HOMEOMORPHISMS OF ČECH-STONE REMAINDERS: THE ZERO-DIMENSIONAL CASE

ILIJAS FARAH AND PAUL MCKENNEY

Abstract

We prove the result announced in [2, Theorem 4.10.1]: TA and $M A_{\aleph_{1}}$ together imply that given any two locally compact, zerodimensional Polish spaces, any homemomorphism between their ČechStone remainders is trivial. It follows that two such spaces have homeomorphic remainders if and only if they have cocompact subspaces which are homeomorphic.

1. Introduction

The Čech-Stone remainder $\beta X \backslash X$ of a topological space X is denoted X^{*}. A continuous map $\varphi: X^{*} \rightarrow Y^{*}$ is called trivial if there is a continuous $e: X \rightarrow Y$ such that $\varphi=e^{*}$, where $e^{*}=\beta e \backslash e$ and βe is the unique continuous exension of e to βX. It follows that two remainders X^{*} and Y^{*} are homeomorphic via a trivial map if and only if there are cocompact subspaces of X and Y which are themselves homeomorphic. In this paper we prove the following, originally announced in [2, Theorem 4.10.1];
Theorem 1. Assume $T A+M A_{\aleph_{1}}$. Let X and Y be locally compact, noncompact and zero-dimensional Polish spaces. Then every every homeomorphism between X^{*} and Y^{*} is trivial.

Here TA abbreviates Todorčević's Axiom (also widely known as the Open Coloring Axiom, see [8]). $M A_{\aleph_{1}}$ is the usual Martin's Axiom for \aleph_{1}-many dense sets. Both are consequences of the Proper Forcing Axiom (PFA); hence the above result proves a special case of the more general conjecture that PFA implies all homeomorphisms between Čech-Stone remainders of locally compact, noncompact Polish spaces are trivial. In comparison, under the Continuum Hypothesis, all Čech-Stone remainders of locally compact, noncompact, zero-dimensional Polish spaces are homeomorphic (a consequence of Parovičenko's theorem). $T A+M A_{\aleph_{1}}$ thus implies a certain rigidity for such remainders, whereas CH implies the opposite.

Theorem 1 follows a long line of results going back to the late 70 's when Shelah proved that, consistently, all autohomeomorphisms of ω^{*} are trivial ([5]). Shelah and Steprans later showed that the same conclusion holds under PFA ([6]) and Veličković improved their result by reducing the assumption to $T A+M A_{\aleph_{1}}$. The first author ([2]) extended this by proving Theorem 1 in

[^0]the case where both X and Y are countable. All of these results rely heavily on the zero-dimensionality of the spaces X and Y; indeed, all results in this direction in fact deal with isomorphisms between Boolean algebras of the form $\mathscr{C}(X) / \mathscr{K}(X)$, where $\mathscr{C}(X)$ is the algebra of clopen subsets of X, and $\mathscr{K}(X)$ its ideal of compact-open sets. Stone duality provides the connection to X^{*} in the case where X is zero-dimensional (see e.g. [1]). Our proof does not differ in this regard.

In section 2 we introduce some of the language required to prove Theorem 1. Section 3 treats embeddings of $\mathscr{P}(\omega) /$ fin into $\mathscr{C}(X) / \mathscr{K}(X)$; we prove in ZFC that such maps are trivial whenever they are "definable" in a certain sense, and then we prove under $T A+M A_{\aleph_{1}}$ that every such map is trivial. Section 4 completes the proof of Theorem 1 through an analysis of coherent families of continuous functions.

2. Notation

Fix a zero-dimensional, locally compact and noncompact Polish space X. We denote by $\mathscr{C}(X)$ the Boolean algebra of clopen subsets of X, and by $\mathscr{K}(X)$ its ideal of compact-open subsets of X. Let $\left\langle K_{n} \mid n<\omega\right\rangle$ be an increasing sequence of compact-open sets in X, such that $X=\bigcup K_{n}$. Then $\mathscr{K}(X)$ is generated by the sequence $\left\langle K_{n} \mid n<\omega\right\rangle$, ie,

$$
K \in \mathscr{K}(X) \Longleftrightarrow \exists n K \subseteq K_{n}
$$

It is easy to see that $\mathscr{C}(X)$ has size continuum, whereas $\mathscr{K}(X)$ is countable. Let $X_{0}=K_{0}$ and $X_{n+1}=K_{n+1} \backslash K_{n}$. When $A, B \in \mathscr{C}(X)$ are distinct, we write $\delta(A, B)$ for the least n such that $A \cap X_{n} \neq B \cap X_{n}$. If

$$
d(A, B)= \begin{cases}2^{-\delta(A, B)} & A \neq B \\ 0 & A=B\end{cases}
$$

then d is a Polish metric on $\mathscr{C}(X)$. In this topology, $\mathscr{K}(X)$ is an F_{σ} subset of $\mathscr{C}(X)$. We will often identify $\mathscr{C}(X)$ with $\prod_{n} \mathscr{C}\left(X_{n}\right)$, and $\mathscr{P}(\omega)$ with ${ }^{\omega} 2$. Under these identifications, $\mathscr{K}(X)$ maps to $\bigoplus_{n} \mathscr{C}\left(X_{n}\right)$ (the set of functions in $\prod_{n} \mathscr{C}\left(X_{n}\right)$ which are nonempty on only finitely many coordinates) and fin to ${ }^{<\omega} 2$. If Y and Z are zero-dimensional, locally compact Polish spaces, $\varphi: \mathscr{C}(Y) / \mathscr{K}(Y) \rightarrow \mathscr{C}(Z) / \mathscr{K}(Z)$ is a homomorphism, and $U \in \mathscr{C}(Y)$, then we write $\varphi \upharpoonright U$ for the restriction $\varphi \upharpoonright \mathscr{C}(U) / \mathscr{K}(U)$.

Finally, we state Todorčević's Axiom. Let E be a separable metric space and let $[E]^{2}=M_{0} \cup M_{1}$ be a partition of the unordered pairs on E, such that M_{0} is open when identified with a symmetric subset of $E \times E$ minus the diagonal. Then one of the following holds.
(1) There is an uncountable set $H \subseteq E$ such that $[H]^{2} \subseteq M_{0}$.
(2) There are sets $H_{n} \subseteq E$, for $n<\omega$, such that $E=\bigcup H_{n}$ and for each $n,\left[H_{n}\right]^{2} \subseteq M_{1}$.
3. Embeddings of $\mathscr{P}(\omega) /$ fin into $\mathscr{C}(X) / \mathscr{K}(X)$

Let $e: X \rightarrow \omega$ be a continuous map. If $e^{-1}(n)$ is compact for every n, then we say e is compact-to-one. If e is compact-to-one, then the map $a \mapsto$ $e^{-1}(a)$, from $\mathscr{P}(\omega)$ to $\mathscr{C}(X)$, induces a homomorphism $\varphi_{e}: \mathscr{P}(\omega) /$ fin \rightarrow $\mathscr{C}(X) / \mathscr{K}(X)$. Moreover, φ_{e} is injective if and only if e is finite on compact sets. We call a homomorphism $\varphi: \mathscr{P}(\omega) /$ in $\rightarrow \mathscr{C}(X) / \mathscr{K}(X)$ trivial if it is of the form φ_{e} for some compact-to-one, continuous e.

