
21-241 MATRICES AND LINEAR TRANSFORMATIONS
SUMMER I 2012
HOMEWORK 6

Definition. A square, complex matrix P is called a projection matrix if P 2 = P = PH .
(Note the difference with the earlier definition of projection.)

Definition. A matrix A ∈ Mn(C) is diagonalizable if there are some diagonal D and
invertible S such that A = SDS−1. In this case we say S diagonalizes A.

Definition. A matrix U ∈ Mn(C) such that UHU = I and UUH = I (ie, U is invertible
and U−1 = UH) is called unitary. If U ∈Mn(R) and U is unitary, we sometimes say that
U is orthogonal.

The following theorem may be useful in the problems below.

Theorem. If A is a Hermitian matrix, then there is some unitary U such that UAUH is
diagonal, and moreover the diagonal values of UAUH are exactly the eigenvalues of A.

You may also use the following characterization of the determinant (often called the
Laplace expansion).

Fact. Let A be an n× n matrix with entries aij. Then for any i or j,

det(A) =
n∑

k=1

(−1)i+kaik det(Mik) =
n∑

k=1

(−1)k+jakj det(Mkj)

where Mij is the (n − 1) × (n − 1) matrix obtained from A by removing its ith row and
jth column entirely. (This is the so-called (i, j)-minor of A.)
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(1) Given each matrix A below, check whether A is diagonalizable; if it is, diagonalize
it. Otherwise, demonstrate an eigenvalue of A whose geometric multiplicity is
different from its algebraic multiplicity. [10 each]

(a)


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 (b)


1 i −1 −i
−i 1 i −1
−1 −i 1 i
i −1 −i 1



(c)


2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2

 (d)

 1 i 0
−i 1 i
0 −i 1



(e)

0 0 1
1 0 0
0 1 0

 (f)

(
1 1
1 0

)

(2) Use your answer from 1(f) to prove that

fn =
1√
5

(φn
+ − φn

−)

where fn is the nth Fibonacci number, and

φ± =
1±
√

5
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(Recall from previous homework that if A = ( 1 1
1 0 ) then An =

(
fn+1 fn
fn fn−1

)
.) [10]

(3) Show that there is an A ∈M2(R) such that det(A) ≥ 0, but there is no B ∈M2(R)
such that A = B2. [10]

(4) Show that if A ∈ Mn(C) is Hermitian and spec(A) ⊆ [0,∞), then there is some
B ∈Mn(C) such that A = B2. [10]

(5) Let P be a projection matrix. Show that tr(P ) = rank(P ). [10]

(6) We call a matrix U ∈ Mn(C) distance-preserving if ‖Ux− Uy‖ = ‖x− y‖ for all
x, y ∈ Cn. Prove that the following are equivalent; [20]
(a) U is distance-preserving.
(b) For all x ∈ Cn, ‖Ux‖ = ‖x‖.
(c) For all x, y ∈ Cn, 〈Ux, Uy〉 = 〈x, y〉.
(d) U is unitary.



(Hint: for the (6b) =⇒ (6c) implication, consider the quantities ‖Ux− Uy‖2 and
‖Ux− U(iy)‖2.)

(7) Prove that if U is an orthogonal matrix then every real eigenvalue of U is either
+1 or −1, and either det(U) = +1 or det(U) = −1. [10]

(8) Let U be a 2 × 2 orthogonal matrix. Prove that U is either a rotation matrix or
a reflection matrix. [10]

(9) Let n be an odd natural number. Prove that every A ∈ Mn(R) has at least one
real eigenvalue. [10]

(10) Let U be a 3× 3 orthogonal matrix.
(a) Prove that there is some unit vector v ∈ R3 such that either Uv = v or

Uv = −v. [10]
(b) Prove that there are vectors t, u ∈ R3 such that {t, u, v} is an orthonormal

basis of R3. [5]

(c) Let Û be the matrix of TU with respect to the (ordered) basis (t, u, v). Show

that Û has one of the following forms; [15]

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 cos(2θ) sin(2θ) 0
sin(2θ) − cos(2θ) 0

0 0 1


cos θ − sin θ 0

sin θ cos θ 0
0 0 −1

 cos(2θ) sin(2θ) 0
sin(2θ) − cos(2θ) 0

0 0 −1



(d) Describe the linear transformations TU and TÛ , in geometric terms, in each
of the cases above. (You may write down a single description of what’s going
on, so long as it covers all the cases, and isn’t ambiguous.) [10]

(11) Let S be a subspace of Cn and let x ∈ Cn. Prove that the distance between PS(x)
and x is the smallest possible distance between x and any vector in S. Stated
more formally, prove that

‖x− PS(x)‖ ≤ ‖x− s‖

for all s ∈ S. (Hint; note that x− s = (x− PS(x)) + (PS(x)− s).) [10]



(12) Let S be the n× n shift matrix. Find a polynomial in S and S> which evaluates
to [10] 

0
1

2
. . .

n− 1




