21-241 MATRICES AND LINEAR TRANSFORMATIONS SUMMER I 2012
 HOMEWORK 3

Definition. The transpose A^{\top} of an $m \times n$ matrix A is the $n \times m$ matrix with entries $\left(A^{\top}\right)_{i j}=A_{j i}$. A square matrix P is called a projection if $P^{2}=P$ and $P^{\top}=P$.
(1) Show that $(A B)^{\top}=B^{\top} A^{\top}$ for all matrices A and B for which $A B$ is defined. [10]
(2) Prove that a square matrix A is invertible if and only if A^{\top} is invertible. [10]
(3) Prove the following theorem from class. [15]

Theorem. Let $a_{1}, \ldots, a_{n} \in \mathbb{R}^{m}$ and let A be the $m \times n$ matrix whose columns are a_{1}, \ldots, a_{n}. Then the following are equivalent;
(a) $\operatorname{span}\left\{a_{1}, \ldots, a_{n}\right\}=\mathbb{R}^{m}$,
(b) A is right-invertible.
(4) Let P be an $n \times n$ diagonal matrix whose diagonal values are all either zero or one. Prove that P is a projection, and find bases for $\operatorname{ran}(P)$ and $\operatorname{null}(P)$. [10]
(5) Show that there are 2×2 projections P and Q such that $P Q \neq Q P$, and $\operatorname{tr}(P)=$ $\operatorname{tr}(Q)$. [10]
(6) Find bases for null (A) and $\operatorname{ran}(A)$, where A is the following matrix; [10]

$$
\left(\begin{array}{cccc}
1 & 0 & 3 & -1 \\
2 & 1 & 0 & 1 \\
0 & 4 & 5 & 2
\end{array}\right)
$$

(7) Find a basis for the subspace of \mathbb{R}^{3} spanned by the following set of vectors; [10]

$$
\left\{\left(\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
3 \\
5
\end{array}\right),\left(\begin{array}{l}
2 \\
3 \\
5 \\
8
\end{array}\right)\right\}
$$

(8) Let A be an $n \times n$ matrix. Show that the sequence of integers

$$
d_{t}=\operatorname{dim} \operatorname{null}\left(A^{t}\right)
$$

is nondecreasing and eventually constant. Show that if d is the eventual value of this sequence, then $d_{k}=d$ for all $k \geq n$. (That is, the sequence reaches this eventual value at $t=n$ at the latest.) [20]

