21-241 MATRICES AND LINEAR TRANSFORMATIONS
 SUMMER 12012
 COURSE NOTES
 JUNE 11

PAUL MCKENNEY

1. Miscellaneous but useful facts

The following theorem is useful in more ways than you might think.
Theorem 1. If S and T are subspaces of \mathbb{C}^{n}, and $S \subseteq T$, then $\operatorname{dim}(S) \leq \operatorname{dim}(T)$. Moreover if $\operatorname{dim}(S)=\operatorname{dim}(T)$, then $S=T$.

You should be able to prove the following two facts using just the above theorem.
Fact 1. If S is a subspace of \mathbb{C}^{n}, and $\operatorname{dim}(S)=n$, then $S=\mathbb{C}^{n}$.
Fact 2. Let A be an $m \times n$ matrix. If $\operatorname{nullity}(A)=n$, then $A=0$. Equivalently, if $\operatorname{rank}(A)=0$, then $A=0$.

The following facts are also easily proven, this time without any reference to anything but the definitions.

Fact 3. Let A and B be $m \times n$ matrices. If $T_{A}=T_{B}$, then $A=B$. Equivalently, if $A x=B x$ for all $x \in \mathbb{C}^{n}$, then $A=B$.

Fact 4. Let $x, y \in \mathbb{C}^{n}$. Then $\{x, y\}$ is linearly dependent if and only if either x is a scalar multiple of y, or vice-versa.

2. Eigenstuff

Definition. Let $A \in M_{n}(\mathbb{C})$. A complex number λ is an eigenvalue of A if there is some nonzero vector $v \in \mathbb{C}^{n}$ such that $A v=\lambda v$. In this case, v is called an eigenvector of A with associated eigenvalue λ. If $\lambda \in \mathbb{C}$ then

$$
V_{\lambda}=\left\{v \in \mathbb{C}^{n} \mid A v=\lambda v\right\}
$$

is called the eigenspace of A associated to λ. Note that λ is an eigenvalue of A if and only if $V_{\lambda} \neq\{0\}$. We write $\operatorname{spec}(A)$ for the set of all eigenvalues of A.
Example. Let $\lambda \in \mathbb{C}$. Then λ is an eigenvalue of λI, and V_{λ} in this case is \mathbb{C}^{n}. (So every nonzero vector is an eigenvector of λI with associated eigenvalue λ.)

Example. Let $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 1\end{array}\right)$. Show that $\binom{1}{1}$ and $\binom{-1}{1}$ are both eigenvectors for A. What are their associated eigenvalues? What does this mean, geometrically, about T_{A} ?

Fact 5. If A is a real $n \times n$ matrix and λ is a real eigenvalue of A, then there is a real eigenvector of A with associated eigenvalue λ.

An eigenvector v of a matrix A gives an important bit of geometric information about A; if λ is its associated eigenvalue, then this tells us that A stretches v, in the direction of v by a factor of λ. Of course, this is much more intelligible when $\lambda \in \mathbb{R}$. If $\lambda>0$, then A stretches v by a factor of λ in the direction of v, whereas if $\lambda<0$ then A stretches v by a factor of $|\lambda|$, in the opposite direction.

Example. Let $\theta \in[0,2 \pi)$ be given, and let

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

(Recall that this matrix implements a counter-clockwise rotation about the origin, by an angle of θ.) When (ie, for which values of θ) does A have real eigenvalues? What are they? What about complex eigenvalues?

Example. Let $\theta \in[0,2 \pi)$ be given and let

$$
A=\left(\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right)
$$

(The reflection across the line which makes an angle of θ with the x-axis.) When does A have real eigenvalues? What are they? What about complex eigenvalues?

Lemma 1. $V_{\lambda}=\operatorname{null}(\lambda I-A)=\operatorname{null}(A-\lambda I)$.
Theorem 2. Let $A \in M_{n}(\mathbb{C})$ and $\lambda \in \mathbb{C}$. Then the following are equivalent.
(1) λ is an eigenvalue of A.
(2) The nullity of $\lambda I-A$ is nonzero.
(3) $\operatorname{det}(\lambda I-A)=0$.

