langle v, s\rangle
$$

Hence $\langle P x, y\rangle=\left\langle P^{H} x, y\right\rangle$ for all $x, y \in \mathbb{C}^{n}$. This implies $P=P^{H}$.

2. Eigenvalues and Orthogonality

Definition. A matrix $A \in M_{n}(\mathbb{C})$ is Hermitian if $A^{H}=A . A$ is symmetric if $A^{\top}=A$. Note that if A is a real matrix then A is symmetric if and only if A is Hermitian.

Theorem 3. Suppose A is Hermitian, and $\lambda, \mu \in \mathbb{C}$ are distinct eigenvalues for A. Then $V_{\lambda} \perp V_{\mu}$.

Proof. Let $v \in V_{\lambda}$ and $w \in V_{\mu}$ be given. Then,

$$
\langle A v, w\rangle=\langle\lambda v, w\rangle=\lambda\langle v, w\rangle
$$

and also,

$$
\langle A v, w\rangle=\left\langle v, A^{H} w\right\rangle=\langle v, A w\rangle=\langle v, \mu w\rangle=\bar{\mu}\langle v, w\rangle
$$

By a problem on HW5, λ and μ are actually real numbers; so in particular, $\bar{\mu}=\mu$, and we have

$$
\lambda\langle v, w\rangle=\mu\langle v, w\rangle
$$

Since $\lambda \neq \mu,\langle v, w\rangle=0$.
Definition. Let $A \in M_{n}(\mathbb{C})$, and let λ be an eigenvalue of A. The geometric multiplicity of λ (with respect to A) is $\operatorname{dim}\left(V_{\lambda}\right)$. The algebraic multiplicity of λ (with respect to A) is the number of times λ appears as a root in the characteristic polynomial of A.

Example. Let

$$
A=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

Then $\operatorname{spec}(A)=\{2,5\}$. The geometric multiplicity of 2 , with respect to A, is 1 ; whereas the geometric multiplicity of 5 with respect to A is 2 . ($\left\{e_{1}\right\}$ is a basis for the eigenspace of 2 , and $\left\{e_{2}, e_{3}\right\}$ is a basis for the eigenspace of 5 .) The characteristic polynomial of A is

$$
p_{A}(\lambda)=\operatorname{det}(\lambda I-A)=(\lambda-2)(\lambda-5)^{2}
$$

hence the algebraic multiplicities are 1 (for 2) and 2 (for 5).
Fact 2. The sum of the algebraic multiplicities of the eigenvalues of an $n \times n$ matrix A is exactly n.

Proof. We've seen that the characteristic polynomial of A has degree exactly n; since the eigenvalues of A are the roots of p_{A}, it follows that their multiplicities must sum up to n.

The same is not true for the geometric multiplicities. The shift matrix provides the canonical example. (As you should see on HW5.)
Example. Let

$$
A=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

The characteristic polynomial of A is $\lambda^{2}-(-1) \cdot 0=\lambda^{2}$, hence the only eigenvalue of A is 0 , with algebraic multiplicity 2 . The eigenspace is exactly null (A), which has a basis of $\left\{e_{1}\right\}$. Hence the geometric multiplicity of 0 with respect to A is 1 .