Lemma 3.1. Suppose $Y \in \mathscr{C}(X)$ and $e, f: Y \rightarrow \omega$ are continuous, compact-to-one maps, such that $e^{-1}(a) \Delta f^{-1}(a)$ is compact for every $a \subseteq \omega$. Then $\{x \in Y \mid e(x) \neq f(x)\}$ is compact.
Proof. Suppose not; then for some infinite set $I \subseteq \omega$ and all $n \in I$, there is a point $x_{n} \in Y \cap X_{n}$ such that $e\left(x_{n}\right) \neq f\left(x_{n}\right)$. Since e and f are compact-to-one, we may assume also that $m \neq n$ implies $e\left(x_{m}\right) \neq e\left(x_{n}\right)$ and $f\left(x_{m}\right) \neq$ $f\left(x_{n}\right)$. Now define a coloring $F:[I]^{2} \rightarrow 3$ by

$$
F(\{m<n\})= \begin{cases}0 & e\left(x_{m}\right) \neq f\left(x_{n}\right) \wedge f\left(x_{m}\right) \neq e\left(x_{n}\right) \\ 1 & e\left(x_{m}\right)=f\left(x_{n}\right) \wedge f\left(x_{m}\right) \neq e\left(x_{n}\right) \\ 2 & e\left(x_{m}\right) \neq f\left(x_{n}\right) \wedge f\left(x_{m}\right)=e\left(x_{n}\right)\end{cases}
$$

By Ramsey's theorem, there is an infinite set $a \subseteq I$ which is homogeneous for this coloring. Suppose first that a is 1-homogeneous, and let $m<n<k$ be members of a. Then

$$
e\left(x_{m}\right)=f\left(x_{n}\right) \quad \text { and } \quad e\left(x_{m}\right)=f\left(x_{k}\right) \quad \text { and } \quad e\left(x_{n}\right)=f\left(x_{k}\right)
$$

which implies $e\left(x_{n}\right)=f\left(x_{n}\right)$, a contradiction. Similarly, a cannot be 2homogeneous.

Now suppose a is 0-homogeneous. Let $a=a_{0} \cup a_{1}$ be a partition of a into two infinite sets, and put $Z_{i}=\left\{x_{n} \mid n \in a_{i}\right\}$ and $Z=\left\{x_{n} \mid n \in a\right\}=Z_{0} \cup Z_{1}$. From the homogeneity of a, it follows that $e^{\prime \prime} Z \cap f^{\prime \prime} Z=\emptyset$, and hence (as e and f are injective on Z)

$$
Z \cap e^{-1}\left(\left(e^{\prime \prime} Z_{0}\right) \cup\left(f^{\prime \prime} Z_{1}\right)\right)=Z_{0} \quad \text { and } \quad Z \cap f^{-1}\left(\left(e^{\prime \prime} Z_{0}\right) \cup\left(f^{\prime \prime} Z_{1}\right)\right)=Z_{1}
$$

So, if $b=e^{\prime \prime} Z_{0} \cup f^{\prime \prime} Z_{1}$, we have $Z \subseteq e^{-1}(b) \Delta f^{-1}(b)$. But Z is not compact, so this is a contradiction.

3.1. Definable embeddings.

Lemma 3.2. Suppose $\varphi: \mathscr{P}(\omega) /$ fin $\rightarrow \mathscr{C}(X) / \mathscr{K}(X)$ is an embedding with a continuous lift $F: G \rightarrow \mathscr{C}(X)$ on some comeager set $G \subseteq \mathscr{P}(\omega)$. Then φ is trivial.
Proof. First we work with the case $G=\mathscr{P}(\omega)$. For $s \in{ }^{<\omega} 2$ and $S \in$ $\bigoplus \mathscr{C}\left(X_{n}\right)$ let

$$
N_{s}=\left\{a \in 2^{\omega} \mid s \subseteq a\right\} \quad \text { and } \quad N_{S}=\left\{A \in \prod \mathscr{C}\left(X_{n}\right) \mid A \text { extends } S\right\}
$$

So N_{s} and N_{S} are basic clopen sets for ${ }^{\omega} 2$ and $\mathscr{C}(X)$ respectively. If $F^{\prime \prime} N_{s} \subseteq$ N_{S} we say that s forces S.

First we build, by induction on i, an increasing sequence n_{i} of integers, and a sequence of functions $t_{i}:\left[n_{i}, n_{i+1}\right) \rightarrow 2$, such that
(1) for all i, if $s \in{ }^{n_{i}} 2$, then $s \cup t_{i}$ forces some S of length n_{i},
(2) for all $i, s, s^{\prime} \in{ }^{n_{i}} 2, k>n_{i+1}$, and $u:\left[n_{i+1}, k\right) \rightarrow 2$, if $s \cup t_{i} \cup u$ and $s^{\prime} \cup t_{i} \cup u$ force S and S^{\prime} respectively, then $S \Delta S^{\prime} \subseteq K_{n_{i+1}}$.
Assume n_{i} and t_{i-1} are defined. First, let $s_{j}, j<2^{n_{i}}$ enumerate ${ }^{n_{i}} 2$, and construct functions t_{i}^{j} for $j \leq 2^{n_{i}}$, such that t_{i}^{j} has domain $\left[n_{i}, k\right)$ for some $k, t_{i}^{j} \subseteq t_{i}^{j+1}$ for all j, and $s_{j} \cup t_{i}^{j}$ forces some S of length n_{i} (this last is possible by continuity of F). Now any t which extends $t_{i}^{2_{i}}$ and has domain disjoint from n_{i} will satisfy (1) in place of t_{i}.

As for condition (2), we first claim that for any $s, s^{\prime} \in{ }^{n_{i}} 2$ and any u : $\left[n_{i}, n\right) \rightarrow 2$, where $n>n_{i}$, there is some $v:\left[n_{i}, k\right) \rightarrow 2$ extending u, such that whenever $s \cup v \cup w$ and $s^{\prime} \cup v \cup w^{\prime}$ force S and S^{\prime} respectively, then $S \Delta S^{\prime} \subseteq K_{n}$. Assume otherwise. Then we can construct increasing sequences $u_{j}:\left[n_{i}, j\right) \rightarrow 2, S_{j}, S_{j}^{\prime} \in \mathscr{K}(X)$, and $\ell_{j}<\omega$, such that $s \cup u_{j}$ and $s^{\prime} \cup u_{j}$ force S_{j} and S_{j}^{\prime} respectively, but $S_{j} \cap X_{\ell_{j}} \neq S_{j}^{\prime} \cap X_{\ell_{j}}$. Put $x=s \cup \bigcup_{j} u_{j}$ and $x^{\prime}=s^{\prime} \cup \bigcup_{j} u_{j}$. Then $x={ }^{*} x^{\prime}$ but $F(x) \cap X_{\ell_{j}} \neq F\left(x^{\prime}\right) \cap X_{\ell_{j}}$ for all j. Now to ensure condition (2), we apply the claim for each pair $s, s^{\prime} \in 2^{n_{i}}$ in some order, starting with $u=t_{i}^{2_{i}}$ from above and repeatedly extending u via the v as in the claim. We end with a function $t_{i}:\left[n_{i}, n_{i+1}\right) \rightarrow 2$ as required.

