21-241 MATRICES AND LINEAR TRANSFORMATIONS SUMMER I 2012 HOMEWORK 2

(1) Describe the set of solutions to the following system of linear equations, using a particular solution and finitely many solutions to the corresponding homogeneous system. [5]

$$
\begin{aligned}
4 x-5 y+2 z+w & =1 \\
-y+w & =0
\end{aligned}
$$

(2) Find the inverse of the following matrix: [10]

$$
\left(\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{array}\right)
$$

(3) Let A and B be square matrices of the same size. Show that if $A B$ is invertible, then so are A and B. [15]
(4) Prove or disprove; there is a (real) 2×2 matrix A such that $A^{2}=-I$. [5]
(5) Let $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. Show by induction on n that

$$
A^{n}=\left(\begin{array}{cc}
f_{n+1} & f_{n} \\
f_{n} & f_{n-1}
\end{array}\right)
$$

where f_{n} is the nth Fibonacci number, defined by the recursion $f_{0}=0, f_{1}=1$, and $f_{n+2}=f_{n+1}+f_{n}$. [10]
(6) Let $\theta \in[0,2 \pi)$, and let $L \subseteq \mathbb{R}^{2}$ be the line containing the origin $(0,0)$ which makes an angle of θ with the x-axis. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function which takes some point $x \in \mathbb{R}^{2}$ to its reflection across L.
(a) Show that T is a linear transformation. (You can use either algebra or geometry. If you use geometry, make sure to be unambiguous when drawing your figures, and to illustrate every possible case.) [10]
(b) Find the standard matrix of T. [10]

