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Abstract. Let An and Bn (n ∈ N) be separable, unital UHF algebras.
We prove, assuming Todorčević’s Axiom and Martin’s Axiom, that every
isomorphism of the form∏

An/
⊕
An '

∏
Bn/

⊕
Bn

is definable in a strong sense. This confirms a conjecture of Coskey and
Farah for this class of corona algebras. We show moreover that the
restriction of such an isomorphism to a C*-subalgebra of the form∏

Fn/
⊕
Fn

where each Fn ⊆ An is finite-dimensional, must be determined by a se-
quence of ∗-homomorphisms Fn → Be(n), where e : N→ N is a function
independent of the choice of the sequence Fn. We prove as a corol-
lary that

∏
An/

⊕
An '

∏
Bn/

⊕
Bn if and only if there is a function

e : N→ N such that for all but finitely many n ∈ N, An ' Be(n).

1. Introduction

Let B be a C*-algebra and I a (norm-closed, two-sided, ∗-closed) ideal
in B; I is called an essential ideal in B if for any other ideal J in B,
I ∩ J = 0 implies J = 0. Given a C*-algebra A, the multiplier algebra
M(A) is defined, up to isomorphism, to be the maximal unital C*-algebra
containing A as an essential ideal. The corona algebra of A is the quotient
Q(A) =M(A)/A.

Corona algebras take their name from the following special case. Let X
be a locally compact Hausdorff space and consider C0(X), the C*-algebra
of continuous functions X → C which vanish at infinity. Then M(C0(X))
is isomorphic to the C*-algebra C(βX), and Q(C0(X)) is isomorphic to
C(βX\X), where βX denotes the Čech-Stone compactification of X. Spaces
of the form βX\X are themselves called corona spaces and make up a central
object of study in set-theoretic topology. Corona algebras are abundant in
the noncommutative setting as well; for instance, consider the C*-algebra
K(H) of compact operators on a Hilbert space H. M(K(H)) is isomorphic
to B(H), the C*-algebra of bounded operators on H, and Q(K(H)) is thus
the Calkin algebra over H, B(H)/K(H). Yet another example is given by
the quotient

∏
An/

⊕
An, where each An (n ∈ N) is a unital C*-algebra.

Here
∏
An denotes the C*-algebra of norm-bounded sequences , and

⊕
An

the C*-algebra of sequences converging to zero.
1
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Corona algebras are important in the theory of C*-algebras due to their
connections with a wide array of topics, including projectivity and semipro-
jectivity of C*-algebras, stability of relations on C*-algebra generators, and
the theory of extensions of C*-algebras. (See for instance [21], [3], and [2].)
They also have interesting behavior under certain set-theoretic hypotheses.
Extensive study has been given in particular to their automorphism groups,
under the assumption of the Continuum Hypothesis (CH), and, alternately,
the Proper Forcing Axiom (PFA). (See [25], [26], [8], [30], [13] for the com-
mutative case; and [24], [11], [10], and [4] for the noncommutative case.)
Typically, CH implies that there are many automorphisms, whereas PFA
implies that the only automorphisms are those present in any model of ZFC.

For example, CH implies that there are 22ℵ0 -many automorphisms of both
C(βN \ N) and the Calkin algebra. (See [25] and [24], respectively). On
the other hand, PFA implies that every automorphism of C(βN \ N) is in-
duced by a function e : N → N, and every automorphism of the Calkin
algebra is inner. In [4], Coskey and Farah considered the automorphisms of
a general corona algebra, and found a notion of triviality which, in the cases
of C(βN \ N) and the Calkin algebra Q(K(H)), turns out to hold exactly
for those automorphisms described above. Before we state their definition,
recall that the strict topology on a multiplier algebra M(A) is the weakest
topology making the following seminorms continuous;

m 7→ ‖ma‖+ ‖am‖ (m ∈M(A), a ∈ A)

Definition 1.1. A ∗-homomorphism ϕ : Q(A) → Q(B) is called trivial if
its graph,

Γϕ = {(a, b) ∈M(A)1 ×M(B)1 | ϕ(a+A) = b+ B}

is a Borel subset of M(A)1 ×M(B)1 when each factor is endowed with the
strict topology.

(We emphasize that the graph of a ∗-homomorphism ϕ : Q(A)→ Q(B) is
not the graph of a function in the usual sense, but the result of pulling this
set back through the quotient maps M(A) → Q(A) and M(B) → Q(B).)
M(A)1 here refers to the unit ball of M(A). The following conjectures
made in [4] extend all currently known results on automorphisms of corona
algebras;

Conjecture 1.2. The Continuum Hypothesis implies that the corona of
any separable, nonunital C*-algebra must have a nontrivial automorphism.

Conjecture 1.3. Forcing axioms imply that every automorphism of the
corona of a separable, nonunital C*-algebra must be trivial.

(See also [8], [9], [17] and [14] for work on the analogous conjectures for
quotients of P(N) by analytic P-ideals.) In [4], Coskey and Farah prove
Conjecture 1.2 for a large class of C*-algebras, including simple and sta-
ble C*-algebras. In this paper, however, we will mainly be concerned with
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Conjecture 1.3. In place of the vague term “forcing axioms” we will use
two combinatorial consequences of the Proper Forcing Axiom, Todorčević’s
Axiom and Martin’s Axiom, which we will abbreviate as TA and MA respec-
tively. TA is also well-known as the Open Coloring Axiom, OCA, and can be
viewed as a Ramsey-theoretic dichotomy for graphs on a set of real numbers;
MA is the prototypical forcing axiom for ccc posets. These principles have
no large-cardinal strength relative to ZFC and can be forced over any model
of set theory. The reader is referred to [28], [22] for more information on
their use in set theory and other areas of mathematics.

The main result of this paper is a confirmation of Conjecture 1.3 for a
certain class of corona algebras, assuming TA+MA. Before the statement we
again need a definition. A (separable, unital) UHF algebra is a C*-algebra
which can be realized as a direct limit of full matrix algebras over C, with
unital connecting maps.

Theorem 1.4. Assume TA+MA, and let An and Bn (n ∈ N) be sequences
of separable, unital UHF algebras. If ϕ is an isomorphism of the form∏

An/
⊕
An '

∏
Bn/

⊕
Bn

then Γϕ is Borel.

In proving Theorem 1.4 it will be necessary to consider some stronger
forms of triviality for ∗-homomorphisms between corona algebras. We say
that a map α :M(A)→M(B) is a lift of ϕ : Q(A)→ Q(B) if the following
diagram commutes;

M(A) M(B)

Q(A) Q(B)

α

ϕ

We call α an algebraic lift of ϕ if α is a ∗-homomorphism, and strict if α is
continuous with respect to the strict topologies. Note that if ϕ has a strict
lift then Γϕ is necessarily Borel. This conclusion does not always hold for
∗-homomorphisms with algebraic lifts, however; see Section 2.2 for further
details. In the process of proving Theorem 1.4 we demonstrate the following;

Theorem 1.5. Assume TA + MA. Let An and Bn (n ∈ N) be separable,
unital UHF algebras, and let ϕ be an isomorphism of the form∏

An/
⊕
An →

∏
Bn/

⊕
Bn

Then for every sequence Fn ⊆ An (n ∈ N) of finite-dimensional, unital
C*-subalgebras, the restriction of ϕ to the C*-subalgebra

∏
Fn/

⊕
Fn has a

strict algebraic lift.

Theorem 1.5 allows us to code a given isomorphism by what we call a
coherent family of ∗-homomorphisms. Coherent families appear in various
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forms throughout the set-theoretic literature; see, for instance, [8], [11], [29],
and [5]. The proof of Theorem 1.4 is then completed with the following;

Theorem 1.6. Assume TA. Let An (n ∈ N) be separable, unital UHF alge-
bras, and let B be any separable C*-algebra. Suppose ϕ is a ∗-homomorphism
of the form ∏

An/
⊕
An →M(B)/B

and there is a strict, algebraic lift of each restriction of ϕ to a unital C*-
subalgebra of the form

∏
Fn/

⊕
Fn, with each Fn ⊆ An finite-dimensional.

Then Γϕ is Borel.

It is interesting to note that Theorem 1.5 already gives us a form of rigidity
for this class of corona algebras;

Corollary 1.7. Assume TA + MA. Let An and Bn (n ∈ N) be separable,
unital UHF algebras, and suppose∏

An/
⊕
An '

∏
Bn/

⊕
Bn

Then there are cofinite sets A,B ⊆ N and a bijection e : A → B such that
for all n ∈ A, An and Be(n) are isomorphic.

Corollary 1.7 essentially reduces the study of isomorphisms in our class
of corona algebras to a study of automorphisms. Unfortunately, we are not
able to provide a strict, algebraic lift for a given automorphism of a corona
algebra in our class, like we are able for its restrictions (assuming TA+MA).
The obstruction seems to be entirely C*-algebraic; in fact, we demonstrate
in Section 5 that the statement “all trivial automorphisms of

∏
An/

⊕
An

have strict algebraic lifts” is equivalent to an asymptotic form of an inter-
twining property. (See [7] for more on Elliott’s intertwining theorem.) The
proof goes through Theorem 1.6 and an appeal to Schoenfield’s absoluteness
theorem.