Put $a^{\epsilon}=\bigcup\left\{\left[n_{i}, n_{i+1}\right) \mid i \equiv \epsilon(\bmod 3)\right\}$ and $x^{\epsilon}=\bigcup\left\{t_{i} \mid i \equiv \epsilon(\bmod 3)\right\}$, for $\epsilon=0,1,2$. For every $x \subseteq a^{0}$, let

$$
F^{0}(x)=F\left(x \cup x^{1} \cup x^{2}\right) \backslash F\left(x^{1} \cup x^{2}\right)
$$

Then $F^{0}(x) \Delta F(x)$ is compact, for every $x \subseteq a^{0}$. Moreover, by the properties of the sequence t_{i}, there are functions $h_{i}^{0}: \mathscr{P}\left(\left[n_{3 i}, n_{3 i+1}\right)\right) \rightarrow \mathscr{C}\left(K_{n_{3 i+2}} \backslash\right.$ $K_{n_{3 i-1}}$) such that for all $x \subseteq a^{0}$,

$$
F^{0}(x)=\bigcup_{i} h_{i}^{0}\left(x \cap\left[n_{3 i}, n_{3 i+1}\right)\right)
$$

Now we claim that for almost all i, h_{i}^{0} is a (Boolean algebra) homomorphism. To see this, suppose for instance that for infinitely many i, there are $u_{i}, v_{i} \subseteq$ [$n_{3 i}, n_{3 i+1}$) such that $h_{i}^{0}\left(u_{i} \cup v_{i}\right) \neq h_{i}^{0}\left(u_{i}\right) \cup h_{i}^{0}\left(v_{i}\right)$. Put $u=\bigcup u_{i}$ and $v=\bigcup v_{i}$; then $F^{0}(u \cup v) \Delta\left(F^{0}(u) \cup F^{0}(v)\right)$ has nonempty intersection with infinitely many X_{n}, and hence is not compact, contradicting the fact that φ is a homomorphism. Let $A_{i}^{0}=h_{i}^{0}\left(\left[n_{3 i}, n_{3 i+1}\right)\right)$; then there is a continuous map $e_{i}^{0}: A_{i}^{0} \rightarrow\left[n_{3 i}, n_{3 i+1}\right)$ such that $h_{i}^{0}(x)=\left(e_{i}^{0}\right)^{-1}(x)$ for all x in the domain of h_{i}^{0}. Notice that the sets A_{i}^{0} are pairwise disjoint; so if $A^{0}=\bigcup_{i} A_{i}^{0}$ and $e^{0}=\bigcup_{i} e_{i}^{0}$, then $e^{0}: A^{0} \rightarrow a^{0}$, and

$$
\forall x \in \mathscr{P}\left(a_{0}\right) \quad F^{0}(x)=\left(e^{0}\right)^{-1}(x)
$$

Similarly, we may define $F^{\epsilon}, A^{\epsilon}$, and e^{ϵ} for $\epsilon=1,2$. Notice that since $A^{\epsilon} \Delta F\left(a^{\epsilon}\right)$ is compact, and the sets a^{ϵ} form a partition of ω, it follows that $A^{\delta} \cap A^{\epsilon}$ is compact for $\delta \neq \epsilon$, and $A^{0} \cup A^{1} \cup A^{2}$ is cocompact. Hence by
putting the functions e^{ϵ} together on a cocompact set, we obtain a function $e: X \rightarrow \omega$ such that for all $x \subseteq \omega, F(x) \Delta e^{-1}(x)$ is compact.

This completes the proof when $G=\mathscr{P}(\omega)$. For the general case, recall (by a Theorem of Talagrand and Jalali-Naini, see [7, 3]) that there are a partition $\omega=a_{0} \cup a_{1}$, and sets $s_{i} \subseteq a_{i}$, such that for all $x \subseteq a_{i}, x \cup s_{1-i} \in G$. Hence the function $F_{i}(x)=F\left(x \cup s_{1-i}\right) \backslash F\left(s_{1-i}\right)$ induces φ on $\mathscr{P}\left(a_{i}\right)$. By the special case, then, we get functions $e_{0}: Y_{0} \rightarrow a_{0}$ and $e_{1}: Y_{1} \rightarrow a_{1}$ (where $Y_{i}=F\left(a_{i}\right)$) inducing φ on a_{0} and a_{1} respectively. Then $Y_{0} \cap Y_{1}$ and $\left(Y_{0} \cup Y_{1}\right) \Delta X$ are compact, and hence we may put together e_{0} and e_{1} on a cocompact set to get a function $e: X \rightarrow \omega$ satisfying our requirements.
Lemma 3.3. Let $\varphi: \mathscr{P}(\omega) /$ fin $\rightarrow \mathscr{C}(X) / \mathscr{K}(X)$ be an embedding with a lift $F: \mathscr{P}(\omega) \rightarrow \mathscr{C}(X)$. Suppose that there are Borel functions $F_{n}: \mathscr{P}(\omega) \rightarrow$ $\mathscr{C}(X)$, for $n<\omega$, such that for all $a \subseteq \omega$ there is n with $F(a) \Delta F_{n}(a) \in$ $\mathscr{K}(X)$. Then φ is trivial.
Proof. Define

$$
\mathscr{I}=\{a \subseteq \omega|\varphi| a \text { is trivial }\}
$$

Then \mathscr{I} is an ideal containing the ideal of finite sets. For each $a \in \mathscr{I}$, we fix a continuous, compact-to-one map $e_{a}: F(a) \rightarrow a$ which induces $\varphi \upharpoonright a$. We also define, for such a, the function $f_{a}: a \rightarrow \mathscr{C}(F(a))$ given by

$$
f_{a}(n)=e_{a}^{-1}(\{n\})
$$

Clearly, e_{a} is uniquely determined by f_{a}.
Claim 3.1. \mathscr{I} is not a maximal nonprincipal ideal.
Proof. Assume otherwise. Fix a dense G_{δ} subset W of $\mathscr{P}(\omega)$, such that each F_{n} is continuous on W. As usual, we may find a partition $\omega=a_{0} \cup a_{1}$ into infinite sets, along with sets $t_{0} \subseteq a_{0}$ and $t_{1} \subseteq a_{1}$, such that for all $x \subseteq a_{i}$, $x \cup t_{1-i} \in W$. By the assumption, one of a_{0} or a_{1} is not in \mathscr{I}; without loss of generality, say it's a_{0}. Now, the function

$$
G_{n}(x)=F_{n}\left(x \cup t_{1}\right) \cap F_{n}\left(a_{0}\right)
$$

is continuous on $\mathscr{P}\left(a_{0}\right)$, and moreover for every $x \subseteq a_{0}$ there is some n such that $G_{n}(x) \Delta F(x)$ is compact. Let $\mathscr{J}=\mathscr{I} \cap \mathscr{P}\left(a_{0}\right)$. Fix $a \in \mathscr{J}$ and for each $n, m<\omega$ let

$$
D_{n, m}^{a}=\left\{x \subseteq a \mid e_{a}^{-1}(x) \backslash K_{m}=G_{n}(x) \backslash K_{m}\right\}
$$

