
HOMEOMORPHISMS OF ČECH-STONE REMAINDERS:

THE ZERO-DIMENSIONAL CASE

ILIJAS FARAH AND PAUL MCKENNEY

Abstract. We prove the result announced in [2, Theorem 4.10.1]: TA
and MAℵ1 together imply that given any two locally compact, zero-
dimensional Polish spaces, any homemomorphism between their Čech-
Stone remainders is trivial. It follows that two such spaces have homeo-
morphic remainders if and only if they have cocompact subspaces which
are homeomorphic.

1. Introduction

The Čech-Stone remainder βX \ X of a topological space X is denoted
X∗. A continuous map ϕ : X∗ → Y ∗ is called trivial if there is a continuous
e : X → Y such that ϕ = e∗, where e∗ = βe \ e and βe is the unique
continuous exension of e to βX. It follows that two remainders X∗ and
Y ∗ are homeomorphic via a trivial map if and only if there are cocompact
subspaces of X and Y which are themselves homeomorphic. In this paper
we prove the following, originally announced in [2, Theorem 4.10.1];

Theorem 1. Assume TA+MAℵ1. Let X and Y be locally compact, non-
compact and zero-dimensional Polish spaces. Then every every homeomor-
phism between X∗ and Y ∗ is trivial.

Here TA abbreviates Todorčević’s Axiom (also widely known as the Open
Coloring Axiom, see [8]). MAℵ1 is the usual Martin’s Axiom for ℵ1-many
dense sets. Both are consequences of the Proper Forcing Axiom (PFA);
hence the above result proves a special case of the more general conjecture
that PFA implies all homeomorphisms between Čech-Stone remainders of lo-
cally compact, noncompact Polish spaces are trivial. In comparison, under
the Continuum Hypothesis, all Čech-Stone remainders of locally compact,
noncompact, zero-dimensional Polish spaces are homeomorphic (a conse-
quence of Parovičenko’s theorem). TA+MAℵ1 thus implies a certain rigidity
for such remainders, whereas CH implies the opposite.

Theorem 1 follows a long line of results going back to the late 70’s when
Shelah proved that, consistently, all autohomeomorphisms of ω∗ are trivial
([5]). Shelah and Steprans later showed that the same conclusion holds under
PFA ([6]) and Veličković improved their result by reducing the assumption
to TA+MAℵ1 . The first author ([2]) extended this by proving Theorem 1 in
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the case where both X and Y are countable. All of these results rely heavily
on the zero-dimensionality of the spaces X and Y ; indeed, all results in this
direction in fact deal with isomorphisms between Boolean algebras of the
form C (X)/K (X), where C (X) is the algebra of clopen subsets of X, and
K (X) its ideal of compact-open sets. Stone duality provides the connection
to X∗ in the case where X is zero-dimensional (see e.g. [1]). Our proof does
not differ in this regard.

In section 2 we introduce some of the language required to prove The-
orem 1. Section 3 treats embeddings of P(ω)/ fin into C (X)/K (X); we
prove in ZFC that such maps are trivial whenever they are “definable” in a
certain sense, and then we prove under TA+MAℵ1 that every such map is
trivial. Section 4 completes the proof of Theorem 1 through an analysis of
coherent families of continuous functions.

2. Notation

Fix a zero-dimensional, locally compact and noncompact Polish space
X. We denote by C (X) the Boolean algebra of clopen subsets of X, and
by K (X) its ideal of compact-open subsets of X. Let 〈Kn | n < ω〉 be an
increasing sequence of compact-open sets in X, such that X =

⋃
Kn. Then

K (X) is generated by the sequence 〈Kn | n < ω〉, ie,

K ∈ K (X) ⇐⇒ ∃n K ⊆ Kn

It is easy to see that C (X) has size continuum, whereas K (X) is countable.
Let X0 = K0 and Xn+1 = Kn+1 \Kn. When A,B ∈ C (X) are distinct, we
write δ(A,B) for the least n such that A ∩Xn 6= B ∩Xn. If

d(A,B) =

{
2−δ(A,B) A 6= B
0 A = B

then d is a Polish metric on C (X). In this topology, K (X) is an Fσ subset
of C (X). We will often identify C (X) with

∏
n C (Xn), and P(ω) with ω2.

Under these identifications, K (X) maps to
⊕

n C (Xn) (the set of functions
in
∏
n C (Xn) which are nonempty on only finitely many coordinates) and

fin to <ω2. If Y and Z are zero-dimensional, locally compact Polish spaces,
ϕ : C (Y )/K (Y )→ C (Z)/K (Z) is a homomorphism, and U ∈ C (Y ), then
we write ϕ � U for the restriction ϕ � C (U)/K (U).

Finally, we state Todorčević’s Axiom. Let E be a separable metric space
and let [E]2 = M0 ∪M1 be a partition of the unordered pairs on E, such
that M0 is open when identified with a symmetric subset of E × E minus
the diagonal. Then one of the following holds.

