21-241 MATRICES AND LINEAR TRANSFORMATIONS SUMMER I 2012 HOMEWORK 1

(1) Solve the following system of equations using Gaussian elimination. [5]

$$
\begin{aligned}
x+2 y+3 z & =0 \\
4 x+5 y+6 z & =2 \\
7 x+8 y+9 z & =4
\end{aligned}
$$

You must give a complete description of the set of solutions.
(2) For which real values of a and b does the following system have a unique solution? or infinitely many solutions? or no solutions? [10]

$$
\begin{aligned}
& x-2 y=1 \\
& a x+y=b
\end{aligned}
$$

(3) Let $X=\left\{(a, b) \in \mathbb{R}^{2} \mid a=b \vee a=-b\right\}$. Show that there is no system of linear equations whose solution set is exactly X. [10]
(4) Prove that a swap operation can be implemented by a sequence of row combination and scaling operations. [10]
(5) Give a complete description of all 2×2 matrices in reduced row echelon form. Or: Give a complete description of all 2×2 matrices in row echelon form. [10]
(6) Prove or disprove: $A^{2}=0$ implies $A=0$ for all 2×2 matrices A. [15]