Then each $D_{n, m}^{a}$ is closed, and $\mathscr{P}(a)=\bigcup_{n, m} D_{n, m}^{a}$. By the Baire category theorem, it follows that there are some $n, m<\omega$ and a nonempty clopen subset U of $\mathscr{P}(a)$ such that $U \subseteq D_{n, m}^{a}$. Let $H_{n}, n<\omega$ enumerate all functions from $\mathscr{P}\left(a_{0}\right)$ to $\mathscr{C}(X)$ of the form

$$
x \mapsto\left(G_{\ell}((x \backslash j) \cup t) \backslash K_{m}\right) \cup s^{\prime \prime}(x \cap k)
$$

where $j, k, \ell, m<\omega, t \subseteq j$, and $s: k \rightarrow \mathscr{C}\left(K_{m}\right)$. Then it follows that each H_{n} is continuous, and for every $a \in \mathscr{J}$ there is some n such that

$$
\forall x \subseteq a \quad H_{n}(x)=e_{a}^{-1}(x)
$$

Let \mathscr{J}_{n} be the ideal of all $a \in \mathscr{J}$ for which the above holds. Then for any $a, b \in \mathscr{J}_{n}$, we have $f_{a} \upharpoonright a \cap b=f_{b} \upharpoonright a \cap b$, and so the function

$$
f_{n}=\bigcup_{a \in \mathscr{J}_{n}} f_{a}
$$

induces φ on every $a \in \mathscr{J}_{n}$. If \mathscr{J}_{n} is cofinal in \mathscr{J} with respect to \subseteq^{*}, then it follows that f_{n} induces φ on a_{0}, contradicting $a_{0} \notin \mathscr{I}$.

If no \mathscr{J}_{n} is cofinal in \mathscr{J}, then \mathscr{J} can't be countably directed, and it follows that there is a partition $a_{0}=\bigcup_{n} b_{n}$ such that $b_{n} \in \mathscr{J}$ for all n, but there is no $b \in \mathscr{J}$ such that $b_{n} \subseteq^{*} b$ for all n. Let \mathscr{U} be the set of all $b \subseteq a_{0}$ such that $b \cap b_{n}={ }^{*} \emptyset$ for all n; then \mathscr{U} is a countably-directed subideal of \mathscr{J}. If $\mathscr{U}_{n}=\mathscr{J}_{n} \cap \mathscr{U}$, then there is some n for which \mathscr{U}_{n} is cofinal in \mathscr{U}. As above, we let

$$
f=\bigcup_{a \in \mathscr{U}_{n}} f_{a}
$$

and

$$
e(x)=k \Longleftrightarrow x \in f(k)
$$

and it follows that e induces φ on every $a \in \mathscr{U}$. Now consider the set

$$
T=\left\{m<\omega \mid e \upharpoonright F\left(b_{m}\right) \text { does not induce } \varphi \upharpoonright b_{m}\right\}
$$

Suppose T is infinite. Then for each $m \in T$ we may choose some infinite $c_{m} \subseteq b_{m}$ such that $e^{-1}\left(c_{m}\right) \cap F\left(c_{m}\right)$ is compact; moreover, by shrinking c_{m} we may ensure that $e^{-1}\left(c_{m}\right) \cap F\left(c_{k}\right)$ is compact for every $m, k \in T$. We can then find some D such that $F\left(c_{m}\right) \backslash D$ and $e^{-1}\left(c_{m}\right) \cap D$ are compact for all m. Choose some c such that $F(c) \Delta D$ is compact. Then $c_{m} \subseteq^{*} c$ for every m, since $F\left(c_{m}\right) \backslash D$ is compact for all m. So we may choose some $i_{m} \in c_{m} \cap c$ such that $e\left(i_{m}\right) \notin D$. Then the set

$$
b=\left\{i_{m} \mid m \in T\right\}
$$

is in \mathscr{U}. Hence $e^{-1}(b) \Delta F(b)$ is compact, and since $b \subseteq c, e^{-1}(b) \backslash F(c)$ must be compact as well. But $e^{-1}(b) \cap D=\emptyset$, a contradiction.

Suppose now that T is finite. Then e induces φ on every a in the ideal generated by \mathscr{U} and $\left\{b_{m} \mid m \notin T\right\}$. This ideal is dense in the powerset of $\bigcup_{m \notin T} b_{m}$ and it follows that e induces φ on this set. But this means $a_{0} \in \mathscr{I}$, another contradiction.

Now by induction we build subsets a_{n} and x_{n} of ω, for $n<\omega$, such that
(1) $a_{n} \cap a_{m}=\emptyset$ for $n \neq m$,
(2) $x_{n} \subseteq a_{n}$,
(3) φ is nontrivial on $\omega \backslash \bigcup_{i<n} a_{i}$,
(4) for every $x \subseteq \omega \backslash \bigcup_{i<n} a_{i}$,

$$
\left(F_{n}\left(\bigcup_{i<n} x_{i} \cup x\right) \cap F\left(a_{n}\right)\right) \Delta F\left(x_{n}\right) \notin \mathscr{K}(X)
$$

The existence of such a sequence clearly contradicts our assumption, since if $x=\bigcup_{i} x_{i}$, then it follows that for every $n,\left(F_{n}(x) \cap F\left(a_{n}\right)\right) \Delta F\left(x_{n}\right)$ is not compact.

Suppose a_{i} and x_{i}, for $i<n$, have been constructed so as to satisfy the conditions above. Let $c_{n}=\omega \backslash \bigcup_{i<n} a_{i}$, and $z_{n}=\bigcup_{i<n} x_{i}$. Since φ is nontrivial on c_{n}, by Claim 3.1 it follows that there are infinite sets d_{n} and \bar{d}_{n} which partition c_{n} and on both of which φ is nontrivial. For each $y \subseteq d_{n}$, put

$$
H_{n}(y)=\left\{x \subseteq \bar{d}_{n} \mid\left(F_{n}\left(z_{n} \cup y \cup x\right) \cap F\left(d_{n}\right)\right) \Delta F(y) \in \mathscr{K}(X)\right\}
$$

Then $H_{n}(y)$ is a Borel set.
Claim 3.2. There is some $y \subseteq d_{n}$ such that $H_{n}(y)$ is not comeager.
Proof. Suppose otherwise. Then for all $(y, Y) \in \mathscr{P}\left(d_{n}\right) \times \mathscr{C}(X), \varphi[y]=[Y]$ if and only if the set

$$
\left\{x \subseteq \bar{d}_{n} \mid\left(F_{n}\left(z_{n} \cup y \cup x\right) \cap F\left(d_{n}\right)\right) \Delta Y \in \mathscr{K}(X)\right\}
$$

is comeager. Then $\operatorname{Gr}\left(\varphi \upharpoonright d_{n}\right)$ is analytic. By the Jankov-von Neumann theorem $([4])$, there is a uniformization of $\operatorname{Gr}\left(\varphi \upharpoonright d_{n}\right)$ which is C-measurable, and hence continuous on a comeager set. By Lemma 3.2, φ is trivial on d_{n}, a contradiction.