(1) There is an uncountable set H ⊆ E such that [H]2 ⊆M0.
(2) There are sets Hn ⊆ E, for n < ω, such that E =

⋃
Hn and for each

n, [Hn]2 ⊆M1.
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3. Embeddings of P(ω)/fin into C (X)/K (X)

Let e : X → ω be a continuous map. If e−1(n) is compact for every n,
then we say e is compact-to-one. If e is compact-to-one, then the map a 7→
e−1(a), from P(ω) to C (X), induces a homomorphism ϕe : P(ω)/ fin →
C (X)/K (X). Moreover, ϕe is injective if and only if e is finite on compact
sets. We call a homomorphism ϕ : P(ω)/fin→ C (X)/K (X) trivial if it is
of the form ϕe for some compact-to-one, continuous e.

Lemma 3.1. Suppose Y ∈ C (X) and e, f : Y → ω are continuous, compact-
to-one maps, such that e−1(a)∆f−1(a) is compact for every a ⊆ ω. Then
{x ∈ Y | e(x) 6= f(x)} is compact.

Proof. Suppose not; then for some infinite set I ⊆ ω and all n ∈ I, there is
a point xn ∈ Y ∩Xn such that e(xn) 6= f(xn). Since e and f are compact-
to-one, we may assume also that m 6= n implies e(xm) 6= e(xn) and f(xm) 6=
f(xn). Now define a coloring F : [I]2 → 3 by

F ({m < n}) =

 0 e(xm) 6= f(xn) ∧ f(xm) 6= e(xn)
1 e(xm) = f(xn) ∧ f(xm) 6= e(xn)
2 e(xm) 6= f(xn) ∧ f(xm) = e(xn)

By Ramsey’s theorem, there is an infinite set a ⊆ I which is homogeneous
for this coloring. Suppose first that a is 1-homogeneous, and let m < n < k
be members of a. Then

e(xm) = f(xn) and e(xm) = f(xk) and e(xn) = f(xk)

which implies e(xn) = f(xn), a contradiction. Similarly, a cannot be 2-
homogeneous.

Now suppose a is 0-homogeneous. Let a = a0∪a1 be a partition of a into
two infinite sets, and put Zi = {xn | n ∈ ai} and Z = {xn | n ∈ a} = Z0∪Z1.
From the homogeneity of a, it follows that e′′Z ∩ f ′′Z = ∅, and hence (as e
and f are injective on Z)

Z ∩ e−1((e′′Z0) ∪ (f ′′Z1)) = Z0 and Z ∩ f−1((e′′Z0) ∪ (f ′′Z1)) = Z1

So, if b = e′′Z0 ∪ f ′′Z1, we have Z ⊆ e−1(b)∆f−1(b). But Z is not compact,
so this is a contradiction. �

3.1. Definable embeddings.

Lemma 3.2. Suppose ϕ : P(ω)/ fin→ C (X)/K (X) is an embedding with
a continuous lift F : G→ C (X) on some comeager set G ⊆P(ω). Then ϕ
is trivial.

Proof. First we work with the case G = P(ω). For s ∈ <ω2 and S ∈⊕
C (Xn) let

Ns = {a ∈ 2ω | s ⊆ a} and NS =
{
A ∈

∏
C (Xn)

∣∣∣ A extends S
}

So Ns and NS are basic clopen sets for ω2 and C (X) respectively. If F ′′Ns ⊆
NS we say that s forces S.
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First we build, by induction on i, an increasing sequence ni of integers,
and a sequence of functions ti : [ni, ni+1)→ 2, such that

(1) for all i, if s ∈ ni2, then s ∪ ti forces some S of length ni,
(2) for all i, s, s′ ∈ ni2, k > ni+1, and u : [ni+1, k)→ 2, if s ∪ ti ∪ u and

s′ ∪ ti ∪ u force S and S′ respectively, then S∆S′ ⊆ Kni+1 .

Assume ni and ti−1 are defined. First, let sj , j < 2ni enumerate ni2, and

construct functions tji for j ≤ 2ni , such that tji has domain [ni, k) for some

k, tji ⊆ tj+1
i for all j, and sj ∪ tji forces some S of length ni (this last is

possible by continuity of F ). Now any t which extends t2
ni

i and has domain
disjoint from ni will satisfy (1) in place of ti.

As for condition (2), we first claim that for any s, s′ ∈ ni2 and any u :
[ni, n) → 2, where n > ni, there is some v : [ni, k) → 2 extending u, such
that whenever s ∪ v ∪ w and s′ ∪ v ∪ w′ force S and S′ respectively, then
S∆S′ ⊆ Kn. Assume otherwise. Then we can construct increasing sequences
uj : [ni, j) → 2, Sj , S

′
j ∈ K (X), and `j < ω, such that s ∪ uj and s′ ∪ uj

force Sj and S′j respectively, but Sj ∩X`j 6= S′j ∩X`j . Put x = s∪
⋃
j uj and

x′ = s′ ∪
⋃
j uj . Then x =∗ x′ but F (x) ∩X`j 6= F (x′) ∩X`j for all j. Now

to ensure condition (2), we apply the claim for each pair s, s′ ∈ 2ni in some
order, starting with u = t2

ni

i from above and repeatedly extending u via the
v as in the claim. We end with a function ti : [ni, ni+1)→ 2 as required.

