21-241 MATRICES AND LINEAR TRANSFORMATIONS SUMMER 1 2012 COURSE NOTES JUNE 12

PAUL MCKENNEY

Definition. If $x, y \in \mathbb{C}^n$, their *inner product* is defined to be

$$\langle x, y \rangle = \sum_{k=1}^{n} x_k \overline{y_k}$$

We say that x and y are orthogonal, and write $x \perp y$, if $\langle x, y \rangle = 0$.

Note that, viewing y^H and x as $1 \times n$ and $n \times 1$ size matrices respectively, we have

$$\langle x, y \rangle = y^H x$$

In the case where $x, y \in \mathbb{R}^n$, all the complex conjugates drop away, and we can write y^{\top} instead of y^H .

Example. Let p and q be points in the plane \mathbb{R}^2 . Show that if p and q lie on the unit circle, then $\langle p, q \rangle$ is exactly $\cos(\theta)$, where θ is the angle between p and q on the unit circle (equivalently, the length of the arc between p and q, centered at 0.) Show that $p \perp q$ if and only if the lines L and R, going through 0 and p, and 0 and q respectively, are perpendicular.

Proof. Suppose p and q lie on the unit circle; then we can write their coordinates down as $p = (\cos \varphi, \sin \varphi)$ and $q = (\cos \psi, \sin \psi)$ for some φ and ψ , and the angle between them is exactly $\theta = |\varphi - \psi|$. Now,

 $\langle p,q \rangle = \cos \varphi \cos \psi + \sin \varphi \sin \psi = \cos(\varphi - \psi)$

Since \cos is an even function, $\cos(\varphi - \psi) = \cos \theta$.

The other part of the problem follows from this part; $p \perp q$ if and only if θ is a zero of cos, if and only if θ is one of $\pi/2$ or $3\pi/2$, if and only if the lines L and R described are orthogonal.

Before we continue we'll need to recall some facts about complex conjugation, if the map $z \mapsto \bar{z}$ given by $a + bi \mapsto a - bi$. In short, it's as nice as you would want.

Fact 1. For all $z, w \in \mathbb{C}$,

(1) $\overline{z+w} = \overline{z} + \overline{w}$,

(2)
$$\overline{zw} = \overline{z}\overline{w},$$

(3) $\overline{\overline{z}} = z.$

Example. Which of the above algebraic properties hold for the hermitian operator? Ie, which of

(1) $(A + B)^{H} = A^{H} + B^{H},$ (2) $(AB)^{H} = A^{H}B^{H},$ (3) $(A^{H})^{H} = A$

is true for all $A, B \in M_n(\mathbb{C})$? If one of them is wrong, what's the "right" version?

Fact 2. (1) For all
$$x, y, z \in \mathbb{C}^n$$
, $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$.
(2) For all $x, y \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$, $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$.
(3) For all $x, y \in \mathbb{C}^n$, $\langle x, y \rangle = \overline{\langle y, x \rangle}$.

This fact is often summarized in the following way. (We often say that the inner product is linear in its first argument, and *conjugate*-linear in its second argument.)

Corollary 1. For all $x_1, x_2, y_1, y_2 \in \mathbb{C}^n$ and $\lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{C}$, $\langle \lambda_1 x_1 + \lambda_2 x_2, \mu_1 y_1 + \mu_2 y_2 \rangle = \lambda_1 \overline{\mu_1} \langle x_1, y_1 \rangle + \lambda_1 \overline{\mu_2} \langle x_1, y_2 \rangle + \lambda_2 \overline{\mu_1} \langle x_2, y_1 \rangle + \lambda_2 \overline{\mu_2} \langle x_2, y_2 \rangle$

It's useful to keep in mind that when $x, y \in \mathbb{R}^n$, all of the complex conjugates above disappear.

Fact 3. For all $x \in \mathbb{C}^n$, $\langle x, x \rangle$ is nonnegative.