The paper is structured as follows. In Section 2 we review some of the
background needed for the proofs of the above results, including some stan-
dard tools from both combinatorial and descriptive set theory. In particular
we introduce the assumptions for Theorem 1.5, TA and MA. We also pro-
vide a stratification of

∏
An/

⊕
An into algebras of the form

∏
Fn/

⊕
Fn,

where each Fn is finite-dimensional; a similar stratification of the Calkin
algebra underlies the proof of the main result of [11] (see also [4, §4],
and [6, Theorem 3.1]). This allows us to introduce coherent families of
∗-homomorphisms; we then prove Corollary 1.7. In Section 3 we prove the
following, in ZFC. Let ϕ be an injective, ∗-homomorphism of the form∏

Fn/
⊕
Fn →M(A)/A

where A is an AF algebra (i.e. a direct limit of finite-dimensional C*-
algebras), and each Fn is finite-dimensional. Suppose further that Γϕ is
Borel; then ϕ must in fact have a strict algebraic lift. In Section 4 we prove
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Theorem 1.5 by showing that the restriction of a given isomorphism to a
subalgebra of the form

∏
Fn/

⊕
Fn must have a Borel graph. The work of

this section is derived from arguments in [30] and [8]. In Section 5 we prove
Theorem 1.6, and discuss the question of whether all trivial automorphisms
of a given corona algebra

∏
An/

⊕
An have strict, algebraic lifts.

2. Preliminaries

2.1. Set theory. We will assume that the reader is familiar with the basics
of modern set theory as outlined in, for instance, [19]. Our notation will
for the most part follow the standards of the literature in set theory; in
particular, we identify N with the first infinite ordinal ω, and n ∈ N with
{0, . . . , n−1}. When f is a function and X a set we write f [X] for the image
of X under f . We will also write [X]k for the set of k-element subsets of
X, and [X]<ω for the set of finite subsets of X. We will often be concerned
with the ordering of eventual dominance on NN;

f <∗ g ⇐⇒ ∃m ∀n ≥ m f(n) < g(n)

A simple diagonalization argument shows that NN is countably directed in
<∗. It follows that if X ⊆ NN is cofinal in <∗ and is written as a countable
union X =

⋃
Xn, then there is some n for which Xn is also cofinal in <∗.

We also note that any X ⊆ NN which is cofinal in <∗ must be cofinal in <m

for some m ∈ N, where

f <m g ⇐⇒ ∀n ≥ m f(n) < g(n)

Similar facts hold for P(N) under the ordering of almost-inclusion;

A ⊆∗ B ⇐⇒ |A \B| < ℵ0

We will often use these facts without explicit reference.
Our use of forcing axioms will be limited to two of their combinatorial

consequences, Todorčević’s Axiom (TA) and Martin’s Axiom (MA). TA and
MA follow from PFA, but have no large cardinal strength relative to ZFC
since they can be forced together over any model of ZFC ([28]). TA is also
well known as the Open Coloring Axiom (OCA). Our choice of the name TA
stems from the fact that other, different axioms were introduced in [1], also
under the name OCA. TA states;

Let X be a separable metric space, and let [X]2 = K0 ∪K1

be a partition. Suppose K0 is open, when identified with a
symmetric subset of X ×X minus the diagonal. Then either
• there is an uncountable H ⊆ X such that [H]2 ⊆ K0

(H is K0-homogeneous), or
• X can be written as a countable union of sets Hn (n ∈
N) with [Hn]2 ⊆ K1 (X is σ-K1-homogeneous).

TA has a remarkable influence on the set theory of the real line; for instance,
it implies that the least size b of an unbounded subset of (NN, <∗) is exactly
ℵ2 ([28]). We will occasionally make use of this fact. MA states;
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Let P be a poset with the countable chain condition, and let
D be a collection of ℵ1-many dense subsets of P. Then there
is a filter G ⊆ P which meets every set in D .

This notation diverges from the more standard refinement, in which MAκ is
written for the analogous statement with κ replacing ℵ1, and MA stands for
“for all κ < 2ℵ0 , MAκ holds.” However, we will be working in models of TA,
where b = ℵ2; since MAκ implies b > κ, it follows that MAℵ1 is the strongest
fragment of MA which is consistent with TA, hence we will shorten it to just
MA.

We will make frequent use of the classical results of descriptive set theory,
concerning definability properties of subsets of Polish spaces. The interested
reader may consult [18] for proofs and more information. For now we simply
quote our most-used results.

Fact 2.1. (Jankov-von Neumann, see [18, Theorem 18.1]) Let X and Y
be Polish spaces, and let A ⊆ X × Y be an analytic set. Then there is a
function f with domain that of A, such that f is measurable with respect to
the σ-algebra generated by the analytic subsets of X.

Fact 2.2. ([18, §29]) Let X be a Polish space and A ⊆ X an analytic set.
Then A is measurable with respect to any complete Borel probability measure.
Moreover, A has the Baire Property.

Fact 2.3. ([18, Theorem 8.38]) A Baire-measurable function between Polish
spaces is continuous on a dense Gδ.

2.2. Multipliers, topologies and lifts. In Section 1 we defined the multi-
plier algebra, up to isomorphism, by a maximality property. The multiplier
algebra, like the Čech-Stone compactification, has many explicit realizations.
For instance, a concrete representation ofM(A) comes with any nondegen-
erate representation ρ of A on a Hilbert space H, as the idealizer of ρ[A]
inside B(H);

M(A) ' {m ∈ B(H) | mρ[A] + ρ[A]m ⊆ ρ[A]}
It is well-known that the isomorphism type of this representation of the
multiplier algebra does not depend on ρ. Alternatively, one can takeM(A)
to be the idealizer of A inside A∗∗, the enveloping von Neumann algebra of
A. Other, more abstract approaches go via Hilbert C*-modules and double
centralizers (see [20] and [23], respectively, for an excellent treatment of
each).

The strict topology on M(A) is that generated by the seminorms

m 7→ ‖ma‖+ ‖am‖ (m ∈M(A), a ∈ A)

M(A) is the strict completion of A inside its enveloping von Neumann al-
gebra A∗∗, and the strict topology coincides with the norm topology when
restricted to A. Hence if A is separable thenM(A) is also separable, in the
strict topology. The unit ball ofM(A), when endowed with the strict topol-
ogy, forms a Polish space. In the case of A = K(H), where M(A) = B(H),
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the strict topology is exactly the σ-strong-∗ topology, and when restricted
to norm-bounded subsets this coincides with both the weak and strong op-
erator topologies. Similarly, the strict topology on

∏
An, when restricted to

norm-bounded subsets, coincides with the product of the norm topologies.
We will always denote the quotient map M(A)→ Q(A) by π, regardless

of the C*-algebra A. Let ϕ be a ∗-homomorphism between corona algebras
Q(A) and Q(B). We say that L is an ε-lift of ϕ given that the diagram
below commutes, up to a tolerance of ε;

M(A) M(B)

ε

Q(A) Q(B)

L

ϕ

π π

that is, ‖π(L(x))− ϕ(π(x))‖ ≤ ε ‖π(x)‖ for all x ∈ M(A). When ε = 0 we
call L simply a lift of ϕ. In general we make no assumptions on the algebraic
properties of L, or its definability; often we will work with a lift of ϕ given
to us by a choice of representatives. If L is in fact a ∗-homomorphism we
will call L an algebraic lift. We will also often be concerned with lifts which
are bicontinuous with respect to the strict topology; such maps we will call
strict.

Suppose now that An (n ∈ N) is a sequence of unital C*-algebras, B is
a C*-algebra, and α :

∏
An → M(B) is a strict ∗-homomorphism taking⊕

An into B. Let jn : An →
⊕
Am be the canonical embedding; then the

sequence αn = α ◦ jn completely determines α. In particular, if each An
and B is separable, then we may identify α with a member of the separable
metric space ∏

Hom(An,B)

where Hom(An,B), the space of ∗-homomorphisms from An to B, is given
the point-norm topology. It will be important to know when a given sequence
in the above space determines a strict ∗-homomorphism

∏
An →M(B), i.e.

when the above identification can be reversed. For this we have the following;

Proposition 2.4. Let a sequence (αn) ∈
∏

Hom(An,B) be given. Suppose
that the projections pn = αn(1An) (n ∈ N) are pairwise-orthogonal, and
that their sums em =

∑
n≤m pn converge strictly in M(B). Then there is a

unique strict ∗-homomorphism

α :
∏
An →M(B)

such that α ◦ jn = αn for each n.

Proof. Since the projections pn are pairwise-orthogonal, we may define a
∗-homomorphism α :

⊕
An → B with α ◦ jn = αn. The projections em are

the image of an approximate unit for
⊕
An under α. Thus we are in the

situation of [20, Proposition 5.8], and the conclusion is immediate. �
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2.3. Reduced products of UHF algebras. A UHF algebra is a C*-
algebraA such that for all x1, . . . , xn ∈ A and ε > 0, there is a C*-subalgebra
of A, isomorphic to a full matrix algebra over C, with elements y1, . . . , yn
satisfying

∀i ≤ n ‖xi − yi‖ < ε

When a UHF algebra A is separable, it may be realized as a (C*-)direct limit
of full matrix algebras Mkn(C). In case A is also unital, such a representing
sequence may be chosen so that the connecting maps are unital. We will
be concerned exclusively with UHF algebras which are both separable and
unital, and will therefore drop these two adjectives in all further discussions
with hope that the result will be more readable. We only note here that other
formulations of UHF algebras, while equivalent in the separable case, are
often not in the nonseparable case; the interested reader is referred to [12].
Since we are so often concerned with the sequence of matrix algebras which
makes up a UHF algebra, we set aside a term for it;

Definition 2.5. Let A be a UHF algebra. A sequence An (n ∈ N) of
C*-subalgebras of A is called suitable if, for all n ∈ N, we have

• 1A ∈ An,
• An ⊆ An+1, and
• An 'Mkn(C) for some kn.

Now let A be a UHF algebra with suitable sequence An ' Mkn(C). It
follows that kn | kn+1 for each n. The supernatural number associated
to A is the formal product of all primes which eventually divide kn, with
(possibly infinite) multiplicity; e.g. when kn = 2n the supernatural number
associated to the resulting algebra is written 2∞. A classical theorem of
Glimm ([15]) shows that the supernatural number associated to a UHF
algebra is a complete invariant; moreover if A and B are UHF algebras with
associated supernatural numbers s and t, respectively, then A embeds into
B if and only if s | t, i.e. every prime in the formal product s appears in t,
with multiplicity at least that of its copy in s.

