21-241 MATRICES AND LINEAR TRANSFORMATIONS
 SUMMER 12012
 COURSE NOTES
 JUNE 13

PAUL MCKENNEY

1. Warm-up

What's the determinant of a diagonal matrix $\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$? I can think of three proofs.
(1) Row-ops. [Hard to describe formally.]
(2) Problem 8 on HW4 and induction.
(3) Write the determinant using permutations.

2. Orthonormal Bases

Definition. If $x \in \mathbb{C}^{n}$ and $\|x\|=1$, we call x a unit vector. Any nonzero vector can be scaled to make a unit vector, and we call this normalizing the vector.

If $x_{1}, \ldots, x_{k} \in \mathbb{C}^{n}$ are distinct, pairwise orthogonal, unit vectors then we call the set $\left\{x_{1}, \ldots, x_{k}\right\}$ orthonormal.

Recall that if x_{1}, \ldots, x_{k} are nonzero, distinct, and pairwise orthogonal, then $\left\{x_{1}, \ldots, x_{k}\right\}$ is linearly independent. Hence $\left\{x_{1}, \ldots, x_{k}\right\}$ makes up a basis for its own span. In this case we call $\left\{x_{1}, \ldots, x_{k}\right\}$ an orthogonal basis for the subspace $S=\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}$. If $\left\{x_{1}, \ldots, x_{k}\right\}$ is orthonormal then we call it an orthonormal basis for S.

Theorem 1. Suppose S is a subspace of \mathbb{C}^{n}, and $\left\{x_{1}, \ldots, x_{k}\right\}$ is an orthogonal basis for S. Then for any $y \in S$,

$$
y=\frac{\left\langle y, x_{1}\right\rangle}{\left\|x_{1}\right\|^{2}} x_{1}+\cdots+\frac{\left\langle y, x_{k}\right\rangle}{\left\|x_{k}\right\|^{2}} x_{k}
$$

In particular, if $\left\{x_{1}, \ldots, x_{k}\right\}$ is orthonormal, then for any $y \in S$ we have

$$
y=\left\langle y, x_{1}\right\rangle x_{1}+\cdots+\left\langle y, x_{k}\right\rangle x_{k}
$$

Example. Show that $\left\{e_{1}, \ldots, e_{n}\right\}$ is an orthonormal basis for \mathbb{C}^{n}.

Example. Show that $\left\{\binom{1}{1},\binom{-1}{1}\right\}$ is an orthogonal basis for \mathbb{C}^{2} but is not orthonormal. What's the "normalized" version? What are the coordinates of e_{1} and e_{2} in this orthonormal basis?

Definition. Suppose S is a k-dimensional subspace of \mathbb{C}^{n}, and $\left\{s_{1}, \ldots, s_{k}\right\}$ is an orthonormal basis for S. The orthogonal projection of a vector $x \in \mathbb{C}^{n}$ onto S is the vector

$$
\mathbb{P}_{S}(x)=\sum_{i=1}^{k}\left\langle x, s_{i}\right\rangle s_{i}
$$

Example. Let $s=\frac{1}{\sqrt{2}}\binom{1}{1}, S=\operatorname{span}\{s\}$, and $X=\operatorname{span}\left\{e_{1}\right\}$. What's $\mathbb{P}_{S}\left(e_{1}\right)$? $\mathbb{P}_{X}(s)$? $\mathbb{P}_{S}(s)$? $\mathbb{P}_{X}\left(e_{1}\right)$? What about $\mathbb{P}_{S}\left(\mathbb{P}_{X}(s)\right)$?
Example. Find an orthonormal basis for the plane P in \mathbb{R}^{3} described by $3 x-2 y+z=0$. Find the projections of e_{1}, e_{2}, e_{3} onto P.

Theorem 2. (1) $\mathbb{P}_{S}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is well-defined and a linear transformation.
(2) If P_{S} is the $n \times n$ matrix which implements \mathbb{P}_{S}, then P_{S} is a projection matrix.
(3) For all $x \in \mathbb{C}^{n}, \mathbb{P}_{S}(x)$ is the unique vector in S whose distance to x is smallest.