Put aε =
⋃
{[ni, ni+1) | i ≡ ε (mod 3)} and xε =

⋃
{ti | i ≡ ε (mod 3)},

for ε = 0, 1, 2. For every x ⊆ a0, let

F 0(x) = F (x ∪ x1 ∪ x2) \ F (x1 ∪ x2)

Then F 0(x)∆F (x) is compact, for every x ⊆ a0. Moreover, by the properties
of the sequence ti, there are functions h0

i : P([n3i, n3i+1)) → C (Kn3i+2 \
Kn3i−1) such that for all x ⊆ a0,

F 0(x) =
⋃
i

h0
i (x ∩ [n3i, n3i+1))

Now we claim that for almost all i, h0
i is a (Boolean algebra) homomorphism.

To see this, suppose for instance that for infinitely many i, there are ui, vi ⊆
[n3i, n3i+1) such that h0

i (ui ∪ vi) 6= h0
i (ui) ∪ h0

i (vi). Put u =
⋃
ui and

v =
⋃
vi; then F 0(u ∪ v)∆(F 0(u) ∪ F 0(v)) has nonempty intersection with

infinitely many Xn, and hence is not compact, contradicting the fact that
ϕ is a homomorphism. Let A0

i = h0
i ([n3i, n3i+1)); then there is a continuous

map e0
i : A0

i → [n3i, n3i+1) such that h0
i (x) = (e0

i )
−1(x) for all x in the

domain of h0
i . Notice that the sets A0

i are pairwise disjoint; so if A0 =
⋃
iA

0
i

and e0 =
⋃
i e

0
i , then e0 : A0 → a0, and

∀x ∈P(a0) F 0(x) = (e0)−1(x)

Similarly, we may define F ε, Aε, and eε for ε = 1, 2. Notice that since
Aε∆F (aε) is compact, and the sets aε form a partition of ω, it follows that
Aδ ∩ Aε is compact for δ 6= ε, and A0 ∪ A1 ∪ A2 is cocompact. Hence by
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putting the functions eε together on a cocompact set, we obtain a function
e : X → ω such that for all x ⊆ ω, F (x)∆e−1(x) is compact.

This completes the proof when G = P(ω). For the general case, recall
(by a Theorem of Talagrand and Jalali-Naini, see [7, 3]) that there are a
partition ω = a0∪a1, and sets si ⊆ ai, such that for all x ⊆ ai, x∪s1−i ∈ G.
Hence the function Fi(x) = F (x ∪ s1−i) \ F (s1−i) induces ϕ on P(ai). By
the special case, then, we get functions e0 : Y0 → a0 and e1 : Y1 → a1

(where Yi = F (ai)) inducing ϕ on a0 and a1 respectively. Then Y0 ∩ Y1 and
(Y0 ∪ Y1)∆X are compact, and hence we may put together e0 and e1 on a
cocompact set to get a function e : X → ω satisfying our requirements. �

Lemma 3.3. Let ϕ : P(ω)/fin→ C (X)/K (X) be an embedding with a lift
F : P(ω) → C (X). Suppose that there are Borel functions Fn : P(ω) →
C (X), for n < ω, such that for all a ⊆ ω there is n with F (a)∆Fn(a) ∈
K (X). Then ϕ is trivial.

Proof. Define
I = {a ⊆ ω | ϕ � a is trivial}

Then I is an ideal containing the ideal of finite sets. For each a ∈ I , we
fix a continuous, compact-to-one map ea : F (a) → a which induces ϕ � a.
We also define, for such a, the function fa : a→ C (F (a)) given by

fa(n) = e−1
a ({n})

Clearly, ea is uniquely determined by fa.

Claim 3.1. I is not a maximal nonprincipal ideal.