Definition. The *norm* of a vector $x \in \mathbb{C}^n$ is defined to be

$$||x|| = \sqrt{\langle x, x \rangle} = \left(\sum_{k=1}^{n} |x_k|^2\right)^{\frac{1}{2}}$$

The distance between two vectors $x, y \in \mathbb{C}^n$ is ||x - y||.

Fact 4. (1) If $x \in \mathbb{C}^n$ and $\lambda \in \mathbb{C}$, then $\|\lambda x\| = |\lambda| \|x\|$, (2) If $x, y \in \mathbb{C}^n$ and $x \perp y$, then $\|x + y\|^2 = \|x\|^2 + \|y\|^2$.

Fact 5. (Cauchy-Schwartz Inequality) For any $x, y \in \mathbb{C}^n$, we have

$$|\langle x, y \rangle|^2 \le ||x|| \, ||y||$$

Moreover, the equality above holds if and only if x and y are linearly independent.

Proof. If y = 0 then we're done. (Why?) So assume $y \neq 0$; then $||y|| \neq 0$. Let

$$z = x - \frac{\langle x, y \rangle}{\langle y, y \rangle} y = x - \frac{\langle x, y \rangle}{\|y\|^2} y$$

Then,

$$\langle z, y \rangle = \left\langle x - \frac{\langle x, y \rangle}{\langle y, y \rangle} y, y \right\rangle = \langle x, y \rangle - \frac{\langle x, y \rangle}{\langle y, y \rangle} \langle y, y \rangle = 0$$

So $z \perp y$, and it follows that $\frac{\langle x, y \rangle}{\langle y, y \rangle} y$ and z are orthogonal. So by the above fact,

$$\left\|\frac{\langle x,y\rangle}{\langle y,y\rangle}y+z\right\|^{2} = \frac{|\langle x,y\rangle|^{2}}{|\langle y,y\rangle|^{2}} \left\|y\right\|^{2} + \left\|z\right\|^{2} \ge \frac{|\langle x,y\rangle|^{2}}{\left\|y\right\|^{2}}$$

Finally, note that

$$x = \frac{\langle x, y \rangle}{\langle y, y \rangle} y + z$$

So we have

$$|x||^{2} \ge \frac{|\langle x, y \rangle|^{2}}{||y||^{2}}$$

Moving stuff around and taking a root, we get

$$||x|| ||y|| \ge \langle x, y \rangle$$

as desired.

Theorem 1. Suppose $x_1, \ldots, x_k \in \mathbb{C}^n$ are pairwise orthogonal, i.e., $x_i \perp x_j$ for $i \neq j$, and each x_i is nonzero. Then $\{x_1, \ldots, x_k\}$ is linearly independent.

Proof. Suppose

$$\lambda_1 x_1 + \dots + \lambda_k x_k = 0$$

Now take the inner product with x_i ;

$$0 = \langle 0, x_i \rangle = \left\langle \sum_{j=1}^k \lambda_j x_j, x_i \right\rangle = \sum_{j=1}^k \lambda_j \langle x_j, x_i \rangle = \lambda_i \|x_i\|^2$$

Since x_i is nonzero, $||x_i||^2 \neq 0$. Then $\lambda_i = 0$.

Theorem 2. Suppose $A \in M_n(\mathbb{C})$, and $x, y \in \mathbb{C}^n$. Then $\langle Ax, y \rangle = \langle x, A^H y \rangle$.

Proof. The *i*th entry of Ax is

$$(Ax)_i = \sum_{j=1}^n A_{ij} x_j$$

Similarly, the *j*th entry of $A^H y$ is

$$(A^H y)_j = \sum_{i=1}^n (A^H)_{ji} y_i = \sum_{i=1}^n \overline{A_{ij}} y_i$$

So,

$$\langle Ax, y \rangle = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} A_{ij} x_j \right) \overline{y_i}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_j \overline{y_i}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_j \overline{A_{ij}} \overline{y_i}$$

$$= \sum_{j=1}^{n} x_j \sum_{i=1}^{n} \overline{A_{ij}} y_i$$

$$= \sum_{j=1}^{n} x_j \overline{(A^H y)_j}$$

$$= \langle x, A^H y \rangle$$