It is well-known, and easy to prove, that UHF algebras are simple. Hence,
there is never a nonzero ∗-homomorphism A → An (unless the sequence
An is eventually constant, in which case A is finite-dimensional). We can,
however, get close;

Definition 2.6. Let A be a C*-algebra and B a C*-subalgebra. A map
θ : A → B is called a conditional expectation if the following hold;

(1) θ is linear,
(2) θ is a completely-positive contraction (see [2] for a definition),
(3) θ(b) = b for all b ∈ B, and
(4) θ(ba) = bθ(a) and θ(ab) = θ(a)b for all a ∈ A and b ∈ B.

Fact 2.7. If A is a UHF algebra with suitable sequence An (n ∈ N), then
there is a family of conditional expectations θn : A → An satisfying θn◦θm =
θn for all n ≤ m. In particular, we have θn(a)→ a for all a ∈ A.
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Proof sketch. Given n < m, consider A′n ∩Am. This is a finite-dimensional,
unital C*-subalgebra of A. Let U be its unitary group; then U is compact,
and hence has a bi-invariant Haar measure µ. Define θn,m : Am → Am by

θn,m(a) =

∫
uau∗ dµ(u)

where the integral above is defined weakly, i.e., entrywise for some matrix
representation of Am. Then θn,m maps into An. Moreover, θn,m ◦ θm,p =
θn,p whenever n < m < p. It follows that there is a map θn : A → An
satisfying θn(a) = θn,m(a) whenever a ∈ Am. The conditions on θn are
easily checked. �

We will be concerned primarily with corona algebras of the form
∏
An/

⊕
An,

which we call reduced products. The following proposition describes some of
the structure of reduced products of UHF algebras, and will play an impor-
tant part in the results to follow. In particular, it leads to our definition of
a coherent family of ∗-homomorphisms, which we state afterwards.

Proposition 2.8. Let An (n ∈ N) be a sequence of UHF algebras, and for
each n ∈ N let An,k (k ∈ N) be a suitable sequence of subalgebras of An. For

each ξ ∈ NN, let

Qξ =
∏
An,ξ(n)/

⊕
An,ξ(n) ⊆

∏
An/

⊕
An

Then Qξ ⊆ Qη if and only if ξ <∗ η, and if X is any cofinal subset of

(NN, <∗), then ∏
An/

⊕
An =

⋃
ξ∈X
Qξ

Proof. Let x ∈
∏
An be given. For each n ∈ N we may choose some ξ(n) ∈ N

large enough that ∥∥x(n)−An,ξ(n)

∥∥ ≤ 1

n+ 1
Hence, there is a sequence x̄ ∈

∏
An,ξ(n) such that ‖x(n)− x̄(n)‖ → 0 as

n→∞, and so π(x) = π(x̄) ∈ Qξ. The rest is straightforward. �

Remark 2.9. By Fact 2.7, the x̄ in the above proof may be chosen in a
canonical way, namely we may choose x̄(n) = θn,ξ(n)(x(n)) (n ∈ N) where
θn,k : An → An,k (k ∈ N) is a sequence of conditional expectations fixed in
advance.

Definition 2.10. Let An (n ∈ N) be a sequence of UHF algebras, and let
An,k (k ∈ N) be a suitable sequence for An, for each n ∈ N. Let B be a C*-

algebra. A family of ∗-homomorphisms αξn : An,ξ(n) → B (ξ ∈ NN, n ∈ N) is
called coherent relative to the sequences An,k, if for each ξ <∗ η,

lim
n

∥∥∥αηn�An,ξ(n) − αξn
∥∥∥ = 0

The following Proposition is now immediate from Propositions 2.4 and 2.8.
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Proposition 2.11. Suppose αξn (ξ ∈ NN, n ∈ N) is a coherent family of ∗-
homomorphisms relative to suitable sequences An,k, all mapping into a C*-

algebra B. Suppose moreover that, for each ξ, the projections pξn = αξn(1An)

(n ∈ N) are pairwise-orthogonal and have sums
∑

n≤m p
ξ
n which converge

strictly in M(B). Then for each ξ there is a unique ∗-homomorphism αξ :∏
An,ξ(n) → M(B) such that αξ ◦ jn = αξn for every n ∈ N. Moreover, if

ϕξ : Qξ → Q(B) is the ∗-homomorphism induced by αξ, then ϕη extends ϕξ

whenever ξ <∗ η, and there is a unique ϕ :
∏
An/

⊕
An →M(B)/B which

extends every ϕξ.

The ∗-homomorphism ϕ above is said to be determined by the coherent

family αξn. We can now rephrase Theorem 1.5 as follows; TA + MA implies
that every isomorphism of the form

∏
An/

⊕
An '

∏
Bn/

⊕
Bn, where

each An and Bn is a UHF algebra, is determined by a coherent family of
∗-homomorphisms. To end this section we will prove Corollary 1.7 from
Theorem 1.5. Before starting we will need one more structural result on
reduced products of UHF algebras.

Proposition 2.12. Let An (n ∈ N) be a sequence of UHF algebras. Then
the center of

∏
An/

⊕
An is canonically isomorphic to `∞/c0.

Proof. Define i : `∞ →
∏
An by i(x)(n) = x(n)1An for n ∈ N and x ∈ `∞.

Since the center of a UHF algebra is trivial, it follows that the image of i
is exactly the center of

∏
An. Moreover, i maps c0 into

⊕
An, and hence

induces an injective map

j : `∞/c0 → Z
(∏

An/
⊕
An
)

It suffices to show that j is surjective. Suppose x ∈
∏
An and π(x) is central

in
∏
An/

⊕
An. Fix a suitable sequenceAn,k (k ∈ N) of subalgebras for each

An. By Proposition 2.8 above, we may assume without loss of generality that
for some ξ ∈ NN, we have x(n) ∈ An,ξ(n) for all n ∈ N. Since each An,ξ(n)

is finite-dimensional, its unitary group has a bi-invariant Haar measure µn.
Then let

z(n) =

∫
ux(n)u∗ dµn(u)

(cf. the sketch of Fact 2.7 above.) It is straightforward to show that each
z(n) is scalar, and ‖x(n)− z(n)‖ → 0 as n → ∞, and this completes the
proof. �

By Proposition 2.12, every isomorphism ϕ between reduced products of
UHF algebras must restrict to an automorphism of `∞/c0. We will call this
automorphism the central automorphism induced by ϕ.

Proof of Corollary 1.7. Let ϕ be an isomorphism∏
An/

⊕
An →

∏
Bn/

⊕
Bn



REDUCED PRODUCTS OF UHF ALGEBRAS 11

and let σ be the central automorphism induced by ϕ. Then by TA + MA
and the main result of [30], there are cofinite sets A,B ⊆ N and a bijection
e : A → B such that x 7→ x ◦ e−1 is a lift of σ. We claim now that for all
but finitely many n ∈ A, An ' Be(n). Suppose otherwise; then there is some
infinite I ⊆ A such that for all n ∈ I, An and Be(n) are not isomorphic.
Let sn and tn be the supernatural numbers associated to An and Be(n),
respectively; then for each n ∈ I there is some prime pn which divides one
of sn, tn, but not the other. Without loss of generality, pn | sn and pn - tn
for all n ∈ I. For n 6∈ I let pn = 1. Now let Fn be a C*-subalgebra of An
isomorphic to Mpn(C), with 1An ∈ Fn, for each n; by Theorem 1.5 there is
a strict algebraic lift α of the restriction of ϕ to the C*-subalgebra∏

Fn/
⊕
Fn

Let αn : Fn →
⊕
Bk be the coordinate ∗-homomorphisms. Notice that

αn(1An) − 1Be(n)
tends to zero as n → ∞. It follows that αn(1An) = 1Be(n)

for all but finitely many n ∈ N. Hence, for all but finitely many n ∈ N, there
is a unital embedding of Mpn(C) into Be(n), i.e. pn | te(n). This contradicts
the previous assumption. �

3. Definable embeddings

Let ρ : A → B be a map between C*-algebras. The defect of ρ is defined
to be the supremum, over all a, b in the unit ball of A and t ∈ C with |t| ≤ 1,
of the maximum of the following quantities:

‖ρ(ab)− ρ(a)ρ(b)‖
‖ρ(a+ b)− (ρ(a) + ρ(b))‖

‖ρ(a∗)− ρ(a)∗‖
‖ρ(ta)− tρ(a)‖
| ‖a‖ − ‖ρ(a)‖ |

The defect of ρ thus measures how far ρ is from being a ∗-homomorphism.

Theorem 3.1. (Farah, [11, Theorem 5.1]) There is a universal constant
KFD such that for any two finite-dimensional C*-algebras A and B, and
any Borel-measurable map ρ : A → B, if the defect δ of ρ is less than 1/1000
then there is a ∗-homomorphism ϕ : A → B such that ‖ρ− ϕ‖ ≤ KFDδ.

Proposition 3.2. There is a universal constant KAF such that for any
finite-dimensional C*-algebra A and AF algebra B, and any map ρ : A →
B, if the defect δ of ρ is less than 10−6 then there is a ∗-homomorphism
ϕ : A → B such that ‖ρ− ϕ‖ ≤ KAF δ.

Proof. Let ρ : A → B be a map with defect δ, and assume δ < 1/1000.
Let X be a finite, δ-dense subset of the unit sphere of A. Since B is AF,
there is a finite-dimensional C*-subalgebra C of B such that ρ(x) is within
δ of C for each x ∈ X. For each x ∈ X, fix some cx ∈ C within δ of
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ρ(x), and let σ : A → C be the map defined by setting σ(a) = ‖a‖ cx,
where x is the first member of X which is within δ of a/ ‖a‖, in some fixed
ordering of X. It follows that ‖σ − ρ‖ ≤ 2δ, and hence σ has small defect.
σ is also, clearly, Borel-measurable. Hence by Theorem 3.2 there is a ∗-
homomorphism ϕ : A → C close to σ, and hence close to ρ. �

The following theorem, which is the main result of this section, has at
its heart an application of Proposition 3.2 to a sequence of functions from
finite-dimensional C*-algebras into a fixed AF algebra. The crucial detail is
the independence of KAF from the dimension of the domain algebra.

