21-241 MATRICES AND LINEAR TRANSFORMATIONS SUMMER I 2012
 HOMEWORK 6

Definition. A square, complex matrix P is called a projection matrix if $P^{2}=P=P^{H}$. (Note the difference with the earlier definition of projection.)

Definition. A matrix $A \in M_{n}(\mathbb{C})$ is diagonalizable if there are some diagonal D and invertible S such that $A=S D S^{-1}$. In this case we say S diagonalizes A.
Definition. A matrix $U \in M_{n}(\mathbb{C})$ such that $U^{H} U=I$ and $U U^{H}=I$ (ie, U is invertible and $\left.U^{-1}=U^{H}\right)$ is called unitary. If $U \in M_{n}(\mathbb{R})$ and U is unitary, we sometimes say that U is orthogonal.

The following theorem may be useful in the problems below.
Theorem. If A is a Hermitian matrix, then there is some unitary U such that $U A U^{H}$ is diagonal, and moreover the diagonal values of $U A U^{H}$ are exactly the eigenvalues of A.

You may also use the following characterization of the determinant (often called the Laplace expansion).

Fact. Let A be an $n \times n$ matrix with entries $a_{i j}$. Then for any i or j,

$$
\operatorname{det}(A)=\sum_{k=1}^{n}(-1)^{i+k} a_{i k} \operatorname{det}\left(M_{i k}\right)=\sum_{k=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det}\left(M_{k j}\right)
$$

where $M_{i j}$ is the $(n-1) \times(n-1)$ matrix obtained from A by removing its i th row and j th column entirely. (This is the so-called (i, j)-minor of A.)
(1) Given each matrix A below, check whether A is diagonalizable; if it is, diagonalize it. Otherwise, demonstrate an eigenvalue of A whose geometric multiplicity is different from its algebraic multiplicity. [10 each]

$$
\begin{array}{ll}
\text { (a) }\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) & \text { (b) }\left(\begin{array}{cccc}
1 & i & -1 & -i \\
-i & 1 & i & -1 \\
-1 & -i & 1 & i \\
i & -1 & -i & 1
\end{array}\right) \\
\text { (c) }\left(\begin{array}{llll}
2 & 0 & 2 & 0 \\
0 & 2 & 0 & 2 \\
2 & 0 & 2 & 0 \\
0 & 2 & 0 & 2
\end{array}\right) & \text { (d) }\left(\begin{array}{ccc}
1 & i & 0 \\
-i & 1 & i \\
0 & -i & 1
\end{array}\right) \\
\text { (e) }\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) & (f)
\end{array}
$$

(2) Use your answer from 1(f) to prove that

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\phi_{+}^{n}-\phi_{-}^{n}\right)
$$

where f_{n} is the nth Fibonacci number, and

$$
\phi_{ \pm}=\frac{1 \pm \sqrt{5}}{2}
$$

(Recall from previous homework that if $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$ then $A^{n}=\left(\begin{array}{cc}f_{n+1} & f_{n} \\ f_{n} & f_{n-1}\end{array}\right)$.) [10]
(3) Show that there is an $A \in M_{2}(\mathbb{R})$ such that $\operatorname{det}(A) \geq 0$, but there is no $B \in M_{2}(\mathbb{R})$ such that $A=B^{2}$. [10]
(4) Show that if $A \in M_{n}(\mathbb{C})$ is Hermitian and $\operatorname{spec}(A) \subseteq[0, \infty)$, then there is some $B \in M_{n}(\mathbb{C})$ such that $A=B^{2} .[10]$
(5) Let P be a projection matrix. Show that $\operatorname{tr}(P)=\operatorname{rank}(P)$. [10]
(6) We call a matrix $U \in M_{n}(\mathbb{C})$ distance-preserving if $\|U x-U y\|=\|x-y\|$ for all $x, y \in \mathbb{C}^{n}$. Prove that the following are equivalent; [20]
(a) U is distance-preserving.
(b) For all $x \in \mathbb{C}^{n},\|U x\|=\|x\|$.
(c) For all $x, y \in \mathbb{C}^{n},\langle U x, U y\rangle=\langle x, y\rangle$.
(d) U is unitary.
(Hint: for the $(6 \mathrm{~b}) \Longrightarrow(6 \mathrm{c})$ implication, consider the quantities $\|U x-U y\|^{2}$ and $\|U x-U(i y)\|^{2}$.)
(7) Prove that if U is an orthogonal matrix then every real eigenvalue of U is either +1 or -1 , and either $\operatorname{det}(U)=+1$ or $\operatorname{det}(U)=-1$. [10]
(8) Let U be a 2×2 orthogonal matrix. Prove that U is either a rotation matrix or a reflection matrix. [10]
(9) Let n be an odd natural number. Prove that every $A \in M_{n}(\mathbb{R})$ has at least one real eigenvalue. [10]
(10) Let U be a 3×3 orthogonal matrix.
(a) Prove that there is some unit vector $v \in \mathbb{R}^{3}$ such that either $U v=v$ or $U v=-v$. [10]
(b) Prove that there are vectors $t, u \in \mathbb{R}^{3}$ such that $\{t, u, v\}$ is an orthonormal basis of \mathbb{R}^{3}. [5]
(c) Let \hat{U} be the matrix of T_{U} with respect to the (ordered) basis (t, u, v). Show that \hat{U} has one of the following forms; [15]

$$
\left.\begin{array}{ccc}
\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) & \left(\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta) \\
0 \\
0 & 0
\end{array} 1\right.
\end{array}\right)
$$

(d) Describe the linear transformations T_{U} and $T_{\hat{U}}$, in geometric terms, in each of the cases above. (You may write down a single description of what's going on, so long as it covers all the cases, and isn't ambiguous.) [10]
(11) Let S be a subspace of \mathbb{C}^{n} and let $x \in \mathbb{C}^{n}$. Prove that the distance between $\mathbb{P}_{S}(x)$ and x is the smallest possible distance between x and any vector in S. Stated more formally, prove that

$$
\left\|x-\mathbb{P}_{S}(x)\right\| \leq\|x-s\|
$$

for all $s \in S .\left(\right.$ Hint; note that $\left.x-s=\left(x-\mathbb{P}_{S}(x)\right)+\left(\mathbb{P}_{S}(x)-s\right).\right)[10]$
(12) Let S be the $n \times n$ shift matrix. Find a polynomial in S and S^{\top} which evaluates to [10]

$$
\left(\begin{array}{llll}
0 & & & \\
& 1 & & \\
& & 2 & \\
\\
& & & \ddots \\
& & & \\
n-1
\end{array}\right)
$$