Fix $y \subseteq d_{n}$ so that $H_{n}(y)$ is not comeager. Since $H_{n}(y)$ is Borel, there is a basic clopen set N_{s} in $\mathscr{P}\left(\bar{d}_{n}\right)$ such that $H_{n}(y)$ is meager in N_{s}. Let $u \subseteq \bar{d}_{n}$ be the domain of s. Then there is a partition $\bar{d}_{n} \backslash u=\bar{d}_{n}^{0} \cup \bar{d}_{n}^{1}$ along with sets $t_{i} \subseteq \bar{d}_{n}^{i}$ such that for any $x \subseteq \bar{d}_{n}^{i}, s \cup x \cup t_{1-i}$ is not in $H_{n}(y)$. By Claim 3.1, φ must be nontrivial on one of \bar{d}_{n}^{0} or \bar{d}_{n}^{1}; say it's \bar{d}_{n}^{i}. Set

$$
a_{n}=d_{n} \cup u \cup \hat{d}_{n}^{1-i} \quad x_{n}=y \cup s \cup t_{i}
$$

This completes the induction, and hence the proof of the theorem.

3.2. Embeddings under $T A+M A_{\aleph_{1}}$.

Theorem 2. Assume $T A+M A_{\aleph_{1}}$, and suppose

$$
\varphi: \mathscr{P}(\omega) / \text { fin } \rightarrow \mathscr{C}(X) / \mathscr{K}(X)
$$

is an embedding. Then φ is trivial.
Towards the proof of Theorem 2, we fix an embedding $\varphi: \mathscr{P}(\omega) /$ fin \rightarrow $\mathscr{C}(X) / \mathscr{K}(X)$, and an arbitrary lift $F: \mathscr{P}(\omega) \rightarrow \mathscr{C}(X)$ of φ. Again we consider the ideal

$$
\mathscr{I}=\{a \subseteq \omega|\varphi| a \text { is trivial }\}
$$

A family $\mathscr{A} \subseteq \mathscr{P}(\omega)$ is called almost disjoint if for all distinct $a, b \in \mathscr{A}$, $a \cap b=* \emptyset$. Such a family \mathscr{A} is called treelike if there is some tree T on ω and a bijection $t: \omega \rightarrow{ }^{<\omega} \omega$ under which each $a \in \mathscr{A}$ corresponds to a branch through T, and vice-versa.
Lemma 3.4. Assume $T A$. Let \mathscr{A} be an uncountable, tree-like, almostdisjoint family of subsets of ω. Then $\mathscr{I} \backslash \mathscr{A}$ is countable.

Proof. Put

$$
E=\{(a, b) \mid \exists c \in \mathscr{A} b \subseteq a \subseteq c\}
$$

and for each $(a, b) \in E$, let $\sigma(a)$ be the unique element of \mathscr{A} such that $a \subseteq \sigma(a)$. Since \mathscr{A} is treelike, σ is a continuous map. Define a coloring $[E]^{2}=M_{0} \cup M_{1}$ by placing $\{(a, b),(\bar{a}, \bar{b})\}$ in M_{0} if and only if
(i) $\sigma(a) \neq \sigma(\bar{a})$,
(ii) $a \cap \bar{b}=\bar{a} \cap b$, and
(iii) $F(a) \cap F(\bar{b}) \neq F(\bar{a}) \cap F(b)$.

Then M_{0} is open in the topology on E obtained by identifying (a, b) with $(a, b, F(a), F(b))$.

Claim 3.3. There is no uncountable, M_{0}-homogeneous subset H of E.
Proof. Assume H is such. Put

$$
d=\bigcup_{(a, b) \in H} b
$$

Then for all $(a, b) \in H, d \cap a=b$, and hence $(F(d) \cap F(a)) \Delta F(b)$ is compact. Then we may find an n, and sets $A, B \in \mathscr{C}\left(K_{n}\right)$, so that for uncountably many $(a, b) \in H$ we have

- $(F(d) \cap F(a)) \Delta F(b) \subseteq K_{n}$,
- $F(a) \cap K_{n}=A$, and
- $F(b) \cap K_{n}=B$.

Then, for any such (a, b) and (\bar{a}, \bar{b}) in H,

$$
F(a) \cap F(\bar{b}) \cap K_{n}=A \cap B=F(\bar{a}) \cap F(b) \cap K_{n}
$$

and moreover,

$$
(F(a) \cap F(\bar{b})) \backslash K_{n}=(F(a) \cap F(d) \cap F(\bar{a})) \backslash K_{n}=(F(b) \cap F(\bar{a})) \backslash K_{n}
$$

Hence there is an uncountable M_{1}-homogeneous subset of H, a contradiction.

By TA, there is a sequence $E_{n}, n<\omega$, of M_{1}-homogeneous sets which cover E. Let D_{n} be a countable, dense subset of E_{n}, in the topology on E described above. Fix $c \in \mathscr{A}$ so that c is not equal to $\sigma(a)$ for any $(a, b) \in D_{n}$, for any n. We'll show that $\varphi \upharpoonright c$ is trivial.

Claim 3.4. There is a partition $c=c_{0} \cup c_{1}$, so that for all n and $(a, b) \in E_{n}$, if $a \subseteq c_{i}$ for some $i<2$ then for every m there is $(\bar{a}, \bar{b}) \in D_{n}$ with
(1) $a \cap m=\bar{a} \cap m$ and $b \cap m=\bar{b} \cap m$,
(2) $F(a) \cap K_{m}=F(\bar{a}) \cap K_{m}$ and $F(b) \cap K_{m}=F(\bar{b}) \cap K_{m}$, and
(3) $a \cap \bar{b}=\bar{a} \cap b$.

Proof. For each i, fix an enumeration $\left\langle A_{i}^{j} \mid j<\omega\right\rangle$ of $\mathscr{C}\left(K_{i}\right)$. Fix also an enumeration $p \mapsto\left((p)_{0},(p)_{1},(p)_{2}\right)$ of the triples in ω, so that $(p)_{i} \leq p$ for each p and $i<3$.

Notice that if $(a, b) \in E_{n}$ then for any m there is some $(\bar{a}, \bar{b}) \in D_{n}$ satisfying conditions (1) and (2) above, simply by density of D_{n}. Moreover, if $a \subseteq c$, then a and \bar{a} must be almost disjoint (by choice of c), and hence $a \cap \bar{b}$ and $\bar{a} \cap b$ are both finite. This motivates the following definition.

Given m, we choose m^{+}large enough that for all $n, p<m$ and $s, t \subseteq m$, if there is some $(a, b) \in E_{n}$ with

- $a \cap m=s, b \cap m=t$,
- $F(a) \cap K_{(p)_{0}}=A_{(p)_{0}}^{(p)_{1}}$, and $F(b) \cap K_{(p)_{0}}=A_{(p)_{0}}^{(p)_{2}}$,
then there is $(\bar{a}, \bar{b}) \in D_{n}$ with the same properties, which moreover satisfies $\bar{a} \cap c \subseteq m^{+}$. Put $m_{0}=0$ and $m_{k+1}=m_{k}^{+}$for each k, and set

$$
c_{0}=\bigcup_{k} c \cap\left[m_{2 k}, m_{2 k+1}\right) \quad c_{1}=\bigcup_{k} c \cap\left[m_{2 k+1}, m_{2 k+2}\right)
$$

Now suppose $(a, b) \in E_{n}$ and $a \subseteq c_{0}$, and let $m>n$ be given. Choose p so that $(p)_{0}=m$, and

$$
F(a) \cap K_{m}=A_{m}^{(p)_{1}} \quad F(b) \cap K_{m}=A_{m}^{(p)_{2}}
$$

Find k so that $p<m_{2 k+1}$. Then there is $(\bar{a}, \bar{b}) \in D_{n}$ such that

$$
\bar{a} \cap m_{2 k+1}=a \cap m_{2 k+1} \quad \bar{b} \cap m_{2 k+1}=b \cap m_{2 k+1}
$$

and

$$
F(\bar{a}) \cap K_{m}=F(a) \cap K_{m} \quad F(\bar{b}) \cap K_{m}=F(b) \cap K_{m}
$$

and, moreover, $\bar{a} \cap c \subseteq m_{2 k+2}$. But then $\bar{a} \cap c_{0} \subseteq m_{2 k+1}$, and hence $a \cap \bar{b}=\bar{a} \cap b$ as required.