Theorem 3.3. Assume TA + MA. Let ϕ be an injective ∗-homomorphism
of the form ∏

Fn/
⊕
Fn →M(A)/A

where A is a separable AF algebra, and each Fn is a finite-dimensional C*-
algebra. Suppose ϕ has a lift which is strictly continuous on a dense Gδ.
Then ϕ has a strict algebraic lift α.

Proof. Let εn = 2−n and fix an increasing approximate unit rn (n ∈ N) of
projections in A. Let F =

∏
Fn, and for A ⊆ N, write

F�A =
∏
n∈A
Fn

and similarly X �A = X ∩ (F�A) for subsets X of F . In particular let Xn be
a finite, εn-dense subset of the unit ball of Fn, and let X =

∏
Xn. Under the

strict topology, X (and each X �A) is homeomorphic to a perfect, compact
subset of the Baire space NN.

Now fix a lift L : F → M(A) of ϕ, which is (strictly) continuous on a
dense Gδ set G ⊆ X . By a standard argument (see [11], [16], [27]) we may
find sequences 0 = n0 < n1 < · · · and ti ∈ X �[ni, ni+1) such that for all
x ∈ X , if x extends ti for infinitely many i, then x ∈ G. Now let

t0 =
∑

t2i t1 =
∑

t2i+1

(The sums converge in the strict topology.) Also, let, A0 =
⋃

[n2i, n2i+1)
and A1 =

⋃
[n2i+1, n2i+2). It follows that the map

x 7→ L(x�A0 + t1) + L(x�A1 + t0)− L(t1)− L(t0)

lifts ϕ and is continuous on all of X ; replacing L with this map, we may
assume the same holds of L.

Claim 3.4. For every n and ε > 0 there are k > n and t ∈ X �[n, k) such
that for all x, y ∈ X extending t,

(1) if for all i < n, x(i) = y(i), then

‖(L(x)− L(y))rn‖ ≤ ε and ‖rn(L(x)− L(y))‖ ≤ ε
(2) if for all i ≥ k, x(i) = y(i), then

‖(L(x)− L(y))(1− rk)‖ ≤ ε and ‖(1− rk)(L(x)− L(y))‖ ≤ ε
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Proof. We will work towards condition (2) first; condition (1) will then follow
easily from the continuity of L.

Fix n and ε > 0, and for each k > n define Vk ⊆ X �[n,∞) by placing
x ∈ Vk if and only if there are s, t ∈ X �n with

‖(L(s+ x)− L(t+ x))(1− rk)‖ > ε or ‖(1− rk)(L(s+ x)− L(t+ x))‖ > ε

Then, Vk is an open subset of X �[n,∞), by continuity of L. For any given
x ∈ X �[n,∞) and s, t ∈ X �n, there is some k such that

‖(L(s+ x)− L(t+ x))(1− rk)‖ , ‖(1− rk)(L(s+ x)− L(t+ x))‖ ≤ ε

since the difference L(s+x)−L(t+x) is a member of A. As X �n is finite, it
follows that for any given x ∈ X �[n,∞) there is some k with x 6∈ Vk. Thus⋂
Vk = ∅. By the Baire Category Theorem, there must be some m such

that Vm is not dense; then we may find ` ≥ m and s ∈ X �[n, `) such that
no x ∈ X �[n,∞) extending s can be in Vm. Condition (2) follows with the
choice of t = s and k = `; to complete the proof, we use continuity of L to
find k ≥ ` and t ∈ X �[n, k) extending s which satisfies (1) as well. �

We call a t as in the claim an ε-stabilizer for the interval [n, k). By the
claim, we may construct sequences 0 = n0 < n1 < · · · and ti ∈ X �[ni, ni+1)
such that ti is an εi-stabilizer for the interval [ni, ni+1). For each ζ < 3 put

Aζ =
⋃
{[ni, ni+1) | i ≡ ζ (mod 3)}

zζ =
∑
{ti | i ≡ ζ (mod 3)}

and define a function Lζ by

Lζ(x) = L(x+ zζ+1 + zζ+2)− L(zζ+1 + zζ+2)

(Where ζ+1 and ζ+2 are computed mod 3.) Clearly, each Lζ lifts ϕ. If x ∈
F1, let f(x) be some sequence in X such that for each n, ‖x(n)− f(x)(n)‖
is minimal. Then in particular, π (x) = π (f(x)). Let qi = rni+2 − rni−1 ,
setting n−1 = 0. Note that qi ⊥ qj if i and j differ by at least three, and
moreover ∑

i≡ζ mod 3

qi = 1− rnζ−1

for ζ = 0, 1, 2. Define maps ρi : F�[ni, ni+1)→ qiAqi by

ρi(x) = ‖x‖ qiLζ(f(x/ ‖x‖))qi
where i ≡ ζ (mod 3).

Claim 3.5. The map

x 7→
∑

i≡ζ mod 3

ρi(x�[ni, ni+1))

lifts ϕ on Aζ .



14 PAUL MCKENNEY

Proof. Let x ∈ X �Aζ . Fix an i with i ≡ ζ (mod 3), and consider u =
x�[ni,∞) and v = x�[ni, ni+1). Then,

‖qi(Lζ(x)− Lζ(v))‖ = ‖qi(L(x+ zζ+1 + zζ+2)− L(v + zζ+1 + zζ+2))‖
≤
∥∥(1− rni−1)(L(x+ zζ+1 + zζ+2)− L(u+ zζ+1 + zζ+2))

∥∥
+
∥∥rni+2(L(u+ zζ+1 + zζ+2)− L(v + zζ+1 + zζ+2))

∥∥
≤ εi−2 + εi+1

by the properties of the stabilizers constructed above. Similarly,

‖(Lζ(v)− Lζ(0))(1− qi)‖ ≤
∥∥(Lζ(v)− Lζ(0))(1− rni+2)

∥∥+
∥∥(Lζ(v)− Lζ(0))rni−1

∥∥
≤ εi+1 + εi−1

Then, the following sums (taken over i ≡ ζ (mod 3)) converge in norm, and
hence are members of A;∑

qi(Lζ(x)− Lζ(x�[ni, ni+1)))(1) ∑
qi(Lζ(x�[ni, ni+1))− Lζ(0))(1− qi)(2) ∑
qiLζ(0)(1− qi)(3)

Adding these together produces

(1− rnζ−1
)Lζ(x)−

∑
i≡ζ mod 3

qiLζ(x�[ni, ni+1))qi

Hence the desired conclusion holds for all x ∈ X �Aζ . The general case
follows from the fact that x− f(x) ∈ A whenever x ∈ F1. �

It follows that the defect δi of ρi vanishes as i tends to infinity. For
instance, if there were sequences ai, bi ∈ F1�[ni, ni+1) (i ∈ N) satisfying

lim sup
i
‖ρi(aibi)− ρi(ai)ρi(bi)‖ > 0

then letting a =
∑
ai and b =

∑
bi, we would have ‖ϕ(π (ab))− ϕ(π (a))ϕ(π (b))‖ >

0, a contradiction. The other C*-algebra operations give analogous proofs.
By Proposition 3.2, for large enough i there is a ∗-homomorphism αi :
F�[ni, ni+1)→ qiAqi such that ‖ρi − αi‖ ≤ KAF δi. Then

αζ(x) =
∑
{αi(x�[ni, ni+1)) | i ≡ ζ (mod 3)}

lifts ϕ on Aζ , and is a ∗-homomorphism. Hence α = α0 + α1 + α2 (possibly
with modifications on finitely-many coordinates) is as desired. �

4. Embeddings under forcing axioms

In this section we prove the following strengthening of Theorem 1.5. The
reader can easily deduce an analogous strengthening of Corollary 1.7 using
Theorem 4.1 in place of Theorem 1.5.
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Theorem 4.1. Assume TA + MA. Let Fn and Bn (n ∈ N) be sequences of
full matrix algebras and UHF algebras, respectively, and suppose

ϕ :
∏
Fn/

⊕
Fn →

∏
Bn/

⊕
Bn

is an injective ∗-homomorphism which induces an automorphism of `∞/c0.
Then ϕ has a strict algebraic lift.

Remark 4.2. Let Bn,k (k ∈ N) be suitable sequences for the UHF algebras

Bn. Then the conclusion of Theorem 4.1 implies that there is some ξ ∈ NN

such that the image of ϕ is contained in
∏
Bn,ξ(n)/

⊕
Bn,ξ(n). Indeed, let α

be a strict algebraic lift of ϕ and consider the coordinate ∗-homomorphisms
αn = α◦jn : Fn →

⊕
Bm. By a straightforward argument, we have α(1Fn)−

1Be(n)
→ 0 for some function e. Then for each n we may find a ξ(e(n)) large

enough such that there is a ∗-homomorphism βn : Fn → Be(n),ξ(e(n)) with
‖αn − βn‖ tending to zero. The sequence βn then determines a strict ∗-
homomorphism

β :
∏
Fn →

∏
Bn,ξ(n)

and β lifts ϕ.

