21-241 MATRICES AND LINEAR TRANSFORMATIONS SUMMER I 2012 HOMEWORK 3

Definition. The transpose A^{\top} of an $m \times n$ matrix A is the $n \times m$ matrix with entries $(A^{\top})_{ij} = A_{ji}$. A square matrix P is called a projection if $P^2 = P$ and $P^{\top} = P$.

- (1) Show that $(AB)^{\top} = B^{\top}A^{\top}$ for all matrices A and B for which AB is defined. [10]
- (2) Prove that a square matrix A is invertible if and only if A^{\top} is invertible. [10]
- (3) Prove the following theorem from class. [15]

Theorem. Let $a_1, \ldots, a_n \in \mathbb{R}^m$ and let A be the $m \times n$ matrix whose columns are a_1, \ldots, a_n . Then the following are equivalent; (a) span $\{a_1, \ldots, a_n\} = \mathbb{R}^m$, (b) A is right-invertible.

- (4) Let P be an $n \times n$ diagonal matrix whose diagonal values are all either zero or one. Prove that P is a projection, and find bases for ran(P) and null(P). [10]
- (5) Show that there are 2×2 projections P and Q such that $PQ \neq QP$, and tr(P) = tr(Q). [10]
- (6) Find bases for null(A) and ran(A), where A is the following matrix; [10]

$$\begin{pmatrix} 1 & 0 & 3 & -1 \\ 2 & 1 & 0 & 1 \\ 0 & 4 & 5 & 2 \end{pmatrix}$$

(7) Find a basis for the subspace of \mathbb{R}^3 spanned by the following set of vectors; [10]

$$\left\{ \begin{pmatrix} 0\\1\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\1\\2\\3 \end{pmatrix}, \begin{pmatrix} 1\\2\\3\\5 \end{pmatrix}, \begin{pmatrix} 2\\3\\5\\8 \end{pmatrix} \right\}$$

(8) Let A be an $n \times n$ matrix. Show that the sequence of integers

 $d_t = \dim \operatorname{null}(A^t)$

is nondecreasing and eventually constant. Show that if d is the eventual value of this sequence, then $d_k = d$ for all $k \ge n$. (That is, the sequence reaches this eventual value at t = n at the latest.) [20]