Now define

$$
F_{n}(b)=\bigcup\left\{F\left(c_{0}\right) \cap F(\bar{b}) \mid(\bar{a}, \bar{b}) \in D_{n} \text { and } c_{0} \cap \bar{b}=\bar{a} \cap b\right\}
$$

Then F_{n} is Borel. We claim moreover that, if $\left(c_{0}, b\right) \in E_{n}$, then $F_{n}(b) \Delta F(b) \in$ $\mathscr{K}(X)$. To see this, first suppose $(\bar{a}, \bar{b}) \in D_{n}$ and

$$
c_{0} \cap \bar{b}=\bar{a} \cap b
$$

Then by M_{1}-homogeneity of E_{n} (since $\sigma\left(c_{0}\right) \neq \sigma(\bar{a})$), it follows that

$$
F\left(c_{0}\right) \cap F(\bar{b})=F(\bar{a}) \cap F(b)
$$

Hence $F_{n}(b) \subseteq F(b)$. The claim above also implies that for any m there is such a pair $(\bar{a}, \bar{b}) \in D_{n}$ with $F(b) \cap K_{m}=F(\bar{b}) \cap K_{m}$; hence

$$
F_{n}(b)=F\left(c_{0}\right) \cap F(b)
$$

Since $b \subseteq c_{0}$, we have $F(b) \backslash F\left(c_{0}\right) \in \mathscr{K}(X)$, so $F_{n}(b) \Delta F(b) \in \mathscr{K}(X)$. By Lemma 3.3 it follows that $c_{0} \in \mathscr{I}$, and the same argument shows that $c_{1} \in \mathscr{I}$. Then $c \in \mathscr{I}$, as required.

Lemma 3.5. Assume $T A+M A_{\aleph_{1}}$. If \mathscr{I} is a dense P-ideal then φ is trivial.

Proof. For each $a \in \mathscr{I}$, we fix some continuous, compact-to-one map e_{a} : $F(a) \rightarrow a$ which induces φ on a. We also define $f_{a}: \omega \rightarrow \mathscr{C}(X)$ by

$$
f_{a}(n)=e_{a}^{-1}(\{n\})
$$

Define a partition $[\mathscr{I}]^{2}=M_{0} \cup M_{1}$ by placing $\{a, b\} \in M_{0}$ if and only if there is some $n \in a \cap b$ such that $f_{a}(n) \neq f_{b}(n)$. Then M_{0} is open when $a \in \mathscr{I}$ is identified with $f_{a} \in{ }^{\omega} \mathscr{C}(X)$.

Claim 3.5. There is no uncountable, M_{0}-homogeneous subset H of \mathscr{I}.
Proof. Assume H is such a set, and that $|H|=\aleph_{1}$. Since \mathscr{I} is a P-ideal, there is a set $\bar{H} \subseteq \mathscr{I}$ such that for every $a \in H$ there is some $b \in \bar{H}$ with $a \subseteq^{*} b$, and moreover \bar{H} is a chain of order-type ω_{1} with respect to \subseteq^{*}. By (a weakening of) TA, there is an uncountable subset of \bar{H} which is homogeneous for one of the two colors M_{0} and M_{1}; hence, by passing to this subset, we may assume \bar{H} is either M_{0} or M_{1} homogeneous.

Say \bar{H} is M_{1}-homogeneous. Put $\bar{a}=\bigcup \bar{H}$, and $\bar{f}=\bigcup_{a \in \bar{H}} f_{a}$. Then \bar{f} : $\bar{a} \rightarrow \mathscr{C}(X)$, and for all $a \in H$ we have $a \subseteq^{*} \bar{a}$ and $f_{\bar{a}} \upharpoonright(a \cap \bar{a})=^{*} f_{a} \upharpoonright(a \cap \bar{a})$. Choose n so that for uncountably many $a \in H$, we have $a \backslash n \subseteq \bar{a}$, and $f_{\bar{a}} \upharpoonright a \backslash n=f_{a} \upharpoonright a \backslash n$. Then if $a, b \in H$ are such, and $f_{a} \upharpoonright n=f_{b} \upharpoonright n$, we have $\{a, b\} \in M_{1}$, a contradiction.

So \bar{H} is M_{0}-homogeneous. Define a poset \mathbb{P} as follows. Put $p \in \mathbb{P}$ if and only if $p=\left(A_{p}, m_{p}, H_{p}\right)$ where $m_{p}<\omega, A_{p} \in \mathscr{C}\left(K_{m_{p}}\right)$, and $H_{p} \in[\bar{H}]^{<\omega}$, and for all distinct $a, b \in H_{p}$, there is an $n \in a \cap b$ such that

$$
\neg\left(f_{a}(n) \cap A_{p}=\emptyset \Longleftrightarrow f_{b}(n) \cap A_{p}=\emptyset\right)
$$

That is, one of $f_{a}(n), f_{b}(n)$ is disjoint from A_{p}, and the other isn't. Put $p \leq q$ if and only if $m_{p} \geq m_{q}, A_{p} \cap K_{m_{q}}=A_{q}$, and $H_{p} \supseteq H_{q}$.

First we must show that \mathbb{P} is ccc. Suppose \mathcal{X} is an uncountable subset of \mathbb{P}. We may assume without loss of generality that for some fixed m and $A \in \mathscr{C}\left(K_{m}\right)$, and for all $p \in \mathcal{X}, m_{p}=m$ and $A_{p}=A$, and moreover that H_{p} is the same size for all $p \in \mathcal{X}$. Let a_{p} be the minimal element of H_{p} under \subseteq^{*}, for each $p \in \mathcal{X}$. Find n_{p} so that for all $a \in H_{p}$,

$$
f_{a_{p}} \upharpoonright\left(a_{p} \backslash n_{p}\right) \subseteq f_{a} \quad e_{a_{p}}^{\prime \prime} K_{m} \subseteq n_{p}
$$

We may assume that for some fixed n, we have $n_{p}=n$ for all $p \in \mathcal{X}$. Find $p, q \in \mathcal{X}$ with $f_{a_{p}} \upharpoonright n=f_{a_{q}} \upharpoonright n$. Since $\left\{a_{p}, a_{q}\right\} \in M_{0}$, there is some $k \in a_{p} \cap a_{q}$ such that $f_{a_{p}}(k) \neq f_{a_{q}}(k)$. Then $k \geq n$, and so $f_{a_{p}}(k) \cap K_{m}=$ $f_{a_{q}}(k) \cap K_{m}=\emptyset$. At least one of $f_{a_{p}}(k) \backslash f_{a_{q}}(k)$ and $f_{a_{q}}(k) \backslash f_{a_{p}}(k)$ must be nonempty; whichever one it is, call it B. Put $A_{r}=A \cup B$ and $H_{r}=H_{p} \cup H_{q}$, and choose m_{r} large enough that $A_{r} \subseteq K_{m_{r}}$. Then $r=\left(A_{r}, m_{r}, H_{r}\right) \in \mathbb{P}$, and $r \leq p, q$.