Proof. Assume otherwise. Fix a dense Gδ subset W of P(ω), such that each
Fn is continuous on W . As usual, we may find a partition ω = a0 ∪ a1 into
infinite sets, along with sets t0 ⊆ a0 and t1 ⊆ a1, such that for all x ⊆ ai,
x ∪ t1−i ∈W . By the assumption, one of a0 or a1 is not in I ; without loss
of generality, say it’s a0. Now, the function

Gn(x) = Fn(x ∪ t1) ∩ Fn(a0)

is continuous on P(a0), and moreover for every x ⊆ a0 there is some n such
that Gn(x)∆F (x) is compact. Let J = I ∩P(a0). Fix a ∈ J and for
each n,m < ω let

Da
n,m =

{
x ⊆ a

∣∣ e−1
a (x) \Km = Gn(x) \Km

}
Then each Da

n,m is closed, and P(a) =
⋃
n,mD

a
n,m. By the Baire category

theorem, it follows that there are some n,m < ω and a nonempty clopen
subset U of P(a) such that U ⊆ Da

n,m. Let Hn, n < ω enumerate all
functions from P(a0) to C (X) of the form

x 7→ (G`((x \ j) ∪ t) \Km) ∪ s′′(x ∩ k)

where j, k, `,m < ω, t ⊆ j, and s : k → C (Km). Then it follows that each
Hn is continuous, and for every a ∈J there is some n such that

∀x ⊆ a Hn(x) = e−1
a (x)
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Let Jn be the ideal of all a ∈J for which the above holds. Then for any
a, b ∈Jn, we have fa � a ∩ b = fb � a ∩ b, and so the function

fn =
⋃

a∈Jn

fa

induces ϕ on every a ∈Jn. If Jn is cofinal in J with respect to ⊆∗, then
it follows that fn induces ϕ on a0, contradicting a0 6∈ I .

If no Jn is cofinal in J , then J can’t be countably directed, and it
follows that there is a partition a0 =

⋃
n bn such that bn ∈J for all n, but

there is no b ∈J such that bn ⊆∗ b for all n. Let U be the set of all b ⊆ a0

such that b ∩ bn =∗ ∅ for all n; then U is a countably-directed subideal of
J . If Un = Jn ∩ U , then there is some n for which Un is cofinal in U .
As above, we let

f =
⋃
a∈Un

fa

and
e(x) = k ⇐⇒ x ∈ f(k)

and it follows that e induces ϕ on every a ∈ U . Now consider the set

T = {m < ω | e � F (bm) does not induce ϕ � bm}
Suppose T is infinite. Then for each m ∈ T we may choose some infinite
cm ⊆ bm such that e−1(cm) ∩ F (cm) is compact; moreover, by shrinking cm
we may ensure that e−1(cm)∩F (ck) is compact for every m, k ∈ T . We can
then find some D such that F (cm) \D and e−1(cm)∩D are compact for all
m. Choose some c such that F (c)∆D is compact. Then cm ⊆∗ c for every
m, since F (cm)\D is compact for all m. So we may choose some im ∈ cm∩c
such that e(im) 6∈ D. Then the set

b = {im | m ∈ T}
is in U . Hence e−1(b)∆F (b) is compact, and since b ⊆ c, e−1(b)\F (c) must
be compact as well. But e−1(b) ∩D = ∅, a contradiction.

Suppose now that T is finite. Then e induces ϕ on every a in the ideal
generated by U and {bm | m 6∈ T}. This ideal is dense in the powerset of⋃
m 6∈T bm and it follows that e induces ϕ on this set. But this means a0 ∈ I ,

another contradiction.
�

Now by induction we build subsets an and xn of ω, for n < ω, such that

(1) an ∩ am = ∅ for n 6= m,
(2) xn ⊆ an,
(3) ϕ is nontrivial on ω \

⋃
i<n ai,

(4) for every x ⊆ ω \
⋃
i<n ai,(

Fn

(⋃
i<n

xi ∪ x

)
∩ F (an)

)
∆F (xn) 6∈ K (X)
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The existence of such a sequence clearly contradicts our assumption, since
if x =

⋃
i xi, then it follows that for every n, (Fn(x) ∩ F (an))∆F (xn) is not

compact.
Suppose ai and xi, for i < n, have been constructed so as to satisfy the

conditions above. Let cn = ω \
⋃
i<n ai, and zn =

⋃
i<n xi. Since ϕ is

nontrivial on cn, by Claim 3.1 it follows that there are infinite sets dn and
d̄n which partition cn and on both of which ϕ is nontrivial. For each y ⊆ dn,
put

Hn(y) =
{
x ⊆ d̄n

∣∣ (Fn(zn ∪ y ∪ x) ∩ F (dn))∆F (y) ∈ K (X)
}

Then Hn(y) is a Borel set.

Claim 3.2. There is some y ⊆ dn such that Hn(y) is not comeager.

