21-241 MATRICES AND LINEAR TRANSFORMATIONS SUMMER I 2012 HOMEWORK 5

Definition. If V is a subspace of \mathbb{C}^{n}, we define the orthogonal subspace of V to be

$$
V^{\perp}=\left\{x \in \mathbb{C}^{n} \mid \forall v \in V x \perp v\right\}
$$

We say that subspaces V and W of \mathbb{C}^{n} are orthogonal, and write $V \perp W$, if

$$
\forall v \in V \forall w \in W \quad v \perp w
$$

Definition. A square, complex matrix P is called a projection matrix if $P^{2}=P=P^{H}$. (Note the difference with the earlier definition of projection.)
(1) Find an orthonormal basis for each of the following subspaces. [10 each]

$$
\begin{aligned}
& \text { (a) } \quad \operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
2 \\
2
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
1 \\
5
\end{array}\right)\right\} \\
& \text { (b) } \quad \operatorname{col}\left(\begin{array}{ccc}
0 & -2 & 1 \\
3-2 i & 0 & i \\
-1 & -i & 0 \\
0 & 1 & 2 \\
1+i & 1-i & 0
\end{array}\right)
\end{aligned}
$$

(2) Find the eigenvalues of the following matrices. For each eigenvalue, find an orthonormal basis for its associated eigenspace. (Feel free, in finding the roots of the characteristic polynomial, to use a calculator.)

$$
\text { (a) } \quad\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

(b) $\quad\left(\begin{array}{ccc}0 & i & -1 \\ -i & 0 & i \\ -1 & -i & 0\end{array}\right)$
(c) $\left(\begin{array}{llll}2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2 \\ 2 & 0 & 2 & 0 \\ 0 & 2 & 0 & 2\end{array}\right)$
(d) The $n \times n$ shift matrix. [10]
(3) Let P and Q be $n \times n$ projections. Show that the following are equivalent; [20]
(i) $P Q=0$.
(ii) $\operatorname{ran}(P) \perp \operatorname{ran}(Q)$.
(iii) $P+Q$ is a projection.
(4) Prove or disprove: $\operatorname{rank}(A B)=\operatorname{rank}(B A)$ for all square matrices A and B of the same size. [10]
(5) Prove that for all $x, y \in \mathbb{C}^{n}$ and $\lambda \in \mathbb{C}$,
(a) If $x \perp y$ then $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$. [5]
(b) $\|\lambda x\|=|\lambda|\|x\| \cdot[5]$
(c) $\|x+y\| \leq\|x\|+\|y\|$. (Hint: use the Cauchy-Schwartz inequality.) [10]
(6) Let S and T be subspaces of \mathbb{C}^{n}, and suppose $S \perp T$. Prove that $S \cap T=\{0\}$. [5]
(7) Let A be a matrix satisfying $A=A^{H}$. Prove that $\operatorname{spec}(A) \subseteq \mathbb{R}$. (Hint: look at the number $\langle A v, v\rangle$, where v is an eigenvector of A.) [10]