By $M A_{\aleph_{1}}$, there is a set $A \in \mathscr{C}(X)$ and an uncountable $H^{*} \subseteq \bar{H}$ such that for all distinct $a, b \in H^{*}$,

$$
\exists n \in a \cap b \quad \neg\left(f_{a}(n) \cap A=\emptyset \Longleftrightarrow f_{b}(n) \cap A=\emptyset\right)
$$

Fix $x \subseteq \omega$ such that $F(x)=A$. Then for all $a \in H^{*}, e_{a}^{-1}(x \cap a) \Delta(A \cap F(a))$ is compact; hence there are k_{a} and m_{a} such that
$e_{a}^{-1}\left(x \cap a \backslash k_{a}\right)=(A \cap F(a)) \backslash K_{m_{a}} \quad$ and $\quad e_{a}^{-1}\left(a \backslash k_{a}\right)=F(a) \backslash K_{m_{a}}$
Then, for all $n \in a \backslash k_{a}, n \in x$ implies $f_{a}(n) \subseteq A$, and $n \notin x$ implies $f_{a}(n) \cap A=\emptyset$. Fix distinct $a, b \in H^{*}$ with $k_{a}=k_{b}=k$, and $f_{a} \upharpoonright k=f_{b} \upharpoonright k$. Then,

$$
\forall n \in a \cap b\left(f_{a}(n) \cap A=\emptyset \Longleftrightarrow f_{b}(n) \cap A=\emptyset\right)
$$

This contradicts the choice of A.
Now by TA, there is a cover of \mathscr{I} by countably many sets \mathscr{I}_{n}, each of which is M_{1}-homogeneous. Since \mathscr{I} is a P-ideal, at least one of the \mathscr{I}_{n} 's must be cofinal in \mathscr{I} with respect to \subseteq^{*}. Choose such an \mathscr{I}_{n}, and let $f=\bigcup\left\{f_{a} \mid a \in \mathscr{I}_{n}\right\}$. Then f is a function from some subset of ω to $\mathscr{C}(X)$. Setting $e(x)=n$ if and only if $x \in f(n)$, we get a function $e: X \rightarrow \omega$, and since \mathscr{I} is dense and \mathscr{I}_{n} cofinal in $\mathscr{I}, a \mapsto e^{-1}(a)$ is a lift for φ.

4. Coherent families of continuous functions

Theorem 3. Assume $T A+M A_{\aleph_{1}}$. Let X and Y be zero-dimensional, locally compact Polish spaces, and let $\varphi: \mathscr{C}(Y) / \mathscr{K}(Y) \rightarrow \mathscr{C}(X) / \mathscr{K}(X)$ be an isomorphism. Then there are compact-open $K \subseteq X$ and $L \subseteq Y$, and a homeomorphism $e: X \backslash K \rightarrow Y \backslash L$, such that the map $A \mapsto e^{-1}(A)$ is a lift of φ.

By Stone duality, a homeomorphism $\varphi: X^{*} \rightarrow Y^{*}$ induces an isomorphism $\hat{\varphi}: \mathscr{C}(Y) / \mathscr{K}(Y) \rightarrow \mathscr{C}(X) / \mathscr{K}(X)$, and any map e as in the conclusion to Theorem 3 will in this case be a witness to the triviality of φ. Hence Theorem 3 implies Theorem 1.

Corollary 4.1. Suppose $\varphi: \mathscr{C}(Y) / \mathscr{K}(Y) \rightarrow \mathscr{C}(X) / \mathscr{K}(X)$ is an isomorphism, with a lift $F: \mathscr{C}(Y) \rightarrow \mathscr{C}(X)$ which is Borel measurable. Then φ is trivial.

Proof of Corollary 4.1. The assertion that φ is trivial is

$$
\exists e \in C(X, Y) \forall U \in \mathscr{C}(Y) F(U) \Delta e^{-1}(U) \in \mathscr{K}(X)
$$

which is visibly $\boldsymbol{\Sigma}_{2}^{1}$, and hence absolute between the ground model and any forcing extension. Since there is a forcing extension satisfying $T A+M A_{\aleph_{1}}$ ([8]), the result is proven.

Before the proof of Theorem 3 we set down some more notation. Fix X, Y and φ as in the statement of the theorem. Let L_{n} be an increasing sequence of compact subsets of Y, with union Y, and let $Y_{n+1}=L_{n+1} \backslash L_{n}$ and $Y_{0}=L_{0}$. Let \mathscr{B} be a countable base for Y consisting of compact-open sets, such that

- for all $U \in \mathscr{B}$, the set of $V \in \mathscr{B}$ with $V \supseteq U$ is finite and linearly ordered by \subseteq, and
- for all $U \in \mathscr{B}$ and all $n<\omega$, either $U \subseteq Y_{n}$ or $U \cap Y_{n}=\emptyset$.

It follows that for all $U, V \in \mathscr{B}$, either $U \cap V=\emptyset, U \subseteq V$, or $V \subseteq U$. Let \mathbb{P} be the poset of all partitions of Y into elements of \mathscr{B}, ordered by refinement;

$$
P \prec Q \Longleftrightarrow \forall U \in P \exists V \in Q \quad U \subseteq V
$$

We also use \prec^{*} to denote eventual refinement;

$$
P \prec^{*} Q \Longleftrightarrow \forall^{\infty} U \in P \exists V \in Q \quad U \subseteq V
$$

When $P \prec^{*} Q$ we let $\Gamma(P, Q)$ be the least n such that every $U \in P$ disjoint from L_{n} is contained in some element of Q.

For a given $P \in \mathbb{P}$, let $s_{P}: Y \rightarrow P$ be the unique function satisfying $x \in s_{P}(x)$ for all $x \in Y$; similarly, when $P, Q \in \mathbb{P}$ and $P \prec Q$ we let $s_{P Q}: P \rightarrow Q$ be the unique function satisfying $U \subseteq s_{P Q}(U)$ for all $U \in P$. These maps induce embeddings $\sigma_{P}: \mathscr{P}(P) /$ fin $\rightarrow \mathscr{C}(Y) / \mathscr{K}(Y)$ and $\sigma_{P Q}$: $\mathscr{P}(Q) /$ fin $\rightarrow \mathscr{P}(P) /$ fin in the usual way.