Proof. Suppose otherwise. Then for all (y, Y ) ∈P(dn)× C (X), ϕ[y] = [Y ]
if and only if the set{

x ⊆ d̄n
∣∣ (Fn(zn ∪ y ∪ x) ∩ F (dn))∆Y ∈ K (X)

}
is comeager. Then Gr(ϕ � dn) is analytic. By the Jankov-von Neumann
theorem ([4]), there is a uniformization of Gr(ϕ � dn) which is C-measurable,
and hence continuous on a comeager set. By Lemma 3.2, ϕ is trivial on dn,
a contradiction. �

Fix y ⊆ dn so that Hn(y) is not comeager. Since Hn(y) is Borel, there
is a basic clopen set Ns in P(d̄n) such that Hn(y) is meager in Ns. Let
u ⊆ d̄n be the domain of s. Then there is a partition d̄n \ u = d̄0

n ∪ d̄1
n along

with sets ti ⊆ d̄in such that for any x ⊆ d̄in, s ∪ x ∪ t1−i is not in Hn(y). By
Claim 3.1, ϕ must be nontrivial on one of d̄0

n or d̄1
n; say it’s d̄in. Set

an = dn ∪ u ∪ d̄1−i
n xn = y ∪ s ∪ ti

This completes the induction, and hence the proof of the theorem. �

3.2. Embeddings under TA+MAℵ1.

Theorem 2. Assume TA+MAℵ1, and suppose

ϕ : P(ω)/ fin→ C (X)/K (X)

is an embedding. Then ϕ is trivial.

Towards the proof of Theorem 2, we fix an embedding ϕ : P(ω)/ fin →
C (X)/K (X), and an arbitrary lift F : P(ω) → C (X) of ϕ. Again we
consider the ideal

I = {a ⊆ ω | ϕ � a is trivial}
A family A ⊆ P(ω) is called almost disjoint if for all distinct a, b ∈ A ,

a ∩ b =∗ ∅. Such a family A is called treelike if there is some tree T on
ω and a bijection t : ω → <ωω under which each a ∈ A corresponds to a
branch through T , and vice-versa.

Lemma 3.4. Assume TA. Let A be an uncountable, tree-like, almost-
disjoint family of subsets of ω. Then I \A is countable.
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Proof. Put

E = {(a, b) | ∃c ∈ A b ⊆ a ⊆ c}
and for each (a, b) ∈ E, let σ(a) be the unique element of A such that
a ⊆ σ(a). Since A is treelike, σ is a continuous map. Define a coloring
[E]2 = M0 ∪M1 by placing {(a, b), (ā, b̄)} in M0 if and only if

(i) σ(a) 6= σ(ā),
(ii) a ∩ b̄ = ā ∩ b, and
(iii) F (a) ∩ F (b̄) 6= F (ā) ∩ F (b).

Then M0 is open in the topology on E obtained by identifying (a, b) with
(a, b, F (a), F (b)).

Claim 3.3. There is no uncountable, M0-homogeneous subset H of E.

Proof. Assume H is such. Put

d =
⋃

(a,b)∈H

b

Then for all (a, b) ∈ H, d∩a = b, and hence (F (d)∩F (a))∆F (b) is compact.
Then we may find an n, and sets A,B ∈ C (Kn), so that for uncountably
many (a, b) ∈ H we have

• (F (d) ∩ F (a))∆F (b) ⊆ Kn,
• F (a) ∩Kn = A, and
• F (b) ∩Kn = B.

Then, for any such (a, b) and (ā, b̄) in H,

F (a) ∩ F (b̄) ∩Kn = A ∩B = F (ā) ∩ F (b) ∩Kn

and moreover,

(F (a) ∩ F (b̄)) \Kn = (F (a) ∩ F (d) ∩ F (ā)) \Kn = (F (b) ∩ F (ā)) \Kn

Hence there is an uncountable M1-homogeneous subset of H, a contradic-
tion. �

By TA, there is a sequence En, n < ω, of M1-homogeneous sets which
cover E. Let Dn be a countable, dense subset of En, in the topology on E
described above. Fix c ∈ A so that c is not equal to σ(a) for any (a, b) ∈ Dn,
for any n. We’ll show that ϕ � c is trivial.

Claim 3.4. There is a partition c = c0∪c1, so that for all n and (a, b) ∈ En,
if a ⊆ ci for some i < 2 then for every m there is (ā, b̄) ∈ Dn with

(1) a ∩m = ā ∩m and b ∩m = b̄ ∩m,
(2) F (a) ∩Km = F (ā) ∩Km and F (b) ∩Km = F (b̄) ∩Km, and
(3) a ∩ b̄ = ā ∩ b.

Proof. For each i, fix an enumeration
〈
Aji | j < ω

〉
of C (Ki). Fix also an

enumeration p 7→ ((p)0, (p)1, (p)2) of the triples in ω, so that (p)i ≤ p for
each p and i < 3.
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Notice that if (a, b) ∈ En then for any m there is some (ā, b̄) ∈ Dn

satisfying conditions (1) and (2) above, simply by density of Dn. Moreover,
if a ⊆ c, then a and ā must be almost disjoint (by choice of c), and hence
a ∩ b̄ and ā ∩ b are both finite. This motivates the following definition.

