21-241 MATRICES AND LINEAR TRANSFORMATIONS
 SUMMER 12012
 COURSE NOTES
 JUNE 14

PAUL MCKENNEY

Definition. If V is a subspace of \mathbb{C}^{n}, then the orthogonal subspace of V is

$$
V^{\perp}=\left\{w \in \mathbb{C}^{n} \mid \forall v \in V\langle w, v\rangle=0\right\}
$$

Fact 1. Let V be a subspace of \mathbb{C}^{n}.
(1) V^{\perp} is a subspace of \mathbb{C}^{n}.
(2) $V \perp V^{\perp}$.
(3) $\left(V^{\perp}\right)^{\perp}=V$.

Theorem 1. If V is a subspace of \mathbb{C}^{n} and $x \in \mathbb{C}^{n}$, then $x-\mathbb{P}_{V}(x) \in V^{\perp}$.

Proof. Let $\left\{v_{1}, \ldots, v_{k}\right\}$ be an orthonormal basis for V. Set $w=x-\mathbb{P}_{V}(x)$. We'll first show that w is orthogonal to each v_{i} in turn. To see this, recall that

$$
\mathbb{P}_{V}(x)=\sum_{j=1}^{k}\left\langle x, v_{j}\right\rangle v_{j}
$$

Then,

$$
\begin{aligned}
\left\langle w, v_{i}\right\rangle & =\left\langle x-\mathbb{P}_{V}(x), v_{i}\right\rangle \\
& =\left\langle x, v_{i}\right\rangle-\left\langle\sum_{j=1}^{k}\left\langle x, v_{j}\right\rangle v_{j}, v_{i}\right\rangle \\
& =\left\langle x, v_{i}\right\rangle-\sum_{j=1}^{k}\left(\left\langle x, v_{j}\right\rangle\right)\left\langle v_{j}, v_{i}\right\rangle \\
& =\left\langle x, v_{i}\right\rangle-\left(0+\cdots+\left\langle x, v_{i}\right\rangle \cdot 1+\cdots+0\right) \\
& =0
\end{aligned}
$$

Now let $v \in V$ be given. Since $\left\{v_{1}, \ldots, v_{k}\right\}$ is a basis for V, we may write

$$
v=\lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}
$$

for some sequence of coefficients, $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C}$. Then,

$$
\langle w, v\rangle=\left\langle w, \lambda_{1} v_{1}+\cdots+\lambda_{k} v_{k}\right\rangle=\overline{\lambda_{1}}\left\langle w, v_{1}\right\rangle+\cdots+\overline{\lambda_{k}}\left\langle w, v_{k}\right\rangle=0+\cdots+0=0
$$

Now we can describe the Gram-Schmidt process, which takes in a sequence of vectors x_{1}, \ldots, x_{k}, and produces vectors v_{1}, \ldots, v_{ℓ}, and u_{1}, \ldots, u_{ℓ}, such that
(a) $\left\{v_{1}, \ldots, v_{\ell}\right\}$ is an orthogonal basis for $\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}$.
(b) $\left\{u_{1}, \ldots, u_{\ell}\right\}$ is an orthonormal basis for $\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}$.

The vectors v_{i} are computed recursively as follows;
(1) $v_{1}=x_{1}$.
(2) $v_{i+1}=x_{i+1}-\mathbb{P}_{\text {span }\left\{v_{1}, \ldots, v_{i}\right\}}\left(x_{i+1}\right)$.

At each step we compute u_{i} by the formula

$$
u_{i}=\frac{1}{\left\|v_{i}\right\|} v_{i}
$$

if $v_{i} \neq 0$. If $v_{i}=0$ then we discard x_{i} and compute v_{i} again with x_{i+1} in its place.
Note 1. Notice that, by construction (and the preceding theorem), v_{i+1} is in the orthogonal subspace of $\operatorname{span}\left\{v_{1}, \ldots, v_{i}\right\}$. In particular, v_{i+1} is orthogonal to each of v_{1}, \ldots, v_{i}. Hence at the end we will have an orthogonal set of vectors. Moreover, at each step we've ensured that v_{1}, \ldots, v_{i} are pairwise orthogonal, so u_{1}, \ldots, u_{i} make up an orthonormal basis for their span. Hence by our definition of the projection operators \mathbb{P}_{S}, we can expand on our recursive definition of v_{i+1} above;

$$
v_{i+1}=x_{i+1}-\mathbb{P}_{\operatorname{span}\left\{v_{1}, \ldots, v_{i}\right\}}\left(x_{i+1}\right)=x_{i+1}-\left(\sum_{j=1}^{i}\left\langle x_{i+1}, u_{j}\right\rangle u_{j}\right)
$$

Note 2. If x_{1}, \ldots, x_{k} are already linearly independent, then it follows that $\ell=k$. Otherwise, it follows that $\ell<k$. (Why?)
Note 3 . The case where one of the vectors v_{i} is zero only occurs when $x_{i} \in \operatorname{span}\left\{x_{1}, \ldots, x_{i-1}\right\}$, which itself only occurs when x_{1}, \ldots, x_{k} are linearly dependent.

