21-241 MATRICES AND LINEAR TRANSFORMATIONS SUMMER 1 2012 COURSE NOTES JUNE 7

PAUL MCKENNEY

Definition. $M_n(\mathbb{C})$ is the set of $n \times n$ matrices with entries from \mathbb{C} . $M_n(\mathbb{C})$ is the set of $n \times n$ matrices with entries from \mathbb{C} . For today we will be identifying a matrix $A \in M_n(\mathbb{C})$ with its sequence of rows, $\rho_1, \ldots, \rho_n \in \mathbb{C}^n$.

A multilinear map is a function $T: M_n(\mathbb{C}) \to \mathbb{C}$ such that

(1) For all
$$\rho_1, \ldots, \rho_n \in \mathbb{C}^n$$
 and $\sigma \in \mathbb{C}^n$,
 $T(\rho_1, \ldots, \rho_i + \sigma, \ldots, \rho_n) = T(\rho_1, \ldots, \rho_i, \ldots, \rho_n) + T(\rho_1, \ldots, \sigma, \ldots, \rho_n)$
(2) For all $\rho_1, \ldots, \rho_n \in \mathbb{C}^n$ and $t \in \mathbb{C}$,
 $T(\rho_1, \ldots, t\rho_i, \ldots, \rho_n) = tT(\rho_1, \ldots, \rho_i, \ldots, \rho_n)$

In other words, T is a linear map on its *i*th argument when all others are fixed.

A multilinear map T is *alternating* if in addition we have

$$T(\rho_1,\ldots,\rho_j,\ldots,\rho_i,\ldots,\rho_n) = -T(\rho_1,\ldots,\rho_i,\ldots,\rho_j,\ldots,\rho_n)$$

whenever $\rho_1, \ldots, \rho_n \in \mathbb{C}^n$ and i < j.

Lemma 1. Suppose $T : M_n(\mathbb{C}) \to \mathbb{C}$ is an alternating multilinear map, and $A \in M_n(\mathbb{C})$ is some matrix with two rows which are the same, or a row of all zeroes. Then T(A) = 0.

Proof. Suppose A has two rows which are the same, ie $\rho_i = \rho_j$ for some $i \neq j$. Then $T(\rho_1, \ldots, \rho_i, \ldots, \rho_j, \ldots, \rho_n) = -T(\rho_1, \ldots, \rho_j, \ldots, \rho_i, \ldots, \rho_n) = -T(\rho_1, \ldots, \rho_i, \ldots, \rho_j, \ldots, \rho_n)$ The only real (or complex) number t satisfying t = -t is t = 0.

Now suppose A has a zero row in the *i*th place. Then by linearity,

$$T(\rho_1, \dots, 0_{1 \times n}, \dots, \rho_n) = T(\rho_1, \dots, 0 \cdot 0_{1 \times n}, \dots, \rho_n) = 0 \cdot T(\rho_1, \dots, 0_{1 \times n}, \dots, \rho_n) = 0$$

Theorem 1. Suppose $T : M_n(\mathbb{C}) \to \mathbb{C}$ is an alternating multilinear map, and A and B are $n \times n$ matrices such that B is the result of applying a single row operation to A.

Then T(A) and T(B) are related in the following way depending on the row operation in question;

$$i \neq j \qquad \rho_i \leftrightarrow \rho_j \qquad T(B) = -T(A)$$

$$i \neq j \qquad \rho_i \rightarrow \rho_i + \lambda \rho_j \qquad T(B) = T(A)$$

$$\rho_i \rightarrow \lambda \rho_i \qquad T(B) = \lambda T(A)$$

Proof. The swap and scaling cases are simply part of the definition of an alternating multilinear map. The row-combination case follows from the lemma above;

$$T(\rho_1, \dots, \rho_i + \lambda \rho_j, \dots, \rho_j, \dots, \rho_n) = T(\rho_1, \dots, \rho_i, \dots, \rho_j, \dots, \rho_n) + \lambda T(\rho_1, \dots, \rho_j, \dots, \rho_j, \dots, \rho_n)$$
$$= T(\rho_1, \dots, \rho_i, \dots, \rho_j, \dots, \rho_n)$$

Theorem 2. If T is an alternating multilinear map, and A is not invertible, then T(A) = 0.

Proof. Let R be the reduced row-echelon form of A. By the above theorem, T(A) = 0 if and only if T(R) = 0. Since A is not invertible, R cannot be I; but then R has some zero row. So T(R) = 0, and hence T(A) = 0.

Theorem 3. If $S, T : M_n(\mathbb{C}) \to \mathbb{C}$ are alternating multilinear maps, and S(I) = T(I), then S = T.

Proof. We've already seen that if A is not invertible then S and T both send A to zero. If A is invertible, then it is row-reducible to I. Theorem 1 (along with a routine induction) shows that

$$T(I) = (-1)^k t_1 \cdots t_\ell T(A)$$
 $S(I) = (-1)^k t_1 \cdots t_\ell S(A)$

where k is the number of swaps used, ℓ is the number of scaling operations used, and t_1, \ldots, t_ℓ are the scaling factors. Hence if S(I) = T(I), then

$$S(A) = (-1)^k \frac{1}{t_1} \cdots \frac{1}{t_\ell} S(I) = (-1)^k \frac{1}{t_1} \cdots \frac{1}{t_\ell} T(I) = T(A)$$

Definition. The determinant det : $M_n(\mathbb{C}) \to \mathbb{C}$ is the unique alternating multilinear map such that det(I) = 1.

Theorem 4. Let A be a square matrix. Then the following are equivalent.

(1) A is invertible. (2) $det(A) \neq 0$.

Example. Let's calculate the determinants of the following matrices.

$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{pmatrix} \qquad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 \\ 4 & 6 & 10 \\ 6 & 11 & 17 \end{pmatrix} \qquad \begin{pmatrix} -2 & 2 & 3 \\ -1 & 1 & 3 \\ 2 & 0 & -1 \end{pmatrix}$$