Given m, we choose m+ large enough that for all n, p < m and s, t ⊆ m,
if there is some (a, b) ∈ En with

• a ∩m = s, b ∩m = t,

• F (a) ∩K(p)0 = A
(p)1
(p)0

, and F (b) ∩K(p)0 = A
(p)2
(p)0

,

then there is (ā, b̄) ∈ Dn with the same properties, which moreover satisfies
ā ∩ c ⊆ m+. Put m0 = 0 and mk+1 = m+

k for each k, and set

c0 =
⋃
k

c ∩ [m2k,m2k+1) c1 =
⋃
k

c ∩ [m2k+1,m2k+2)

Now suppose (a, b) ∈ En and a ⊆ c0, and let m > n be given. Choose p so
that (p)0 = m, and

F (a) ∩Km = A(p)1
m F (b) ∩Km = A(p)2

m

Find k so that p < m2k+1. Then there is (ā, b̄) ∈ Dn such that

ā ∩m2k+1 = a ∩m2k+1 b̄ ∩m2k+1 = b ∩m2k+1

and

F (ā) ∩Km = F (a) ∩Km F (b̄) ∩Km = F (b) ∩Km

and, moreover, ā∩c ⊆ m2k+2. But then ā∩c0 ⊆ m2k+1, and hence a∩b̄ = ā∩b
as required. �

Now define

Fn(b) =
⋃{

F (c0) ∩ F (b̄)
∣∣ (ā, b̄) ∈ Dn and c0 ∩ b̄ = ā ∩ b

}
Then Fn is Borel. We claim moreover that, if (c0, b) ∈ En, then Fn(b)∆F (b) ∈
K (X). To see this, first suppose (ā, b̄) ∈ Dn and

c0 ∩ b̄ = ā ∩ b

Then by M1-homogeneity of En (since σ(c0) 6= σ(ā)), it follows that

F (c0) ∩ F (b̄) = F (ā) ∩ F (b)

Hence Fn(b) ⊆ F (b). The claim above also implies that for any m there is
such a pair (ā, b̄) ∈ Dn with F (b) ∩Km = F (b̄) ∩Km; hence

Fn(b) = F (c0) ∩ F (b)

Since b ⊆ c0, we have F (b) \ F (c0) ∈ K (X), so Fn(b)∆F (b) ∈ K (X).
By Lemma 3.3 it follows that c0 ∈ I , and the same argument shows that
c1 ∈ I . Then c ∈ I , as required. �

Lemma 3.5. Assume TA+MAℵ1. If I is a dense P-ideal then ϕ is trivial.
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Proof. For each a ∈ I , we fix some continuous, compact-to-one map ea :
F (a)→ a which induces ϕ on a. We also define fa : ω → C (X) by

fa(n) = e−1
a ({n})

Define a partition [I ]2 = M0 ∪M1 by placing {a, b} ∈ M0 if and only
if there is some n ∈ a ∩ b such that fa(n) 6= fb(n). Then M0 is open when
a ∈ I is identified with fa ∈ ωC (X).

Claim 3.5. There is no uncountable, M0-homogeneous subset H of I .

Proof. Assume H is such a set, and that |H| = ℵ1. Since I is a P-ideal,
there is a set H̄ ⊆ I such that for every a ∈ H there is some b ∈ H̄
with a ⊆∗ b, and moreover H̄ is a chain of order-type ω1 with respect to
⊆∗. By (a weakening of) TA, there is an uncountable subset of H̄ which is
homogeneous for one of the two colors M0 and M1; hence, by passing to this
subset, we may assume H̄ is either M0 or M1 homogeneous.

Say H̄ is M1-homogeneous. Put ā =
⋃
H̄, and f̄ =

⋃
a∈H̄ fa. Then f̄ :

ā→ C (X), and for all a ∈ H we have a ⊆∗ ā and fā � (a∩ ā) =∗ fa � (a∩ ā).
Choose n so that for uncountably many a ∈ H, we have a \ n ⊆ ā, and
fā � a \ n = fa � a \ n. Then if a, b ∈ H are such, and fa � n = fb � n, we
have {a, b} ∈M1, a contradiction.

So H̄ is M0-homogeneous. Define a poset P as follows. Put p ∈ P if and
only if p = (Ap,mp, Hp) where mp < ω, Ap ∈ C (Kmp), and Hp ∈ [H̄]<ω,
and for all distinct a, b ∈ Hp, there is an n ∈ a ∩ b such that

¬(fa(n) ∩Ap = ∅ ⇐⇒ fb(n) ∩Ap = ∅)

That is, one of fa(n), fb(n) is disjoint from Ap, and the other isn’t. Put
p ≤ q if and only if mp ≥ mq, Ap ∩Kmq = Aq, and Hp ⊇ Hq.

