21-241 MATRICES AND LINEAR TRANSFORMATIONS SUMMER I 2012 HOMEWORK 4

Definition. The $n \times n$ shift matrix is

$$
\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
& & \ddots & & \\
0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

(Often I'll call it S, but I won't make that a convention.)
Definition. The Hermitian of an $m \times n$ complex matrix A is the $n \times m$ matrix A^{H} with entries $\left(A^{H}\right)_{i j}=\overline{A_{j i}}$. In other words A^{H} is the conjugate transpose of A.

Definition. Suppose m_{1}, \ldots, m_{k} and n_{1}, \ldots, n_{ℓ} are natural numbers greater than zero. Let $m=m_{1}+\cdots+m_{k}$ and $n=n_{1}+\cdots+n_{\ell}$. Let $A^{i j}$ be an m_{i} by n_{j} matrix, for each $i \leq k$ and $j \leq \ell$. Then the block matrix with blocks $A^{i j}$ is the $m \times n$ matrix which looks like this;

$$
\left(\begin{array}{cccc}
A^{11} & A^{12} & \cdots & A^{1 \ell} \\
A^{21} & A^{22} & \cdots & A^{2 \ell} \\
\vdots & \vdots & & \vdots \\
A^{k 1} & A^{k 2} & \cdots & A^{k \ell}
\end{array}\right)
$$

Definition. Let \mathscr{A} be some set of $n \times n$ matrices. (In other words, $\mathscr{A} \subseteq M_{n}(\mathbb{C})$.) The commutant of \mathscr{A} is

$$
\mathscr{A}^{\prime}=\left\{B \in M_{n}(\mathbb{C}) \mid \forall A \in \mathscr{A} A B=B A\right\}
$$

Definition. An $n \times n$ matrix U is upper triangular if $U_{i j}=0$ whenever $i>j$. In other words, U is upper triangular if it looks like this;

$$
\left(\begin{array}{ccccc}
U_{11} & U_{12} & U_{13} & \cdots & U_{1 n} \\
0 & U_{22} & U_{23} & \cdots & U_{2 n} \\
0 & 0 & U_{33} & \cdots & U_{3 n} \\
\vdots & & & \ddots & \vdots \\
0 & 0 & \cdots & & U_{n n}
\end{array}\right)
$$

(1) Find bases for the following subspaces. Here S denotes the $n \times n$ shift matrix. Of course, you must show your work in each case. [5 each]
(a) The span of

$$
\left\{\left(\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
2 \\
2 \\
2
\end{array}\right),\left(\begin{array}{c}
8 \\
5 \\
-1 \\
-2
\end{array}\right),\left(\begin{array}{c}
4 \\
-1 \\
-3 \\
-6
\end{array}\right)\right\}
$$

(b) $\operatorname{col}(A)$, where

$$
A=\left(\begin{array}{cccc}
1 & i & -i & 0 \\
-i & 2 & 1 & 2-i \\
i & 1 & 3 & -1 \\
0 & 2+i & -1 & 4
\end{array}\right)
$$

(c) $\operatorname{null}\left(S^{\top} S\right)$. (You should work out what $S^{\top} S$ is.)
(d) $\operatorname{null}\left(S S^{\top}\right)$. (You should work out what $S S^{\top}$ is.)
(2) Given each set X and vector v below, (i) find a subset of X which is a basis for $\operatorname{span}(X)$, (ii) decide whether v is in $\operatorname{span}(X)$, and (iii) find a linear combination of your basis vectors which produces v, if it is. [10 each]
(a) $X=\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right),\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)\right\} \quad v=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$
(b) $\quad X=\left\{\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 2\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}4 \\ 0 \\ 5 \\ 0\end{array}\right)\right\} \quad v=\left(\begin{array}{l}2 \\ 2 \\ 2 \\ 2\end{array}\right)$
(3) Find the determinant of each matrix below. You may use your work from other problems if it's relevant. [5 each]

$$
\text { (a) }\left(\begin{array}{cccc}
1 & i & -i & 0 \\
-i & 2 & 1 & 2-i \\
i & 1 & 3 & -1 \\
0 & 2+i & -1 & 4
\end{array}\right)
$$

(b) $\quad\left(\begin{array}{lll}2 & 3 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$
(c) $\quad\left(\begin{array}{ccc}1 & i & -1 \\ i & -1 & -i \\ -1 & -i & 1\end{array}\right)$
(4) Let A be an $n \times n$ complex matrix such that $A=-A^{\top}$. Prove that if n is odd, then $\operatorname{det}(A)=0$. [5]
(5) Let $M=\left(\begin{array}{cc}A & B \\ C & B\end{array}\right)$ and $M^{\prime}=\left(\begin{array}{cc}A^{\prime} & B^{\prime} \\ C^{\prime} & D^{\prime}\end{array}\right)$ be block matrices, where each of A, B, C, D and $A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ has size $n \times n$. Prove the following formula for the product of M and M^{\prime}. [10]

$$
M M^{\prime}=\left(\begin{array}{ll}
A A^{\prime}+B C^{\prime} & A B^{\prime}+B D^{\prime} \\
C A^{\prime}+D C^{\prime} & C B^{\prime}+D D^{\prime}
\end{array}\right)
$$

(6) Let A be the block matrix $\binom{I_{n}}{0_{k \times n}}$. Show that [10]

$$
A^{\top} A=I_{n} \quad \text { and } \quad A A^{\top}=\left(\begin{array}{cc}
I_{n} & 0_{n \times k} \\
0_{k \times n} & 0_{k \times k}
\end{array}\right)
$$

(7) Let $n \geq 1$ be a natural number. Find the commutant of each of the following sets of matrices.
(a) $\mathscr{A}=\{S\}$, where S is the $n \times n$ shift matrix. [10]
(b) $\mathscr{B}=\left\{A \in M_{n}(\mathbb{C}) \mid A\right.$ is invertible $\}$. [10]
(c) The set [10]

$$
\mathscr{C}=\left\{\left.\left(\begin{array}{cc}
A & 0 \\
0 & A
\end{array}\right) \right\rvert\, A \in M_{n}(\mathbb{C})\right\}
$$

(So $\left.\mathscr{C} \subseteq M_{2 n}(\mathbb{C}).\right)$
(8) Let A be an $m \times m$ matrix and B an $n \times n$ matrix. Prove that [15]

$$
\operatorname{det}\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)=\operatorname{det}(A) \operatorname{det}(B)
$$

(9) Let U be an $n \times n$ upper triangular matrix. Prove that $\operatorname{det}(U)=U_{11} \cdots U_{n n}$. [15]

