21-241 MATRICES AND LINEAR TRANSFORMATIONS
 SUMMER 12012
 COURSE NOTES
 JUNE 12

PAUL MCKENNEY

Definition. If $x, y \in \mathbb{C}^{n}$, their inner product is defined to be

$$
\langle x, y\rangle=\sum_{k=1}^{n} x_{k} \overline{y_{k}}
$$

We say that x and y are orthogonal, and write $x \perp y$, if $\langle x, y\rangle=0$.

Note that, viewing y^{H} and x as $1 \times n$ and $n \times 1$ size matrices respectively, we have

$$
\langle x, y\rangle=y^{H} x
$$

In the case where $x, y \in \mathbb{R}^{n}$, all the complex conjugates drop away, and we can write y^{\top} instead of y^{H}.

Example. Let p and q be points in the plane \mathbb{R}^{2}. Show that if p and q lie on the unit circle, then $\langle p, q\rangle$ is exactly $\cos (\theta)$, where θ is the angle between p and q on the unit circle (equivalently, the length of the arc between p and q, centered at 0 .) Show that $p \perp q$ if and only if the lines L and R, going through 0 and p, and 0 and q respectively, are perpendicular.

Proof. Suppose p and q lie on the unit circle; then we can write their coordinates down as $p=(\cos \varphi, \sin \varphi)$ and $q=(\cos \psi, \sin \psi)$ for some φ and ψ, and the angle between them is exactly $\theta=|\varphi-\psi|$. Now,

$$
\langle p, q\rangle=\cos \varphi \cos \psi+\sin \varphi \sin \psi=\cos (\varphi-\psi)
$$

Since \cos is an even function, $\cos (\varphi-\psi)=\cos \theta$.
The other part of the problem follows from this part; $p \perp q$ if and only if θ is a zero of cos, if and only if θ is one of $\pi / 2$ or $3 \pi / 2$, if and only if the lines L and R described are orthogonal.

Before we continue we'll need to recall some facts about complex conjugation, ie the map $z \mapsto \bar{z}$ given by $a+b i \mapsto a-b i$. In short, it's as nice as you would want.

Fact 1. For all $z, w \in \mathbb{C}$,
(1) $\overline{z+w}=\bar{z}+\bar{w}$,
(2) $\overline{z w}=\bar{z} \bar{w}$,
(3) $\overline{\bar{z}}=z$.

Example. Which of the above algebraic properties hold for the hermitian operator? Ie, which of
(1) $(A+B)^{H}=A^{H}+B^{H}$,
(2) $(A B)^{H}=A^{H} B^{H}$,
(3) $\left(A^{H}\right)^{H}=A$
is true for all $A, B \in M_{n}(\mathbb{C})$? If one of them is wrong, what's the "right" version?
Fact 2. (1) For all $x, y, z \in \mathbb{C}^{n},\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$.
(2) For all $x, y \in \mathbb{C}^{n}$ and $\lambda \in \mathbb{C},\langle\lambda x, y\rangle=\lambda\langle x, y\rangle$.
(3) For all $x, y \in \mathbb{C}^{n},\langle x, y\rangle=\overline{\langle y, x\rangle}$.

This fact is often summarized in the following way. (We often say that the inner product is linear in its first argument, and conjugate-linear in its second argument.)

Corollary 1. For all $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{C}^{n}$ and $\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2} \in \mathbb{C}$,

$$
\left\langle\lambda_{1} x_{1}+\lambda_{2} x_{2}, \mu_{1} y_{1}+\mu_{2} y_{2}\right\rangle=\lambda_{1} \overline{\mu_{1}}\left\langle x_{1}, y_{1}\right\rangle+\lambda_{1} \overline{\mu_{2}}\left\langle x_{1}, y_{2}\right\rangle+\lambda_{2} \overline{\mu_{1}}\left\langle x_{2}, y_{1}\right\rangle+\lambda_{2} \overline{\mu_{2}}\left\langle x_{2}, y_{2}\right\rangle
$$

It's useful to keep in mind that when $x, y \in \mathbb{R}^{n}$, all of the complex conjugates above disappear.