First we must show that P is ccc. Suppose X is an uncountable subset
of P. We may assume without loss of generality that for some fixed m and
A ∈ C (Km), and for all p ∈ X , mp = m and Ap = A, and moreover that Hp

is the same size for all p ∈ X . Let ap be the minimal element of Hp under
⊆∗, for each p ∈ X . Find np so that for all a ∈ Hp,

fap � (ap \ np) ⊆ fa e′′apKm ⊆ np

We may assume that for some fixed n, we have np = n for all p ∈ X .
Find p, q ∈ X with fap � n = faq � n. Since {ap, aq} ∈ M0, there is some
k ∈ ap ∩ aq such that fap(k) 6= faq(k). Then k ≥ n, and so fap(k) ∩Km =
faq(k)∩Km = ∅. At least one of fap(k) \ faq(k) and faq(k) \ fap(k) must be
nonempty; whichever one it is, call it B. Put Ar = A∪B and Hr = Hp∪Hq,
and choose mr large enough that Ar ⊆ Kmr . Then r = (Ar,mr, Hr) ∈ P,
and r ≤ p, q.

By MAℵ1 , there is a set A ∈ C (X) and an uncountable H∗ ⊆ H̄ such
that for all distinct a, b ∈ H∗,

∃n ∈ a ∩ b ¬(fa(n) ∩A = ∅ ⇐⇒ fb(n) ∩A = ∅)
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Fix x ⊆ ω such that F (x) = A. Then for all a ∈ H∗, e−1
a (x∩ a)∆(A∩F (a))

is compact; hence there are ka and ma such that

e−1
a (x ∩ a \ ka) = (A ∩ F (a)) \Kma and e−1

a (a \ ka) = F (a) \Kma

Then, for all n ∈ a \ ka, n ∈ x implies fa(n) ⊆ A, and n 6∈ x implies
fa(n) ∩A = ∅. Fix distinct a, b ∈ H∗ with ka = kb = k, and fa � k = fb � k.
Then,

∀n ∈ a ∩ b (fa(n) ∩A = ∅ ⇐⇒ fb(n) ∩A = ∅)
This contradicts the choice of A. �

Now by TA, there is a cover of I by countably many sets In, each of
which is M1-homogeneous. Since I is a P-ideal, at least one of the In’s
must be cofinal in I with respect to ⊆∗. Choose such an In, and let
f =

⋃
{fa | a ∈ In}. Then f is a function from some subset of ω to C (X).

Setting e(x) = n if and only if x ∈ f(n), we get a function e : X → ω, and
since I is dense and In cofinal in I , a 7→ e−1(a) is a lift for ϕ. �

4. Coherent families of continuous functions

Theorem 3. Assume TA + MAℵ1. Let X and Y be zero-dimensional,
locally compact Polish spaces, and let ϕ : C (Y )/K (Y ) → C (X)/K (X) be
an isomorphism. Then there are compact-open K ⊆ X and L ⊆ Y , and a
homeomorphism e : X \K → Y \L, such that the map A 7→ e−1(A) is a lift
of ϕ.

By Stone duality, a homeomorphism ϕ : X∗ → Y ∗ induces an isomor-
phism ϕ̂ : C (Y )/K (Y ) → C (X)/K (X), and any map e as in the conclu-
sion to Theorem 3 will in this case be a witness to the triviality of ϕ. Hence
Theorem 3 implies Theorem 1.

Corollary 4.1. Suppose ϕ : C (Y )/K (Y ) → C (X)/K (X) is an isomor-
phism, with a lift F : C (Y )→ C (X) which is Borel measurable. Then ϕ is
trivial.

Proof of Corollary 4.1. The assertion that ϕ is trivial is

∃e ∈ C(X,Y ) ∀U ∈ C (Y ) F (U)∆e−1(U) ∈ K (X)

which is visibly Σ1
2, and hence absolute between the ground model and any

forcing extension. Since there is a forcing extension satisfying TA+MAℵ1
([8]), the result is proven. �

Before the proof of Theorem 3 we set down some more notation. Fix
X,Y and ϕ as in the statement of the theorem. Let Ln be an increasing
sequence of compact subsets of Y , with union Y , and let Yn+1 = Ln+1 \ Ln
and Y0 = L0. Let B be a countable base for Y consisting of compact-open
sets, such that

• for all U ∈ B, the set of V ∈ B with V ⊇ U is finite and linearly
ordered by ⊆, and



12 ILIJAS FARAH AND PAUL MCKENNEY

• for all U ∈ B and all n < ω, either U ⊆ Yn or U ∩ Yn = ∅.
It follows that for all U, V ∈ B, either U ∩ V = ∅, U ⊆ V , or V ⊆ U . Let P
be the poset of all partitions of Y into elements of B, ordered by refinement;

P ≺ Q ⇐⇒ ∀U ∈ P ∃V ∈ Q U ⊆ V

We also use ≺∗ to denote eventual refinement ;

P ≺∗ Q ⇐⇒ ∀∞U ∈ P ∃V ∈ Q U ⊆ V

When P ≺∗ Q we let Γ(P,Q) be the least n such that every U ∈ P disjoint
from Ln is contained in some element of Q.

