21-241 MATRICES AND LINEAR TRANSFORMATIONS SUMMER I 2012 HOMEWORK 4

Definition. The $n \times n$ shift matrix is

$$\begin{pmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ & & \ddots & & \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}$$

(Often I'll call it S, but I won't make that a convention.)

Definition. The *Hermitian* of an $m \times n$ complex matrix A is the $n \times m$ matrix A^H with entries $(A^H)_{ij} = \overline{A_{ji}}$. In other words A^H is the *conjugate transpose* of A.

Definition. Suppose m_1, \ldots, m_k and n_1, \ldots, n_ℓ are natural numbers greater than zero. Let $m = m_1 + \cdots + m_k$ and $n = n_1 + \cdots + n_\ell$. Let A^{ij} be an m_i by n_j matrix, for each $i \leq k$ and $j \leq \ell$. Then the block matrix with blocks A^{ij} is the $m \times n$ matrix which looks like this;

$$\begin{pmatrix} A^{11} & A^{12} & \cdots & A^{1\ell} \\ A^{21} & A^{22} & \cdots & A^{2\ell} \\ \vdots & \vdots & & \vdots \\ A^{k1} & A^{k2} & \cdots & A^{k\ell} \end{pmatrix}$$

Definition. Let \mathscr{A} be some set of $n \times n$ matrices. (In other words, $\mathscr{A} \subseteq M_n(\mathbb{C})$.) The *commutant* of \mathscr{A} is

$$\mathscr{A}' = \{ B \in M_n(\mathbb{C}) \mid \forall A \in \mathscr{A} \ AB = BA \}$$

Definition. An $n \times n$ matrix U is upper triangular if $U_{ij} = 0$ whenever i > j. In other words, U is upper triangular if it looks like this;

$$\begin{pmatrix} U_{11} & U_{12} & U_{13} & \cdots & U_{1n} \\ 0 & U_{22} & U_{23} & \cdots & U_{2n} \\ 0 & 0 & U_{33} & \cdots & U_{3n} \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & \cdots & & U_{nn} \end{pmatrix}$$

(1) Find bases for the following subspaces. Here S denotes the n × n shift matrix. Of course, you must show your work in each case. [5 each]
(a) The span of

$$\left\{ \begin{pmatrix} 1\\2\\0\\1 \end{pmatrix}, \begin{pmatrix} 2\\2\\2\\2 \end{pmatrix}, \begin{pmatrix} 8\\5\\-1\\-2 \end{pmatrix}, \begin{pmatrix} 4\\-1\\-3\\-6 \end{pmatrix} \right\}$$

(b) $\operatorname{col}(A)$, where

$$A = \begin{pmatrix} 1 & i & -i & 0\\ -i & 2 & 1 & 2-i\\ i & 1 & 3 & -1\\ 0 & 2+i & -1 & 4 \end{pmatrix}$$

- (c) null($S^{\top}S$). (You should work out what $S^{\top}S$ is.)
- (d) null(SS^{\top}). (You should work out what SS^{\top} is.)
- (2) Given each set X and vector v below, (i) find a subset of X which is a basis for $\operatorname{span}(X)$, (ii) decide whether v is in $\operatorname{span}(X)$, and (iii) find a linear combination of your basis vectors which produces v, if it is. [10 each]

(a)
$$X = \left\{ \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \begin{pmatrix} 2\\3\\1 \end{pmatrix}, \begin{pmatrix} 3\\2\\1 \end{pmatrix}, \begin{pmatrix} 3\\1\\2 \end{pmatrix} \right\} \quad v = \begin{pmatrix} 1\\3\\2 \end{pmatrix}$$

(b) $X = \left\{ \begin{pmatrix} 0\\1\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\-1\\1\\0 \end{pmatrix}, \begin{pmatrix} 4\\0\\5\\0 \end{pmatrix} \right\} \quad v = \begin{pmatrix} 2\\2\\2\\2 \end{pmatrix}$

(3) Find the determinant of each matrix below. You may use your work from other problems if it's relevant. [5 each]

$$(a) \begin{pmatrix} 1 & i & -i & 0 \\ -i & 2 & 1 & 2-i \\ i & 1 & 3 & -1 \\ 0 & 2+i & -1 & 4 \end{pmatrix}$$
$$(b) \begin{pmatrix} 2 & 3 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
$$(c) \begin{pmatrix} 1 & i & -1 \\ i & -1 & -i \\ -1 & -i & 1 \end{pmatrix}$$

- (4) Let A be an $n \times n$ complex matrix such that $A = -A^{\top}$. Prove that if n is odd, then $\det(A) = 0$. [5]
- (5) Let $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ and $M' = \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix}$ be block matrices, where each of A, B, C, D and A', B', C', D' has size $n \times n$. Prove the following formula for the product of M and M'. [10]

$$MM' = \begin{pmatrix} AA' + BC' & AB' + BD' \\ CA' + DC' & CB' + DD' \end{pmatrix}$$

(6) Let A be the block matrix $\begin{pmatrix} I_n \\ 0_{k \times n} \end{pmatrix}$. Show that [10]

$$A^{\top}A = I_n$$
 and $AA^{\top} = \begin{pmatrix} I_n & 0_{n \times k} \\ 0_{k \times n} & 0_{k \times k} \end{pmatrix}$

- (7) Let $n \ge 1$ be a natural number. Find the commutant of each of the following sets of matrices.
 - (a) $\mathscr{A} = \{S\}$, where S is the $n \times n$ shift matrix. [10]
 - (b) $\mathscr{B} = \{A \in M_n(\mathbb{C}) \mid A \text{ is invertible}\}.$ [10]
 - (c) The set [10] $\mathscr{C} = \left\{ \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix} \middle| A \in M_n(\mathbb{C}) \right\}$ (So $\mathscr{C} \subseteq M_{2n}(\mathbb{C})$.)
- (8) Let A be an $m \times m$ matrix and B an $n \times n$ matrix. Prove that [15]

$$\det \begin{pmatrix} A & 0\\ 0 & B \end{pmatrix} = \det(A) \det(B)$$

(9) Let U be an $n \times n$ upper triangular matrix. Prove that $det(U) = U_{11} \cdots U_{nn}$. [15]