Fact 3. For all $x \in \mathbb{C}^{n},\langle x, x\rangle$ is nonnegative.
Definition. The norm of a vector $x \in \mathbb{C}^{n}$ is defined to be

$$
\|x\|=\sqrt{\langle x, x\rangle}=\left(\sum_{k=1}^{n}\left|x_{k}\right|^{2}\right)^{\frac{1}{2}}
$$

The distance between two vectors $x, y \in \mathbb{C}^{n}$ is $\|x-y\|$.
Fact 4. (1) If $x \in \mathbb{C}^{n}$ and $\lambda \in \mathbb{C}$, then $\|\lambda x\|=|\lambda|\|x\|$,
(2) If $x, y \in \mathbb{C}^{n}$ and $x \perp y$, then $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$.

Fact 5. (Cauchy-Schwartz Inequality) For any $x, y \in \mathbb{C}^{n}$, we have

$$
|\langle x, y\rangle|^{2} \leq\|x\|\|y\|
$$

Moreover, the equality above holds if and only if x and y are linearly independent.

Proof. If $y=0$ then we're done. (Why?) So assume $y \neq 0$; then $\|y\| \neq 0$. Let

$$
z=x-\frac{\langle x, y\rangle}{\langle y, y\rangle} y=x-\frac{\langle x, y\rangle}{\|y\|^{2}} y
$$

Then,

$$
\langle z, y\rangle=\left\langle x-\frac{\langle x, y\rangle}{\langle y, y\rangle} y, y\right\rangle=\langle x, y\rangle-\frac{\langle x, y\rangle}{\langle y, y\rangle}\langle y, y\rangle=0
$$

So $z \perp y$, and it follows that $\frac{\langle x, y\rangle}{\langle y, y\rangle} y$ and z are orthogonal. So by the above fact,

$$
\left\|\frac{\langle x, y\rangle}{\langle y, y\rangle} y+z\right\|^{2}=\frac{|\langle x, y\rangle|^{2}}{|\langle y, y\rangle|^{2}}\|y\|^{2}+\|z\|^{2} \geq \frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}}
$$

Finally, note that

$$
x=\frac{\langle x, y\rangle}{\langle y, y\rangle} y+z
$$

So we have

$$
\|x\|^{2} \geq \frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}}
$$

Moving stuff around and taking a root, we get

$$
\|x\|\|y\| \geq\langle x, y\rangle
$$

as desired.
Theorem 1. Suppose $x_{1}, \ldots, x_{k} \in \mathbb{C}^{n}$ are pairwise orthogonal, ie, $x_{i} \perp x_{j}$ for $i \neq j$, and each x_{i} is nonzero. Then $\left\{x_{1}, \ldots, x_{k}\right\}$ is linearly independent.

Proof. Suppose

$$
\lambda_{1} x_{1}+\cdots+\lambda_{k} x_{k}=0
$$

Now take the inner product with x_{i};

$$
0=\left\langle 0, x_{i}\right\rangle=\left\langle\sum_{j=1}^{k} \lambda_{j} x_{j}, x_{i}\right\rangle=\sum_{j=1}^{k} \lambda_{j}\left\langle x_{j}, x_{i}\right\rangle=\lambda_{i}\left\|x_{i}\right\|^{2}
$$

Since x_{i} is nonzero, $\left\|x_{i}\right\|^{2} \neq 0$. Then $\lambda_{i}=0$.
Theorem 2. Suppose $A \in M_{n}(\mathbb{C})$, and $x, y \in \mathbb{C}^{n}$. Then $\langle A x, y\rangle=\left\langle x, A^{H} y\right\rangle$.

Proof. The i th entry of $A x$ is

$$
(A x)_{i}=\sum_{j=1}^{n} A_{i j} x_{j}
$$

Similarly, the j th entry of $A^{H} y$ is

$$
\left(A^{H} y\right)_{j}=\sum_{i=1}^{n}\left(A^{H}\right)_{j i} y_{i}=\sum_{i=1}^{n} \overline{A_{i j}} y_{i}
$$

So,

$$
\begin{aligned}
\langle A x, y\rangle & =\sum_{i=1}^{n}\left(\sum_{j=1}^{n} A_{i j} x_{j}\right) \overline{y_{i}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} x_{j} \overline{y_{i}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} x_{j} \overline{\overline{A_{i j}} y_{i}} \\
& =\sum_{j=1}^{n} x_{j} \sum_{i=1}^{n} \overline{\overline{A_{i j}} y_{i}} \\
& =\sum_{j=1}^{n} x_{j} \overline{\left(A^{H} y\right)_{j}} \\
& =\left\langle x, A^{H} y\right\rangle
\end{aligned}
$$