The remainder of this section is devoted to a proof of Theorem 4.1. To
this end we fix an injective ∗-homomorphism ϕ of the form∏

Fn/
⊕
Fn →

∏
Bn/

⊕
Bn

which induces an automorphism of `∞/c0. We will also assume TA + MA
for the rest of the section. We will write F =

∏
Fn and B =

∏
Bn, and for

sets A ⊆ N we put

F�A =
∏
n∈A
Fn B�A =

∏
n∈A
Bn

and we shorten the abominable ϕ�(F�A) to just ϕ�A. Note that, by the main
result of [30], we may fix a function e : N → N such that for each central
ζ ∈

∏
Fn, we have ϕ(π (ζ)) = π (ζ ◦ e). By relabeling the C*-algebras Bn,

we may, and will, assume that e = id. As in the proof of Corollary 1.7,
this implies that any strict algebraic lift αA of ϕ�A must be determined by
∗-homomorphisms

αAn : Fn → Bn (n ∈ A)

This fact will be used often in what follows, without explicit mention. Now,
fix a pointclass Γ and a number ε ≥ 0. We define

A ∈ I ε ⇐⇒ there is a strict algebraic ε-lift of ϕ�A

A ∈ I ε(Γ) ⇐⇒ there is a Γ-measurable ε-lift of ϕ�A

A ∈ I ε
σ(Γ) ⇐⇒ there is a sequence Lk (k ∈ N) of Γ-measurable functions with

∀x ∈ F�A ∃k ∈ N ‖ϕ(π (x))− π (Lk(x))‖ ≤ ε ‖π (x)‖

Our ultimate goal is to show that I 0 = P(N). The pointclasses we will
be concerned with are BP,H,C, and ∆1

1, consisting of those sets with the
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Baire property, the Haar-measurable sets, the C-measurable sets (see [18,
§29.D]), and the Borel sets, respectively.

Proposition 4.3. Let ε ≥ 0 and let Γ be a pointclass; then each I ε, I ε(Γ),
and I ε

σ(Γ) is an ideal containing the finite sets, and

I ε(BP) ⊆ I 8ε(∆1
1) and I ε

σ(BP) ⊆ I 8ε
σ (∆1

1)

Finally,

I 0 = I 0(BP) =
⋂
ε>0

I ε(BP)

Proof. Clearly each I ε, I ε(Γ), and I ε
σ(Γ) is hereditary and contains the

finite sets. To see that e.g. I ε
σ(Γ) is closed under finite unions, consider

A,B ∈ I ε
σ(Γ). Let LAm (m ∈ N) and LBn (n ∈ N) be Γ-measurable functions

which witness that A,B ∈ I ε
σ(Γ) respectively. Put, for all x ∈ F�(A ∪ B)

and m,n ∈ N,

LA∪Bmn (x) = LAm(x�A) + LBn (x�(B \A))

Then this family of functions witnesses A ∪B ∈ I ε
σ(Γ).

To see that I ε(BP) ⊆ I 8ε(∆1
1), let A ∈ I ε(BP) and fix a Baire-

measurable ε-lift LC of ϕ on A. Recall that the unitary group U of F�A is
a Polish group; hence as LC is Baire-measurable, there is a dense Gδ set
X ⊆ U on which LC is continuous. Let

R = {(u, v) ∈ U × U | v ∈ X ∩ u∗X}

Then R is Borel, and has comeager sections, hence by [18, Theorem 8.6] it
has a Borel-measurable uniformization S. It follows that the function

u 7→ LC(uS(u))LC(S(u)∗)

is Borel-measurable, and a 2ε-lift of ϕ on U . Now, it is a standard fact that
there are continuous functions T1, T2, T3, T4 : F�A→ U such that∑

i

Ti(x) = x

for all x ∈ F�A. Composing these maps with the function on U defined
above, we obtain an 8ε-lift of ϕ on all of F�A. The inclusion I ε

σ(BP) ⊆
I 8ε
σ (∆1

1) follows from similar reasoning.
The equality I 0 = I 0(BP) follows from Theorem 3.3 and the fact that

a Baire-measurable function is continuous on a dense Gδ. Clearly,

I 0(BP) ⊆
⋂
ε>0

I ε(BP)

Now to see the other inclusion, note by the above that⋂
ε>0

I ε(BP) =
⋂
ε>0

I ε(∆1
1)
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So, suppose that for each ε > 0, A ∈ I ε(∆1
1), and let Lε be a Borel-

measurable function witnessing this. Put

Λ = {(x, y) ∈ (F1�A)× (B1�A) | ∀ε > 0 ‖π (Lε(x)− y)‖ ≤ ε}

Then, Λ is Borel, and hence has a C-measurable uniformization by the
Jankov-von Neumann theorem. This uniformization is clearly a lift of ϕ on
A. Thus A ∈ I ε(BP) as required. �

The two results below are simple modifications of [11, Lemma 7.6] and [11,
Proposition 7.7], respectively; we include proofs here for completeness, but
we make no claims to their originality.

Lemma 4.4. Suppose ϕ�A has a Borel-measurable ε-lift on S, where

S ⊆
∏
n∈A
U(Fn) = U

is some set with positive Haar measure. Then ϕ has a Borel-measurable
2ε-lift on all of U .

Proof. Let L : S → B�A be a Borel-measurable ε-lift of ϕ. By Luzin’s
theorem, we may assume that S is compact and L is continuous on S. Let
U be a basic open subset of U such that µ(S ∩ U) > µ(U)/2. Then there
are k ∈ N and a finite F contained in∏

n∈A∩k
U(Fn)

such that FU = U . It follows that µ(FS) > 1/2. Now define L′ : FS → B�A
by letting L′(u) = L(v∗u) whenever v is the first member of F such that
v∗u ∈ S. Then L′ is continuous and an ε-lift of ϕ on FS (noting that for
each v ∈ F , π(v) = π(1)). Now let

Λ = {(u, v) ∈ U × FS | uv∗ ∈ FS}

Then the section of Λ over a given u ∈ U is exactly FS ∩u(FS)∗, which has
positive Haar measure since µ(FS) > 1/2. By [18, Theorem 8.6], it follows
that Λ has a Borel-measurable uniformization T : U → B�A. Then the map

u 7→ L′(uT (u)∗)L′(T (u))

defines a 2ε-lift of ϕ on all of U . �

Proposition 4.5. Let ε > 0 be given. If A ∈ I ε
σ(H) is infinite and A =⋃

k Ak is a partition of A into infinite sets, then there is some k for which
Ak ∈ I 4ε(∆1

1).

Proof. Let Un be the unitary group of Fn. Then

Uk =
∏
n∈Ak

Un and Wk =
∏
`≥k
U`
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are compact groups, and clearly

U '
∏
k

Uk =W0

We thus view each Uk and Wk as a compact subgroup of U .
Fix Borel functions Li (i ∈ N) witnessing A ∈ I ε

σ(H). Assume, for sake
of contradiction, that no Ak is a member of I 4ε(∆1

1). We will construct
compact sets Vk ⊆ Wk of positive measure (using the normalized Haar
measure µk on Wk), and elements uk of Uk, such that

(1) ukVk+1 ⊆ Vk, and
(2) for all v ∈ Vk+1,

‖π ((Lk(u0 · · ·ukv)− L(uk))�Ak)‖ > ε

Given such sequences, note that V ′k = u0 · · ·uk−1Vk is a decreasing sequence
of nonempty, compact sets in U . Thus u∞ =

∏
k uk is a member of their

intersection. Since u∞ ∈ F�A, there is some k such that

‖π (Lk(u∞)− L(u∞))‖ ≤ ε

But we have

u∞ = u0 · · ·uk
∏
`>k

u`

and
∏
`>k u` ∈ Vk+1, so by the construction,

‖π ((Lk(u∞)− L(uk))�Ak)‖ > ε

Since π (L(u∞)�Ak) = π (L(uk)�Ak) this provides the necessary contradic-
tion. Now we proceed to the construction of uk and Vk.

Suppose we are given u0, . . . , uk−1 and Vk−1 satisfying the above condi-
tions. Since Vk−1 has positive Haar measure, we may find compact sets
S ⊆ Uk−1 and T ⊆ Wk, each with positive measure (under their respective
Haar measures), such that

∀x ∈ S µk {y ∈ T | (x, y) ∈ Vk−1} > µk(T )/2

Define Ξ ⊆ Uk ×Wk × (B1�Ak) and Λ ⊆ S ×
∏
U(Bn) by

(x, y, z) ∈ Ξ ⇐⇒ ‖π (Lk(u0 · · ·uk−1 · x · y)�Ak − z)‖ ≤ ε
(x, z) ∈ Λ ⇐⇒ µk {y ∈ T | (x, y, z) ∈ Ξ} > µk(T )/2

Then Ξ and Λ are both Borel. Suppose first that for every x ∈ S there is
some z with (x, z) ∈ Λ. Then by the Jankov-von Neumann uniformization
theorem there is a C-measurable function f : S →

∏
U(Bn) uniformizing Λ.

Since S has positive measure, by Lemma 4.4 f cannot be a 2ε-lift of ϕ on S,
since then ϕ would have a (Borel-measurable) 4ε-lift on Ak, contradicting
our starting assumption. So we may find some uk ∈ S such that there is no
z with (uk, z) ∈ Λ, and in particular (uk, L(uk)) 6∈ Λ. It follows that the set

R = {y ∈ T | (uk, y, L(uk)) ∈ Ξ ∧ (uk, y) ∈ Vk−1}



REDUCED PRODUCTS OF UHF ALGEBRAS 19

has positive measure. Taking Vk to be some compact subset of R with
positive measure finishes the construction. �

Recall that a family A ⊆ P(N) is almost-disjoint (or a.d.) if for all
distinct A,B ∈ A , A ∩B is finite. An a.d. family A is treelike if there is a
bijection t : N→ 2<ω such that for all A ∈ A , and all n,m ∈ A, t(n) ⊆ t(m)
or t(m) ⊆ t(n). Treelike families are called neat in [30].

Lemma 4.6. If A is a treelike, a.d. family, then A \I ε
σ(C) is countable

for each ε > 0.

Proof. Fix ε > 0, and let X consist of the pairs (A, x) where A is an infinite
subset of some member τ(A) of A , and x is in the unit ball of F�A. Notice
that τ(A) is unique, and τ as a map A → 2ω is continuous, since A is
treelike. We define a coloring [X]2 = K0 ∪K1 by placing {(A, x), (Ā, x̄)} ∈
K0 if and only if

(1) τ(A) 6= τ(Ā),
(2) for all n ∈ A ∩ Ā, ‖x(n)− x̄(n)‖ < 1/(n+ 1), and
(3) there is an n ∈ A ∩ Ā such that ‖L(x)(n)− L(x̄)(n)‖ > ε/2.

