21-241 MATRICES AND LINEAR TRANSFORMATIONS SUMMER 1 2012 COURSE NOTES JUNE 5

PAUL MCKENNEY

Let's recall the rank-nullity theorem.

Theorem 1. (Rank-Nullity) Let A be an $m \times n$ matrix, and let R be any row-echelon form of A. Say R has k nonzero rows, r_1, \ldots, r_k , and the leading entry of r_i appears in column ℓ_i . (Since R is in row-echelon form, this means $\ell_1 < \ell_2 < \cdots < \ell_k$.) Let a_1, \ldots, a_n be the columns of A, in that order. Then;

- (1) $\{r_1, \ldots, r_k\}$ is a basis for row(A).
- (2) $\{a_{\ell_1}, \ldots, a_{\ell_k}\}$ is a basis for $\operatorname{col}(A)$.
- (3) $\{s_1, \ldots, s_{n-k}\}$ is a basis for null(A), where s_i is the vector with a 1 in the entry corresponding to the *i*th free variable, and a 0 in every entry corresponding to the other free variables. (Note that since s_i must be in null(A), this determines the rest of the entries in s_i .)

Proof for row-echelon A. We assume in this proof that A = R. Later we'll deal with the case where A is not already in row-echelon form.

Since the rows of R span row(R), and only the nonzero ones matter, it follows that $\{r_1, \ldots, r_k\}$ spans row(R). So it suffices to show that this set is linearly independent. R looks like this;

Let $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ be given. Fix some $i \leq k$. Then the ℓ_i th entry in the row vector

$$\lambda_1 r_1 + \cdots + \lambda_k r_k$$

is exactly

$$\lambda_1 R_{1\ell_i} + \dots + \lambda_i R_{i\ell_j} + 0 + \dots + 0$$

since the ℓ_i th entry of r_j is zero, whenever j > i. Now suppose

$$\lambda_1 r_1 + \dots + \lambda_k r_k = 0$$

Then since

$$\lambda_1 R_{1\ell_1} + 0 + \dots + 0 = 0$$

and $R_{1\ell_1} \neq 0$, it must be that $\lambda_1 = 0$. Then

$$0 + \lambda_2 R_{2\ell_2} + 0 + \dots + 0 = 0$$

and similarly it follows that $\lambda_2 = 0$. Continuing in this way we find that $\lambda_1 = \lambda_2 = \cdots = 0$, and so r_1, \ldots, r_k are linearly independent.

Similarly for col(R); if c_1, \ldots, c_n are the columns of R, then the *i*th entry of the column vector

$$\lambda_1 c_{\ell_1} + \dots + \lambda_k c_{\ell_k}$$

is

$$0 + \dots + 0 + \lambda_i R_{i\ell_i} + \lambda_{i+1} R_{i+1,\ell_{i+1}} + \dots + \lambda_k R_{k\ell_k}$$

If this column vector is the zero vector, then recursively we find that $\lambda_k = 0$, $\lambda_{k-1} = 0$, etc. So $\{c_{\ell_1}, c_{\ell_2}, \ldots, c_{\ell_k}\}$ is linearly independent.

Now for null(R), let f_i be the index of the *i*th free variable. Then for any $\mu_1, \ldots, \mu_{n-k} \in \mathbb{R}$, the f_i th entry of the linear combination

$$\mu_1 s_1 + \dots + \mu_{n-k} s_{n-k}$$

is exactly μ_i , since s_i has a 1 in the f_i th entry and s_j has a 0 in the f_i th entry for all $j \neq i$. It follows that $\{s_1, \ldots, s_{n-k}\}$ is linearly independent. It spans $\operatorname{null}(R)$ by our back-substitution algorithm.

Lemma 1. If A and B are matrices such that AB is defined then $row(AB) \subseteq row(B)$.

Corollary 1. If A and B are row-equivalent then row(A) = row(B).

Proof. If A and B are row-equivalent then there is an invertible matrix E (a product of elementary matrices) such that B = EA. Then $row(B) \subseteq row(A)$. But we also have $A = E^{-1}B$, so $row(A) \subseteq row(B)$.

Proof of (1) in Rank-Nullity. Since A and R are row-equivalent, row(A) = row(R). The nonzero rows of R thus make up a basis of row(R) = row(A).

Lemma 2. If A and B are row-equivalent then null(A) = null(B).

Proof of (3) in Rank-Nullity. Since A and R are row-equivalent, null(A) = null(R). Then any basis for null(R) is also a basis for null(A).

Lemma 3. Suppose A and B are row-equivalent and $m \times n$. Say their columns are a_1, \ldots, a_n and b_1, \ldots, b_n respectively. If $1 \leq j_1 < \cdots < j_k \leq n$ are any column indices, then the following are equivalent;

(a) $\{a_{j_1}, \ldots, a_{j_k}\}$ is linearly independent. (b) $\{b_{j_1}, \ldots, b_{j_k}\}$ is linearly independent. *Proof.* Let A' and B' be the $m \times k$ submatrices of A and B, whose columns are a_{j_1}, \ldots, a_{j_k} and b_{j_1}, \ldots, b_{j_k} respectively. Since A and B are row-equivalent, so are A' and B', by the same row operations. So null(A') = null(B'). The result follows. (How? Work it out...)

Proof of (2) in Rank-Nullity. Since A and R are row-equivalent and the pivot columns of R are a basis for col(R), by Lemma 3 it follows that $X = \{a_{\ell_1}, \ldots, a_{\ell_k}\}$ is linearly independent, and adding any other column of A to X would make it linearly dependent. Hence X is a basis for col(A).

Definition. Let A be a matrix. The row rank of A is $\dim(row(A))$. The column rank of A is $\dim(col(A))$. The nullity of A is $\dim(null(A))$.

Corollary 2. The row rank of a matrix is the same as its column rank. We call this common dimension the rank. If A is $m \times n$, then rank(A) + nullity(A) = n.

Example. Let r be a row vector of length n and c a column vector of height n. Let A = rc and B = cr. What is the rank of A? of B? What about the nullity?

Example. If A and B are both $n \times n$, how are the rank of AB and BA related? What about the nullity? Look at a 2×2 example.

Example. Consider the $n \times n$ shift matrix;

$$S = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ & \ddots & & \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$

Calculate bases for null(S^t) and ran(S^t), where $t \ge 1$.