Proof of Theorem 3. For each $P \in \mathbb{P}$, let $\varphi_{P}=\varphi \circ \sigma_{P}$. Then φ_{P} is an embedding of $\mathscr{P}(P) /$ fin into $\mathscr{C}(X) / \mathscr{K}(X)$. By Theorem 3, there is a continuous map $e_{P}: X \rightarrow P$ such that $a \mapsto e_{P}^{-1}(a)$ lifts φ_{P}. Note that if $P, Q \in \mathbb{P}$ and $P \prec^{*} Q$, then the following diagram commutes;

So by Lemma 3.1, the set $\left\{x \in X \mid s_{P Q}\left(e_{P}(x)\right) \neq e_{Q}(x)\right\}$ is compact.
Now let $[\mathbb{P}]^{2}=M_{0} \cup M_{1}$ be the partition defined by

$$
\{P, Q\} \in M_{0} \Longleftrightarrow \exists x \in X \quad s_{P, P \vee Q}\left(e_{P}(x)\right) \neq s_{Q, P \vee Q}\left(e_{Q}(x)\right)
$$

Here $P \vee Q$ is the finest partition coarser than both P and Q. If we define $f_{P}: \mathscr{B} \rightarrow \mathscr{C}(X)$ by

$$
f_{P}(U)=\left\{x \in X \mid e_{P}(x) \subseteq U\right\}
$$

then we have

$$
\{P, Q\} \in M_{0} \Longleftrightarrow \exists U \in \mathscr{B} \quad f_{P}(U) \neq f_{Q}(U)
$$

and it follows that M_{0} is open in the topology on \mathbb{P} obtained by identifying P with f_{P}.

Claim 4.1. There is no uncountable, M_{0}-homogeneous subset of \mathbb{P}.
Proof. Suppose H is such, and has size \aleph_{1}. Using $M A_{\aleph_{1}}$ with a simple modification of Hechler forcing, we see that there is some $\bar{P} \in \mathbb{P}$ such that $P \succ^{*} \bar{P}$ for all $P \in H$. By thinning out H and refining a finite subset of \bar{P},
we may assume that $P \succ \bar{P}$ for all $P \in H$, and moreover that there is an \bar{n} such that for all $P \in H$,

$$
\left\{x \in X \mid s_{\bar{P}, P}\left(e_{\bar{P}}(x)\right) \neq e_{P}(x)\right\} \subseteq K_{\bar{n}}
$$

Now fix $P, Q \in H$ such that $e_{P} \upharpoonright K_{\bar{n}}=e_{Q} \upharpoonright K_{\bar{n}}$. Then $s_{P, P \vee Q} \circ e_{P}=$ $s_{Q, P \vee Q} \circ e_{Q}$, contradicting the fact that $\{P, Q\} \in M_{0}$.

By TA, there is a countable cover of \mathbb{P} by M_{1}-homogeneous sets; since \mathbb{P} is countably directed under \succ^{*}, it follows that one of them, say \mathbb{Q}, is cofinal in \mathbb{P}. It follows moreover that for some n, we have

$$
\forall P \in \mathbb{P} \exists Q \in \mathbb{Q} \quad \Gamma(Q, P) \leq n
$$

That is, \mathbb{Q} is cofinal in \mathbb{P} under \succ^{n} defined by

$$
P \prec^{n} Q \Longleftrightarrow \forall U \in P \quad\left(U \cap L_{n}=\emptyset \Longrightarrow \exists V \in Q U \subseteq V\right)
$$

Claim 4.2. There is a compact set $K \subseteq X$ and a unique continuous map $e: X \backslash K \rightarrow Y$ satisfying

$$
\forall x \in X \backslash K \quad e(x) \in \bigcap_{P \in \mathcal{Q}} e_{P}(x)
$$

Proof. Fix $x \in X$. If $P, Q \in \mathbb{Q}$, then by M_{1}-homogeneity of \mathbb{Q} we have

$$
s_{P, P \vee Q}\left(e_{P}(x)\right)=s_{Q, P \vee Q}\left(e_{Q}(x)\right)
$$

Then, the unique member of $P \vee Q$ containing $e_{P}(x)$ is the same as the unique member of $P \vee Q$ containing $e_{Q}(x)$. It follows that $e_{P}(x) \cap e_{Q}(x) \neq \emptyset$, and so either $e_{P}(x) \subseteq e_{Q}(x)$ or vice-versa. Then the collection $\left\{e_{P}(x) \mid P \in \mathbb{Q}\right\}$ is a chain, and hence by compactness has nonempty intersection.

Now let

$$
K=\left\{x \in X \mid \forall P \in \mathbb{Q} e_{P}(x) \subseteq L_{n}\right\} \subseteq \bigcap_{P \in \mathbb{Q}} e_{P}^{-1}\left(P \cap \mathscr{C}\left(L_{n}\right)\right)
$$

Then K is contained in a compact set. If $x \in X \backslash K$ and $P \in \mathbb{Q}$, then $e_{P}(x)$ is disjoint from L_{n}. Then for any $x \in X \backslash K$ and $\epsilon>0$, there is some $P \in \mathbb{Q}$ such that $e_{P}(x)$ has diameter less than $\epsilon\left(\right.$ since \mathbb{Q} is cofinal in \mathbb{P} under $\left.\succ^{n}\right)$. Thus e, as defined above, is unique.

To see that e is continuous, note that for any open $U \subseteq X$,

$$
x \in e^{-1}(U) \Longleftrightarrow \exists P \in \mathbb{Q} \quad e_{P}(x) \subseteq U
$$

Claim 4.3. The map $U \mapsto e^{-1}(U)$ lifts φ.
Proof. Fix $P \in \mathbb{Q}$, and let $U \in P$. Then clearly, for all $x \in X \backslash K, e_{P}(x)=U$ if and only if $e(x) \in U$. Since there are only finitely many $U \in P$ such that one of $e_{P}^{-1}(\{U\})$ or $e^{-1}(U)$ meets K, it follows that

$$
\forall^{\infty} U \in P e_{P}^{-1}(\{U\})=e^{-1}(U)
$$

Then $U \mapsto e^{-1}(U)$ lifts φ_{P}.

Now fix $A \in \mathscr{C}(Y)$. Then there is some $P \in \mathbb{P}$ such that A can be written as a union of a subset of P. Find $Q \in \mathbb{Q}$ with $Q \prec^{*} P$; then, up to a compact set, A can be written as a union of some subset a of Q. Hence,

$$
\varphi[A]=\varphi_{Q}[a]=\left[e^{-1}(A)\right]
$$

References

[1] W. W. Comfort and S. Negrepontis. The theory of ultrafilters. Springer-Verlag, New York, 1974. Die Grundlehren der mathematischen Wissenschaften, Band 211.
[2] Ilijas Farah. Analytic quotients: theory of liftings for quotients over analytic ideals on the integers. Mem. Amer. Math. Soc., 148(702):xvi+177, 2000.
[3] S.-A. Jalali-Naini. The monotone subsets of Cantor space, filters, and descriptive set theory. PhD thesis, Oxford, 1976.
[4] Alexander S. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995.
[5] Saharon Shelah. Proper forcing, volume 940 of Lecture Notes in Mathematics. SpringerVerlag, Berlin, 1982.
[6] Saharon Shelah and Juris Steprāns. PFA implies all automorphisms are trivial. Proc. Amer. Math. Soc., 104(4):1220-1225, 1988.
[7] Michel Talagrand. Compacts de fonctions mesurables et filtres non mesurables. Studia Math., 67(1):13-43, 1980.
[8] Stevo Todorčević. Partition problems in topology, volume 84 of Contemporary Mathematics. American Mathematical Society, Providence, RI, 1989.

Ilijas Farah: Department of Mathematics, York University, Toronto, Canada
E-mail address: ifarah@mathstat.yorku.ca
Paul McKenney: Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, USA

E-mail address: pmckenne@andrew.cmu.edu

[^0]: The first author was partially supported by NSERC..