For a given P ∈ P, let sP : Y → P be the unique function satisfying
x ∈ sP (x) for all x ∈ Y ; similarly, when P,Q ∈ P and P ≺ Q we let
sPQ : P → Q be the unique function satisfying U ⊆ sPQ(U) for all U ∈ P .
These maps induce embeddings σP : P(P )/ fin → C (Y )/K (Y ) and σPQ :
P(Q)/fin→P(P )/ fin in the usual way.

Proof of Theorem 3. For each P ∈ P, let ϕP = ϕ◦σP . Then ϕP is an embed-
ding of P(P )/ fin into C (X)/K (X). By Theorem 3, there is a continuous
map eP : X → P such that a 7→ e−1

P (a) lifts ϕP . Note that if P,Q ∈ P and
P ≺∗ Q, then the following diagram commutes;

P(P )/fin C (X)/K (X)

P(Q)/ fin

ϕP

ϕQ

σPQ

So by Lemma 3.1, the set {x ∈ X | sPQ(eP (x)) 6= eQ(x)} is compact.
Now let [P]2 = M0 ∪M1 be the partition defined by

{P,Q} ∈M0 ⇐⇒ ∃x ∈ X sP,P∨Q(eP (x)) 6= sQ,P∨Q(eQ(x))

Here P ∨Q is the finest partition coarser than both P and Q. If we define
fP : B → C (X) by

fP (U) = {x ∈ X | eP (x) ⊆ U}

then we have

{P,Q} ∈M0 ⇐⇒ ∃U ∈ B fP (U) 6= fQ(U)

and it follows that M0 is open in the topology on P obtained by identifying
P with fP .

Claim 4.1. There is no uncountable, M0-homogeneous subset of P.

Proof. Suppose H is such, and has size ℵ1. Using MAℵ1 with a simple
modification of Hechler forcing, we see that there is some P̄ ∈ P such that
P �∗ P̄ for all P ∈ H. By thinning out H and refining a finite subset of P̄ ,
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we may assume that P � P̄ for all P ∈ H, and moreover that there is an n̄
such that for all P ∈ H,{

x ∈ X
∣∣ sP̄ ,P (eP̄ (x)) 6= eP (x)

}
⊆ Kn̄

Now fix P,Q ∈ H such that eP � Kn̄ = eQ � Kn̄. Then sP,P∨Q ◦ eP =
sQ,P∨Q ◦ eQ, contradicting the fact that {P,Q} ∈M0. �

By TA, there is a countable cover of P by M1-homogeneous sets; since P
is countably directed under �∗, it follows that one of them, say Q, is cofinal
in P. It follows moreover that for some n, we have

∀P ∈ P ∃Q ∈ Q Γ(Q,P ) ≤ n
That is, Q is cofinal in P under �n defined by

P ≺n Q ⇐⇒ ∀U ∈ P (U ∩ Ln = ∅ =⇒ ∃V ∈ Q U ⊆ V )

Claim 4.2. There is a compact set K ⊆ X and a unique continuous map
e : X \K → Y satisfying

∀x ∈ X \K e(x) ∈
⋂
P∈Q

eP (x)

Proof. Fix x ∈ X. If P,Q ∈ Q, then by M1-homogeneity of Q we have

sP,P∨Q(eP (x)) = sQ,P∨Q(eQ(x))

Then, the unique member of P∨Q containing eP (x) is the same as the unique
member of P ∨Q containing eQ(x). It follows that eP (x) ∩ eQ(x) 6= ∅, and
so either eP (x) ⊆ eQ(x) or vice-versa. Then the collection {eP (x) | P ∈ Q}
is a chain, and hence by compactness has nonempty intersection.

Now let

K = {x ∈ X | ∀P ∈ Q eP (x) ⊆ Ln} ⊆
⋂
P∈Q

e−1
P (P ∩ C (Ln))

Then K is contained in a compact set. If x ∈ X \K and P ∈ Q, then eP (x)
is disjoint from Ln. Then for any x ∈ X \K and ε > 0, there is some P ∈ Q
such that eP (x) has diameter less than ε (since Q is cofinal in P under �n).
Thus e, as defined above, is unique.

To see that e is continuous, note that for any open U ⊆ X,

x ∈ e−1(U) ⇐⇒ ∃P ∈ Q eP (x) ⊆ U
�

Claim 4.3. The map U 7→ e−1(U) lifts ϕ.

Proof. Fix P ∈ Q, and let U ∈ P . Then clearly, for all x ∈ X\K, eP (x) = U
if and only if e(x) ∈ U . Since there are only finitely many U ∈ P such that
one of e−1

P ({U}) or e−1(U) meets K, it follows that

∀∞U ∈ P e−1
P ({U}) = e−1(U)

Then U 7→ e−1(U) lifts ϕP .
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Now fix A ∈ C (Y ). Then there is some P ∈ P such that A can be written
as a union of a subset of P . Find Q ∈ Q with Q ≺∗ P ; then, up to a compact
set, A can be written as a union of some subset a of Q. Hence,

ϕ[A] = ϕQ[a] = [e−1(A)]

�

�
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