Example. Let A be the rotation matrix from the previous example. Let $\lambda \in \mathbb{C}$ be given. Then,

$$
\operatorname{det}(\lambda I-A)=(\lambda-\cos \theta)^{2}+\sin ^{2} \theta=\lambda^{2}-2(\cos \theta) \lambda+1
$$

This quadratic is zero if and only if

$$
\lambda=\cos \theta \pm \sqrt{\cos ^{2} \theta-1}=\cos \theta \pm i \sin \theta
$$

Hence A has eigenvalues $\cos \theta+i \sin \theta$ and $\cos \theta-i \sin \theta$. The eigenvectors can be found by reducing

$$
\left(\begin{array}{cc}
(\cos \theta+i \sin \theta)-\cos \theta & +\sin \theta \\
-\sin \theta & (\cos \theta+i \sin \theta)-\cos \theta
\end{array}\right)=\left(\begin{array}{cc}
i \sin \theta & +\sin \theta \\
-\sin \theta & i \sin \theta
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
(\cos \theta-i \sin \theta)-\cos \theta & +\sin \theta \\
-\sin \theta & (\cos \theta-i \sin \theta)-\cos \theta
\end{array}\right)=\left(\begin{array}{cc}
-i \sin \theta & +\sin \theta \\
-\sin \theta & -i \sin \theta
\end{array}\right)
$$

If $\sin \theta \neq 0$, then these reduce to, respectively,

$$
\left(\begin{array}{cc}
1 & -i \\
0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
1 & i \\
0 & 0
\end{array}\right)
$$

So the first gives an eigenvector of $\binom{i}{1}$, and the second $\binom{-i}{1}$.
Definition. The characteristic polynomial of an $n \times n$ matrix A is the polynomial, in variable z, described by

$$
p_{A}(z)=\operatorname{det}(z I-A)
$$

Fact 6. If p is a degree- n polynomial with complex coefficients, then p can be factored into n-many linear terms, with a constant;

$$
p(z)=\mu\left(z-\lambda_{1}\right) \cdots\left(z-\lambda_{n}\right)
$$

Moreover, μ is simply the coefficient of z^{n} in p.
Example. Let A be the matrix

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

What are the eigenvalues and eigenvectors of A ? What does this mean geometrically about T_{A} ?

Theorem 3. The eigenvalues of a square matrix A are simply the roots to its characteristic polynomial p_{A}.

Fact 7. If A is $n \times n$ then p_{A} has degree n.
Theorem 4. If $A \in M_{n}(\mathbb{C})$ then A can have at most n eigenvalues.
Example. Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

Solution. The matrix $\lambda I-A$ is

$$
\left(\begin{array}{ccc}
\lambda & -1 & 0 \\
1 & \lambda & -1 \\
0 & 1 & \lambda
\end{array}\right)
$$

and its determinant is thus

$$
\lambda^{3}+0+0-\lambda(1)(-1)-(1)(-1) \lambda-0=\lambda^{3}+2 \lambda
$$

The roots of the polynomial $z^{3}+2 z$ are $z=0$ and $z= \pm \sqrt{2} i$, hence these are the eigenvalues of A. Let's look at the eigenspace associated to eigenvalue 0 ;

$$
0 I-A=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

This matrix has nullity 1 , and its null space is spanned by the single vector $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$.
For eigenvalue $\sqrt{2} i$, we get

$$
\sqrt{2} i I-A=\left(\begin{array}{ccc}
\sqrt{2} i & -1 & 0 \\
1 & \sqrt{2} i & -1 \\
0 & 1 & \sqrt{2} i
\end{array}\right)
$$

This reduces to

$$
\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & \sqrt{2} i \\
0 & 0 & 0
\end{array}\right)
$$

hence the vector $\left(\begin{array}{c}-1 \\ -\sqrt{2} i \\ 1\end{array}\right)$ is an eigenvector for this eigenvalue. (And it spans the eigenspace.)
Finally, for eigenvalue $-\sqrt{2} i$, similar work shows that $\left(\begin{array}{c}1 \\ -\sqrt{2} i \\ 1\end{array}\right)$ is an eigenvector. (And, again, it spans the eigenspace.)