It follows that K0 is open in the topology on X obtained by identifying
(A, x) ∈ X with (A, x, L(x)), a member of the Polish space

P(N)× F1 ×B1

Claim 4.7. There is no uncountable Y ⊆ X such that [Y ]2 ⊆ K0.

Proof. Suppose for sake of contradiction that Y is uncountable and [Y ]2 ⊆
K0. Let D =

⋃
{A | (A, x) ∈ Y }, and choose y ∈ F�d such that for all

n ∈ d there is some (A, x) ∈ Y with n ∈ A and y(n) = x(n). Since Y is
K0-homogeneous, it follows that for all (A, x) ∈ Y ,

∀n ∈ a ‖x(n)− y(n)‖ < 1

n+ 1

In particular, π (x) = π (y�a) for all (A, x) ∈ Y , and hence π (L(x)) =
π (L(y�a)) for all (A, x) ∈ Y . Since Y is uncountable we may find an n̄ ∈ N
such that for uncountably many (A, x) ∈ Y , we have

∀n ∈ a \ n̄ ‖L(x)(n)− L(y)(n)‖ ≤ ε/2
By the separability of Bn for n < n̄, there are distinct (A, x), (Ā, x̄) ∈ Y ,
both satisfying the above, such that

∀n < n̄ ‖L(x)(n)− L(x̄)(n)‖ ≤ ε
Then {(A, x), (Ā, x̄)} ∈ K1, a contradiction. �

By TA, there is a countable cover Xp (p ∈ N) of X by K1-homogeneous
sets. Let Dp be a countable, dense subset of Xp for each p, and let

D =
{
τ(Ā)

∣∣ p ∈ N ∧ (Ā, x̄) ∈ Dp

}
To prove the lemma it will suffice to show that A \D ⊆ I ε

σ(C).
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Claim 4.8. Let C ∈ A \ D . Then there is a partition C = C0 ∪ C1 such
that for all p ∈ N and all (A, x) ∈ Xp, if A ⊆ Ci for some i then for all k
there is (Ā, x̄) ∈ Dp with

(1) A ∩ k = Ā ∩ k,
(2) for all n ∈ A ∩ Ā, ‖x(n)− x̄(n)‖ < 1/(n+ 1).

Proof. For each k ∈ N, let Ek be a finite subset of X such that for all p < k
and (A, x) ∈ Xp, there is some (Ā, x̄) ∈ Dm

p ∩ Ek satisfying (1) and the
following restricted form of (2);

∀n ∈ A ∩ Ā ∩ k ‖x(n)− x̄(n)‖ < 1

n+ 1

This is possible by density of Dp in Xp and the fact that F�k is finite-
dimensional (and hence has a totally-bounded unit ball). Note that for each
(Ā, x̄) ∈ Ek, the set C ∩ Ā is finite. Let k+ be minimal such that for all
(Ā, x̄) ∈ Ek, C ∩ Ā ⊆ k+. Set k0 = 0 and ki+1 = k+

i for each i, and

C0 =
⋃
i

C ∩ [k2i, k2i+1) C1 =
⋃
i

C ∩ [k2i+1, k2i+2)

The claim follows. �

Define a set Λp ⊆ (F�C0) × (B�C0) by placing (x, y) ∈ Λp if and only if
for every k ∈ N there is some (Ā, x̄) ∈ Dp such that conditions (1) and (2)
hold (with C0 replacing A), and moreover

∀n < k ‖y(n)− L(x̄)(n)‖ ≤ ε/2
Clearly, Λp is Borel (in the usual topology), and if (C0, x) ∈ Xp then by the
above claim and the K1-homogeneity of Xp, (x, L(x)) ∈ Λp. Moreover, if
(x, y) ∈ Λp, then

∀n ∈ C0 ‖L(x)(n)− y(n)‖ ≤ ε
Let Lp be a C-measurable uniformization of Λp for each p ∈ N. Then,
since X =

⋃
pXp, the sequence Lp (p ∈ N) is a witness to the fact that

C0 ∈ I ε
σ(C). Similarly, C1 is in I ε

σ(C), and hence so is C = C0 ∪ C1. �

Proposition 4.9. Every uncountable, a.d. family B ⊆P(N) meets I 0.

Proof. Suppose for sake of contradiction that B is an uncountable a.d. fam-
ily disjoint from I 0. By Proposition 4.3, we may assume that for some ε > 0,
B is disjoint from I ε(∆1

1). By a standard application of MA, we may find an
uncountable, a.d. family A ′ such that every A ∈ A ′ almost-contains infin-
itely many members of B. Moreover, using MA with [30, Lemma 2.3], there
is an uncountable A ⊆ A ′ and, for each A ∈ A , a partition A = A0 ∪ A1,
such that for each i < 2 the family

Ai = {Ai | A ∈ A }
is treelike. By Lemma 4.6, there are uncountably many A ∈ A such that

A0 ∈ I
ε/4
σ (C); and by another application of Lemma 4.6, there is then

some A ∈ A such that both A0 and A1 are members of I
ε/4
σ (C), and
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hence their union A is also a member of I
ε/4
σ (C). By Proposition 4.5,

since A almost-contains infinitely many members of B, there must be some
B ∈ B ∩I ε(∆1

1). This contradicts our assumption. �

Lemma 4.10. I 0 is a dense P -ideal.

Proof. That I 0 is dense follows easily from Proposition 4.9. To prove it’s a
P -ideal, we will first show that given any infinite sequence Ak (k ∈ N) of sets
in I ε, where ε > 0, there is some B ∈ I 3ε such that Ak ⊆∗ B for all k. So
fix a sequence Ak (k ∈ N) of sets in I ε, where ε > 0. We may assume that
the Ak’s are pairwise disjoint. Assume for sake of contradiction that there
is no B ∈ I 3ε which almost-includes every Ak, and for each f : N→ N let

Bf =
⋃
{Ak ∩ f(k) | k ∈ N}

Then for every f ∈ NN and k ∈ N, Bf ∩ Ak is finite, and if f <∗ g then

Bf ⊆∗ Bg. We will prove that for every f ∈ NN there is some g ∈ NN such
that f <∗ g and Bg \Bf 6∈ I ε. By a simple recursion we may then construct

a <∗-increasing sequence fγ ∈ NN, for γ < ω1, with Bfγ+1 \ Bfγ 6∈ I ε for
each γ. Thus the sets Bfγ+1\Bfγ form an uncountable almost-disjoint family
which is disjoint from I ε, contradicting Proposition 4.9.

For simplicity we will assume that f(k) = 0 for all k ∈ N, and show that
for some g ∈ NN, Bg 6∈ I ε. For sake of contradiction, suppose that this is
not so. Define a coloring [NN]2 = K0 ∪K1 by

{g, h} ∈ K0 ⇐⇒ ∃n ∈ Bg ∩Bh
∥∥∥αBgn − αBhn ∥∥∥ > 2ε

where for each B ∈ I ε, we have fixed a sequence of ∗-homomorphisms
αBn : Fn → Bn (with αBn = 0 when n 6∈ B) according to the definition of
I ε. It follows that K0 is open when NN is given the topology obtained by
identifying g with (g, αBg), a member of the Polish space

NN ×
∏
n

Hom(Fn,Bn)

Claim 4.11. There is no uncountable, K0-homogeneous subset of NN.

Proof. Suppose H is such and |H| = ℵ1. Since b > ℵ1, there is some h̄ ∈ NN

such that for every h ∈ H, h <∗ h̄. By refining H to an uncountable
subset H̄, we may assume that for some k̄ ∈ N and some sequence of ∗-
homomorphisms ζk : Fk → Bk (k < k̄), we have for all h ∈ H̄ that

(1) for all k ≥ k̄, h(k) < h̄(k),

(2) for all k ≥ k̄,
∥∥∥αBhk − αBh̄k ∥∥∥ ≤ ε.

(3) for all k < k̄,
∥∥∥αBhk − ζk∥∥∥ ≤ ε.

Now, clearly, H̄ is K1-homogeneous, and this is a contradiction. �
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By TA, NN must be σ-K1-homogeneous. Since NN is countably directed
under <∗, there must be some K1-homogeneous set H which is <∗-cofinal

in NN. It follows that for some k̄ ∈ N, H is <k̄-cofinal in NN, and hence

C =
⋃
h∈H

Bh ⊇
∞⋃
k=k̄

Ak

For each n ∈ C, choose a ∗-homomorphism αn : Fn → Bn from the set{
αBhn

∣∣ h ∈ H ∧ n ∈ Bh}. By the K1-homogeneity of H, then, for any h ∈ H
we have

∀n ∈ Bh
∥∥αn − αBhn ∥∥ ≤ 2ε

Claim 4.12. There is some ` such that the sequence αn (n ∈ C) forms a
3ε-lift of ϕ on Ak for all k ≥ `.

Proof. Suppose not; then there are infinitely many k ≥ k̄ such that for some
xk ∈ F1�Ak,

lim sup
n∈Ak

‖αn(xk(n))− L(xk)(n)‖ > 3ε

For simplicity we assume that this occurs for all k ≥ k̄. Define x ∈ F�A by
x�Ak = xk for each k ≥ k̄ and x�Ak = 0 for k < k̄. Then π (L(x)�Ak) =
π (xk) for each k ≥ k̄. Hence for each k ≥ k̄, we may choose some nk ∈ Ak
large enough that

‖αnk(x(nk))− L(x)(nk)‖ > 3ε

Define h ∈ NN by h(k) = nk + 1 and let y = x�Bh. Then π (L(y)) =
π (L(x)�Bh), and so for any k ≥ k̄ large enough,

‖αnk(y(nk))− L(y)(nk)‖ > 3ε

But Bh ∈ I ε, and
∥∥αn − αBhn ∥∥ ≤ 2ε for all n ∈ Bh. This is a contradiction.

