21-241 MATRICES AND LINEAR TRANSFORMATIONS
 SUMMER 12012
 COURSE NOTES
 JUNE 5

PAUL MCKENNEY

Let's recall the rank-nullity theorem.
Theorem 1. (Rank-Nullity) Let A be an $m \times n$ matrix, and let R be any row-echelon form of A. Say R has k nonzero rows, r_{1}, \ldots, r_{k}, and the leading entry of r_{i} appears in column ℓ_{i}. (Since R is in row-echelon form, this means $\ell_{1}<\ell_{2}<\cdots<\ell_{k}$.) Let a_{1}, \ldots, a_{n} be the columns of A, in that order. Then;
(1) $\left\{r_{1}, \ldots, r_{k}\right\}$ is a basis for $\operatorname{row}(A)$.
(2) $\left\{a_{\ell_{1}}, \ldots, a_{\ell_{k}}\right\}$ is a basis for $\operatorname{col}(A)$.
(3) $\left\{s_{1}, \ldots, s_{n-k}\right\}$ is a basis for null (A), where s_{i} is the vector with a 1 in the entry corresponding to the ith free variable, and $a 0$ in every entry corresponding to the other free variables. (Note that since s_{i} must be in null (A), this determines the rest of the entries in s_{i}.)

Proof for row-echelon A. We assume in this proof that $A=R$. Later we'll deal with the case where A is not already in row-echelon form.

Since the rows of R span $\operatorname{row}(R)$, and only the nonzero ones matter, it follows that $\left\{r_{1}, \ldots, r_{k}\right\}$ spans $\operatorname{row}(R)$. So it suffices to show that this set is linearly independent. R looks like this;

$$
\left(\begin{array}{ccccccccc}
0 & \cdots & R_{1 \ell_{1}} & \cdots & R_{1 \ell_{2}} & \cdots & R_{\ell_{k}} & \cdots & R_{1 n} \\
& & & & R_{2 \ell_{2}} & \cdots & R_{2 \ell_{k}} & \cdots & R_{2 n} \\
& & & & & R_{k \ell_{k}} & \cdots & R_{k n} \\
& & & & & & & \\
0 & & & & \cdots & & & & 0
\end{array}\right)
$$

Let $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{R}$ be given. Fix some $i \leq k$. Then the ℓ_{i} th entry in the row vector

$$
\lambda_{1} r_{1}+\cdots+\lambda_{k} r_{k}
$$

is exactly

$$
\lambda_{1} R_{1 \ell_{i}}+\cdots+\lambda_{i} R_{i \ell_{j}}+0+\cdots+0
$$

since the ℓ_{i} th entry of r_{j} is zero, whenever $j>i$. Now suppose

$$
\lambda_{1} r_{1}+\cdots+\lambda_{k} r_{k}=0
$$

Then since

$$
\lambda_{1} R_{1 \ell_{1}}+0+\cdots+0=0
$$

and $R_{\ell_{1}} \neq 0$, it must be that $\lambda_{1}=0$. Then

$$
0+\lambda_{2} R_{2 \ell_{2}}+0+\cdots+0=0
$$

and similarly it follows that $\lambda_{2}=0$. Continuing in this way we find that $\lambda_{1}=\lambda_{2}=\cdots=0$, and so r_{1}, \ldots, r_{k} are linearly independent.

Similarly for $\operatorname{col}(R)$; if c_{1}, \ldots, c_{n} are the columns of R, then the i th entry of the column vector

$$
\lambda_{1} c_{\ell_{1}}+\cdots+\lambda_{k} c_{\ell_{k}}
$$

is

$$
0+\cdots+0+\lambda_{i} R_{i \ell_{i}}+\lambda_{i+1} R_{i+1, \ell_{i+1}}+\cdots+\lambda_{k} R_{k \ell_{k}}
$$

If this column vector is the zero vector, then recursively we find that $\lambda_{k}=0, \lambda_{k-1}=0$, etc. So $\left\{c_{\ell_{1}}, c_{\ell_{2}}, \ldots, c_{\ell_{k}}\right\}$ is linearly independent.

