21-241 MATRICES AND LINEAR TRANSFORMATIONS SUMMER 1 2012 COURSE NOTES JUNE 14

PAUL MCKENNEY

Definition. If V is a subspace of \mathbb{C}^n , then the *orthogonal subspace* of V is

$$V^{\perp} = \{ w \in \mathbb{C}^n \mid \forall v \in V \ \langle w, v \rangle = 0 \}$$

Fact 1. Let V be a subspace of \mathbb{C}^n .

- (1) V^{\perp} is a subspace of \mathbb{C}^n .
- (2) $V \perp V^{\perp}$.
- (3) $(V^{\perp})^{\perp} = V$.

Theorem 1. If V is a subspace of \mathbb{C}^n and $x \in \mathbb{C}^n$, then $x - \mathbb{P}_V(x) \in V^{\perp}$.

Proof. Let $\{v_1, \ldots, v_k\}$ be an orthonormal basis for V. Set $w = x - \mathbb{P}_V(x)$. We'll first show that w is orthogonal to each v_i in turn. To see this, recall that

$$\mathbb{P}_{V}(x) = \sum_{j=1}^{k} \langle x, v_{j} \rangle v_{j}$$

Then,

$$\langle w, v_i \rangle = \langle x - \mathbb{P}_V(x), v_i \rangle$$

$$= \langle x, v_i \rangle - \left\langle \sum_{j=1}^k \langle x, v_j \rangle v_j, v_i \right\rangle$$

$$= \langle x, v_i \rangle - \sum_{j=1}^k (\langle x, v_j \rangle) \langle v_j, v_i \rangle$$

$$= \langle x, v_i \rangle - (0 + \dots + \langle x, v_i \rangle \cdot 1 + \dots + 0)$$

$$= 0$$

Now let $v \in V$ be given. Since $\{v_1, \ldots, v_k\}$ is a basis for V, we may write

$$v = \lambda_1 v_1 + \dots + \lambda_k v_k$$

for some sequence of coefficients, $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$. Then,

$$\langle w, v \rangle = \langle w, \lambda_1 v_1 + \dots + \lambda_k v_k \rangle = \overline{\lambda_1} \langle w, v_1 \rangle + \dots + \overline{\lambda_k} \langle w, v_k \rangle = 0 + \dots + 0 = 0$$

Now we can describe the Gram-Schmidt process, which takes in a sequence of vectors x_1, \ldots, x_k , and produces vectors v_1, \ldots, v_ℓ , and u_1, \ldots, u_ℓ , such that

- (a) $\{v_1, \ldots, v_\ell\}$ is an orthogonal basis for span $\{x_1, \ldots, x_k\}$.
- (b) $\{u_1, \ldots, u_\ell\}$ is an orthonormal basis for span $\{x_1, \ldots, x_k\}$.

The vectors v_i are computed recursively as follows;

- (1) $v_1 = x_1$.
- (2) $v_{i+1} = x_{i+1} \mathbb{P}_{\text{span}\{v_1,\dots,v_i\}}(x_{i+1}).$

At each step we compute u_i by the formula

$$u_i = \frac{1}{\|v_i\|} v_i$$

if $v_i \neq 0$. If $v_i = 0$ then we discard x_i and compute v_i again with x_{i+1} in its place.

Note 1. Notice that, by construction (and the preceding theorem), v_{i+1} is in the orthogonal subspace of span $\{v_1, \ldots, v_i\}$. In particular, v_{i+1} is orthogonal to each of v_1, \ldots, v_i . Hence at the end we will have an orthogonal set of vectors. Moreover, at each step we've ensured that v_1, \ldots, v_i are pairwise orthogonal, so u_1, \ldots, u_i make up an orthonormal basis for their span. Hence by our definition of the projection operators \mathbb{P}_S , we can expand on our recursive definition of v_{i+1} above;

$$v_{i+1} = x_{i+1} - \mathbb{P}_{\text{span}\{v_1,\dots,v_i\}}(x_{i+1}) = x_{i+1} - \left(\sum_{j=1}^{i} \langle x_{i+1}, u_j \rangle u_j\right)$$

Note 2. If x_1, \ldots, x_k are already linearly independent, then it follows that $\ell = k$. Otherwise, it follows that $\ell < k$. (Why?)

Note 3. The case where one of the vectors v_i is zero only occurs when $x_i \in \text{span}\{x_1, \dots, x_{i-1}\}$, which itself only occurs when x_1, \dots, x_k are linearly dependent.