�

Claim 4.13. The sequence αn (n ∈ C) forms a 3ε-lift of ϕ on
⋃
{Ak | k ≥ `}.

Proof. This follows from the fact that the ideal generated by
{
Bf
∣∣ f ∈ NN}

and {Ak | k ≥ `} is dense in P(
⋃
{Ak | k ≥ `}). �

Since A0, . . . , A`−1 ∈ I ε, and
⋃
{Ak | k ≥ `} ∈ I 3ε, it follows that their

union is in I 3ε. This clearly contradicts our assumption on the sequence
Ak. Now assume we’ve been given a sequence Ak (k ∈ N) from I 0. Then

for each ` ∈ N we may choose some B` ∈ I 1/(`+1) such that Ak ⊆∗ B` for
all k ∈ N. Then we may find C such that Ak ⊆∗ C ⊆∗ B` for all k, ` ∈ N. It
follows that C ∈ I 0, hence I 0 is a P -ideal. �

Finally, we are ready to prove Theorem 4.1.

Proof. For each A ∈ I 0, fix a sequence αAn : Fn → Bn of ∗-homomorphisms,
witnessing that A ∈ I 0. For each ε > 0 define a coloring [I 0]2 = Kε

0 ∪Kε
1

by
{A,B} ∈ Kε

0 ⇐⇒ ∃n ∈ A ∩B
∥∥αAn − αBn ∥∥ > ε
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Then Kε
0 is open when A ∈ I 0 is identified with (A,αA).

Claim 4.14. There is no uncountable, Kε
0-homogeneous subset of I 0, for

any ε > 0.

Proof. Suppose H is Kε
0-homogeneous, and has size ℵ1. Since I 0 is a P-

ideal, we may form a subset H̄ of I 0 which, under the ⊆∗ ordering, is
an ω1-chain dominating H. By (a weakening of) TA, we may assume (by

going to a cofinal subset of H̄) that H̄ is either K
ε/2
0 - or K

ε/2
1 -homogeneous.

Assume the latter holds; by refining H to an uncountable subset, we may
assume there is some n̄ such that for all A ∈ H, there is some Ā ∈ H̄, for
which

A \ Ā ⊆ n̄ and ∀n ∈ A \ n̄
∥∥∥αAn − αĀn∥∥∥ ≤ ε/4

But then any pair {A,B} ∈ [H]2 with

∀n < n̄
∥∥αAn − αBn ∥∥ ≤ ε

is in Kε
1, a contradiction; so H̄ is K

ε/2
0 -homogeneous. Replacing H with

H̄ and ε with ε/2, we may assume without loss of generality that H is an
increasing ω1-chain with respect to ⊆∗. Define a forcing notion P as follows.
The conditions of P are taken to be triples p = (`p, xp, Hp), where

(1) `p ∈ N, xp ∈ F1�`p, and Hp ∈ [H]<ω,
(2) for all distinct A,B ∈ Hp, there is some n ∈ A ∩B ∩ `p with∥∥αAn (xp(n))− αBn (xp(n))

∥∥ > ε/2

Put p ≤ q if and only if `p ≥ `q, Hp ⊇ Hq, and ‖xp�`q − xq‖ < ε/4. We will
argue that P is ccc. Suppose A ⊆ P is uncountable. For each p ∈ A , let
Ap be the minimal member of Hp with respect to ⊆∗, and choose mp ≥ `p
large enough and δp > 0 small enough that

• for all A ∈ Hp, Ap \A ⊆ mp and

∀n ≥ mp

∥∥∥αAn − αApn ∥∥∥ ≤ ε/4
• for all distinct A,B ∈ Hp, there is some n ∈ A ∩B ∩ `p with∥∥αAn (xp(n))− αBn (xp(n))

∥∥ > ε/2 + δp

By thinning out A we may assume that there are k, `,m ∈ N and δ > 0
such that for all p ∈ A , we have |Hp| = k, `p = `, mp = m and δp ≥ δ.
Finally, by further thinning A we may assume that for all distinct p, q ∈ A ,

• ‖xp − xq‖ < δ/2,

• for all n < m,
∥∥∥αApn − αAqn ∥∥∥ < ε/2, and

• Hp ∩Hq = ∅.
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Now let p, q ∈ A be given. Since {Ap, Aq} ∈ Kε
0, there is some n ∈ Ap ∩Aq

such that
∥∥∥αApn − αAqn ∥∥∥ > ε. By the above it must be that n ≥ m. Choose

x ∈ F1�(n+ 1) with x�` = xp and∥∥∥αApn (x(n))− αAqn (x(n))
∥∥∥ > ε/2

and put r = (n+ 1, x,Hp ∪Hq). We claim that r ∈ P and r extends both p
and q. The only thing to check is that r satisfies (2); the rest is clear. Let
A,B ∈ Hp ∪Hq be given. In the case where both A and B are in Hp, (2)
holds simply because x�` = xp; in the case of A,B ∈ Hq, (2) holds since
‖xp − xq‖ < δ/2. Finally, if A ∈ Hp and B ∈ Hq, then since n ≥ m,∥∥αAn (x(n))− αBn (x(n))

∥∥ > ∥∥∥αApn (x(n))− αAqn (x(n))
∥∥∥− (ε/4 + ε/4) > ε/2

and so (2) is satisfied.

By MA, we may find an x ∈ F1 and an uncountable Ĥ ⊆ H such that for
all distinct A,B ∈ Ĥ,

∃n ∈ A ∩B
∥∥αAn (x(n))− αBn (x(n))

∥∥ > ε/2

By our choice of ∗-homomorphisms αAn , we have for all A ∈ Ĥ

lim sup
n∈A

∥∥αAn (x(n))− L(x)(n)
∥∥ = 0

The usual pigeonhole argument shows that this is a contradiction. �

We have shown that the first alternative of TA fails for each of the par-
titions [I 0] = Kε

0 ∪ Kε
1; hence I 0 is σ-Kε

1-homogeneous for every ε > 0.
Let εk = 2−k for each k ∈ N; then, since I 0 is a P-ideal, we may find a
decreasing sequence of sets

I 0 ⊇ X0 ⊇ X1 ⊇ · · ·

such that each Xk is Kεk
1 -homogeneous and cofinal in I 0 in the ordering ⊆∗.

By density of I 0, for each k the set
⋃
Xk must be cofinite; say [mk,∞) ⊆⋃

Xk, andmk < mk+1 for each k. Choose any sequence of ∗-homomorphisms
αn, n ≥ m0, satisfying

αn ∈
{
αAn
∣∣ mk ≤ n < mk+1 ∧ n ∈ A ∈ Xk

}
It follows that, for any A ∈ I 0,

lim sup
n∈A

∥∥αn − αAn∥∥ = 0

Moreover, by density of I 0, this proves that the sequence αn (n ≥ m0)
makes up a lift of ϕ on [m0,∞). �
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5. Coherent families of ∗-homomorphisms

Theorem 5.1. Assume TA and let An (n ∈ N) be a sequence of UHF
algebras. Let B be a separable C*-algebra, and suppose

ϕ :
∏
An/

⊕
An →M(B)/B

is determined by a coherent family of ∗-homomorphisms. Then Γϕ is Borel.

Proof. Let An,k (k ∈ N) be a suitable sequence of subalgebras of An, and
suppose

αξn : An,ξ(n) → B (ξ ∈ NN, n ∈ N)

is a coherent family of ∗-homomorphisms which determines ϕ. Define col-
orings [NN]2 = Kε

0 ∪Kε
1, for each ε > 0, by placing {ξ, η} ∈ Kε

0 if and only
if

∃n ∈ N ∃x ∈ An,ξ(n) ∩ An,η(n)

∥∥∥αξn(x)− αηn(x)
∥∥∥ > ε ‖x‖

Note that An,ξ(n) ∩ An,η(n) = An,min(ξ(n),η(n)). Given ξ ∈ NN, let βξ denote
the sequence

βξn,m =

{
αξn�An,m m ≤ ξ(n)
0 m > ξ(n)

Each Kε
0 is then open in the topology on NN obtained by identifying ξ with

(ξ, βξ) ∈ NN ×
∏
n,m

Hom(An,m,B)

where we use the point-norm topology on Hom(Fn,m,B). We claim, as usual,
that there are no uncountable Kε

0-homogeneous subsets of NN, for any ε > 0.
To see this, fix some H ⊆ NN of size ℵ1. Since b > ℵ1 we may find some
ξ̄ ∈ NN such that ξ <∗ ξ̄ for all ξ ∈ H, and by refining H to an uncountable
subset we may assume that for some n̄, we have for all ξ ∈ H that

• for all n ≥ n̄, ξ(n) < ξ̄(n) and

• for all n ≥ n̄,
∥∥∥αξ̄n�An,ξ(n) − α

ξ
n

∥∥∥ ≤ ε/2.

By the uncountability of H we may find distinct ξ, η ∈ H with ξ�n̄ = η�n̄
and for all n < n̄, ∥∥∥αξn − αηn∥∥∥ ≤ ε
hence {ξ, η} ∈ Kε

1 and so H cannot be Kε
0-homogeneous.

Let εk (k ∈ N) be some sequence in R+ converging to zero. By TA and
the σ-directedness of NN under <∗, we may find sets

NN ⊇ X0 ⊇ X1 ⊇ · · ·
where each Xk is Kεk

1 -homogeneous, and cofinal in NN with respect to <∗

(cf. the argument near the end of Theorem 4.1). Then we may construct
an increasing sequence nk ∈ N (k ∈ N) such that each Xk is <nk -cofinal in
NN. For each n ∈ [nk, nk+1) and i ∈ N, choose a function ξn,i ∈ Xk such
that ξn,i(n) ≥ i.