Now for $\operatorname{null}(R)$, let f_{i} be the index of the i th free variable. Then for any $\mu_{1}, \ldots, \mu_{n-k} \in$ \mathbb{R}, the f_{i} th entry of the linear combination

$$
\mu_{1} s_{1}+\cdots+\mu_{n-k} s_{n-k}
$$

is exactly μ_{i}, since s_{i} has a 1 in the f_{i} th entry and s_{j} has a 0 in the f_{i} th entry for all $j \neq i$. It follows that $\left\{s_{1}, \ldots, s_{n-k}\right\}$ is linearly independent. It spans null (R) by our back-substitution algorithm.

Lemma 1. If A and B are matrices such that $A B$ is defined then $\operatorname{row}(A B) \subseteq \operatorname{row}(B)$.
Corollary 1. If A and B are row-equivalent then $\operatorname{row}(A)=\operatorname{row}(B)$.
Proof. If A and B are row-equivalent then there is an invertible matrix E (a product of elementary matrices) such that $B=E A$. Then $\operatorname{row}(B) \subseteq \operatorname{row}(A)$. But we also have $A=E^{-1} B$, so $\operatorname{row}(A) \subseteq \operatorname{row}(B)$.

Proof of (1) in Rank-Nullity. Since A and R are row-equivalent, $\operatorname{row}(A)=\operatorname{row}(R)$. The nonzero rows of R thus make up a basis of $\operatorname{row}(R)=\operatorname{row}(A)$.

Lemma 2. If A and B are row-equivalent then $\operatorname{null}(A)=\operatorname{null}(B)$.

Proof of (3) in Rank-Nullity. Since A and R are row-equivalent, $\operatorname{null}(A)=\operatorname{null}(R)$. Then any basis for $\operatorname{null}(R)$ is also a basis for $\operatorname{null}(A)$.
Lemma 3. Suppose A and B are row-equivalent and $m \times n$. Say their columns are a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} respectively. If $1 \leq j_{1}<\cdots<j_{k} \leq n$ are any column indices, then the following are equivalent;
(a) $\left\{a_{j_{1}}, \ldots, a_{j_{k}}\right\}$ is linearly independent.
(b) $\left\{b_{j_{1}}, \ldots, b_{j_{k}}\right\}$ is linearly independent.

Proof. Let A^{\prime} and B^{\prime} be the $m \times k$ submatrices of A and B, whose columns are $a_{j_{1}}, \ldots, a_{j_{k}}$ and $b_{j_{1}}, \ldots, b_{j_{k}}$ respectively. Since A and B are row-equivalent, so are A^{\prime} and B^{\prime}, by the same row operations. So $\operatorname{null}\left(A^{\prime}\right)=\operatorname{null}\left(B^{\prime}\right)$. The result follows. (How? Work it out...)

Proof of (2) in Rank-Nullity. Since A and R are row-equivalent and the pivot columns of R are a basis for $\operatorname{col}(R)$, by Lemma 3 it follows that $X=\left\{a_{\ell_{1}}, \ldots, a_{\ell_{k}}\right\}$ is linearly independent, and adding any other column of A to X would make it linearly dependent. Hence X is a basis for $\operatorname{col}(A)$.
Definition. Let A be a matrix. The row rank of A is $\operatorname{dim}(\operatorname{row}(A))$. The column rank of A is $\operatorname{dim}(\operatorname{col}(A))$. The nullity of A is $\operatorname{dim}(\operatorname{null}(A))$.

Corollary 2. The row rank of a matrix is the same as its column rank. We call this common dimension the rank. If A is $m \times n$, then $\operatorname{rank}(A)+\operatorname{nullity}(A)=n$.

Example. Let r be a row vector of length n and c a column vector of height n. Let $A=r c$ and $B=c r$. What is the rank of A ? of B ? What about the nullity?

Example. If A and B are both $n \times n$, how are the rank of $A B$ and $B A$ related? What about the nullity? Look at a 2×2 example.
Example. Consider the $n \times n$ shift matrix;

$$
S=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
& & \ddots & & \\
0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

Calculate bases for $\operatorname{null}\left(S^{t}\right)$ and $\operatorname{ran}\left(S^{t}\right)$, where $t \geq 1$.