26 PAUL MCKENNEY

For each n ∈ N let θn,i : An → An,i (i ∈ N) be a commuting system of

conditional expectation maps, and define θξ :
∏
An →

∏
An,ξ(n) by

θξ(a)(n) = θn,ξ(n)(a(n))

We also let pn = α0̄
n(1An) (n ∈ N) where 0̄ is the function with constant

value 0. Note that, by coherence, if η ∈ NN then

pn − αηn(1An)→ 0

Moreover, if p =
∑
pn then π(p) = π(αη(1)) for all η.

Claim 5.2. Let (a, b) ∈
∏

(An)1×M(B)1 be given. Then (a, b) ∈ Γϕ if and
only if π (b) = π (

∑
pnbpn) and

lim
n

lim sup
i→∞

∥∥∥pnbpn − αξn,in (θn,i(a(n)))
∥∥∥ = 0

Proof. Suppose that (a, b) ∈ Γϕ. Clearly π (b) = π (pbp). Find some η ∈ NN

such that π (a) = π (θη(a)). Then π (b) = π (αη(θη(a))), so

lim
n→∞

∥∥∥∥∥∥
∑
m≥n

pm

(pbp−∑
m

αηm(θm,η(m)(a(m)))

)∑
m≥n

pm

∥∥∥∥∥∥ = 0

Since pmα
η
n(x)pk = 0 whenever m 6= k, it follows that

lim
n→∞

sup
m 6=k,m,k≥n

‖pmbpk‖ = 0

and this implies π(b) = π(
∑
pnbpn). Now fix k ∈ N; since Xk is <∗-cofinal in

NN we may choose η as above with η ∈ Xk. Then, for large enough m ≥ nk,
we have for all n ≥ m, ∥∥a(n)− θn,η(n)(a(n))

∥∥ ≤ εk(4) ∥∥pnbpn − αηn(θn,η(n)(a(n)))
∥∥ ≤ εk(5)

Now fix n ≥ m and i ≥ η(n). Then,

(6)
∥∥∥αξn,in (θn,η(n)(a(n)))− αηn(θn,η(n)(a(n)))

∥∥∥ ≤ εk
since ξn,i and η are both members of Xk. Finally, note that by (4),

(7)
∥∥θn,i(a(n))− θn,η(n)(a(n))

∥∥ ≤ εk
Together the inequalities (5), (6), and (7) imply∥∥∥pnbpn − αξn,in (θn,i(a(n)))

∥∥∥ ≤ 3εk

for any n ≥ m and i ≥ η(n), as required.
Now assume that (∗) holds. Fix k, and choose η ∈ Xk such that π (a) =

π (θη(a)). By (∗) and the Kεk
1 -homogeneity of Xk, for all large enough n
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and i we have ∥∥∥pnbpn − αξn,in (θn,i(a(n)))
∥∥∥ ≤ εk(8) ∥∥θn,i(a(n))− θn,η(n)(a(n))
∥∥ ≤ εk(9) ∥∥∥αξn,in (θn,η(n)(a(n)))− αηn(θn,η(n)(a(n)))
∥∥∥ ≤ εk(10)

Then,
lim sup
n→∞

∥∥pnbpn − αηn(θn,η(n)(a(n)))
∥∥ ≤ 3εk

Since αη(θη(a)) is a representative of ϕ(π (a)), it follows that for every k,∥∥∥π (∑ pnbpn

)
− ϕ(π (a))

∥∥∥ ≤ 3εk

and since π (
∑
pnbpn) = π (b), we have (a, b) ∈ Γϕ. �

The claim provides a Borel definition of Γϕ, hence the proof is complete.
�

Definition 5.3. Let A be a C*-algebra, and suppose A = limAn. We say
that A has the (δ, ε)-intertwining property with respect to the sequence An
(n ∈ N) if, for every sequence of ∗-homomorphisms αn : A2n → A2n+1,
βn : A2n+1 → A2n+2 (n ∈ N) satisfying, for any n ≤ m,

A2m+1 A2m+2

δ

A2n A2n+1

βm

αn

A2m+2 A2m+3

δ

A2n+2 A2n+1

αm

βn

there are ∗-homomorphisms α, β : A → A such that for all n ∈ N,

A A

ε

A2n A2n+1

β

αn

A A

ε

A2n+2 A2n+1

α

βn

Remark 5.4. The diagrams above imply that for any n < m we have

‖αm�A2n − αn‖ , ‖βm�A2m+1 − βn‖ ≤ 2δ

Moreover if α, β are as in the conclusion, then

‖α�A2n − αn‖ , ‖β�A2n+1 − β‖ ≤ 2ε

and
‖α ◦ β − id‖ , ‖β ◦ α− id‖ ≤ 2ε

Proposition 5.5. Let An (n ∈ N) be UHF algebras. Then the following are
equivalent.
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(1) Every automorphism of
∏
An/

⊕
An with Borel graph has a strict,

algebraic lift.
(2) For every ε > 0 there is some δ > 0 such that for all large enough n,
An has the (δ, ε)-intertwining property with respect to any suitable
sequence An,k (k ∈ N).

Proof. We first prove that ¬(2) implies ¬(1). Fix a sequence δn (n ∈ N)
of positive reals tending to zero. Assuming ¬(2), we may construct, by a
straightforward recursion, an infinite set I ⊆ N and for every n ∈ I,

(1) a suitable sequence An,k (k ∈ N) of subalgebras of An, and
(2) ∗-homomorphisms αn,k : An,2k → An,2k+1 and βn,k : An,2k+1 →
An,2k+2

such that for all k ≤ `, we have

An,2`+2 An,2`+1

δn

An,2k An,2k+1

β`

αk

An,2`+2 An,2`+3

δn

An,2k+2 An,2k+1

α`

βk

but for any pair of ∗-homomorphisms α, β : An → An there is some k ∈ N
such that either ‖β ◦ αn,k − id‖ > ε or ‖α ◦ βn,k − id‖ > ε, where ε > 0 is
fixed. When n 6∈ I we take any suitable sequence An,k and let αn,k and βn,k
be the inclusion maps An,2k → An,2k+1 and An,2k+1 → An,2k+2 respectively.
Then the families

αξn = αn,ξ(n), βξn = βn,ξ(n) (ξ ∈ NN, n ∈ N)

are coherent, and hence determine endomorophisms ϕ and ψ of
∏
An/

⊕
An

respectively. It is easy to see that ϕ and ψ are inverses, so ϕ is an automor-
phism. Note that, for each a, b ∈

∏
(An)1, (a, b) ∈ Γϕ if and only if

∃ξ ∈ NN ∃x ∈ (A2ξ)1 lim ‖a(n)− x(n)‖ = 0

and lim
∥∥αn,ξ(n)(x(n))− b(n)

∥∥ = 0

if and only if

∀ξ ∈ NN ∀x ∈ (A2ξ)1 if lim ‖a(n)− x(n)‖ = 0

then lim
∥∥αn,ξ(n)(x(n))− b(n)

∥∥ = 0

so Γϕ is Borel. Now suppose ϕ and ψ have strict algebraic lifts α and β; let
αn and βn (n ∈ N) be the coordinate ∗-homomorphisms for α and β, respec-
tively. For each n ∈ I we may choose some ξ(n) such that

∥∥αn ◦ βn,ξ(n) − id
∥∥ >

ε or
∥∥βn ◦ αn,ξ(n) − id

∥∥ > ε; it follows that there is some x ∈
∏
An,ξ(n) such

that ψ(ϕ(π (x))) 6= π (x) or ϕ(ψ(π (x))) 6= π (x), a contradiction.
Now we show that (2) implies (1). Assume (2) and fix an automorphism

ϕ of
∏
An/

⊕
An with Borel graph. Notice that the statement “ϕ has a

strict algebraic lift” is Σ1
2, and condition (2) is Π1

2; hence both are absolute
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between the ground model and any forcing extension, and so we may assume
TA without any loss of generality. Theorem 3.3 implies that both ϕ and ϕ−1

are determined by coherent families of ∗-homomorphisms, say

αξn : An,ξ(n) →
⊕
An βξn : An,ξ(n) →

⊕
An (ξ ∈ NN, n ∈ N)

respectively. Let [NN]2 = Kε
0 ∪ Kε

1 and [NN]2 = Lε0 ∪ Lε1 be the colorings

defined in the proof of Theorem 5.1, given the coherent families αξn and βξn
respectively. Let M ε

0 = Kε
0∪Lε0; then M ε

0 is open in an appropriate separable
metrizable topology, and NN has no uncountable, M ε

0-homogeneous subsets,
for any ε > 0. Arguing as in Theorem 5.1, we may find ∗-homomorphisms

αn,k : An,k →
⊕
An βn,k : An,k →

⊕
An

such that for some sequence δn → 0 and all ξ, we have∥∥∥αξn − αn,ξ(n)

∥∥∥ ,∥∥∥βξn − βn,ξ(n)

∥∥∥ ≤ δn
Applying the main result of [30] to the central automorphism induced by
ϕ, we may find a function e : N → N such that ϕ(π (ζ)) = π (ζ ◦ e) for
all central ζ. Then for all but finitely many n, and all k, αn,k maps into
Ae(n), and βn,k maps into Ae−1(n). Moreover, arguing as in the proof of
Corollary 1.7, for all but finitely many n we have that An ' Ae(n). By
composing with this isomorphism, or its inverse, we may assume that each
αn,k and βn,k maps into An. Finally, by perturbing each αn,k and βn,k by
an amount tending to zero as n→∞, we may assume that αn,k maps into
An,k′ , and βn,k into An,k′ , for some large enough k′ depending on k. We are
now in a situation where we can apply condition (2); choose αn : An → An
and βn : An → An such that

‖αn ◦ βn,k − id‖ , ‖βn ◦ αn,k − id‖ ≤ εn
It follows that the sequence αn (n ∈ N) determines a strict algebraic lift of
ϕ. �
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