HOMEOMORPHISMS OF CECH-STONE REMAINDERS:
THE ZERO-DIMENSIONAL CASE

ILIJAS FARAH AND PAUL MCKENNEY

ABSTRACT. We prove the result announced in [2, Theorem 4.10.1]: T A
and M Ay, together imply that given any two locally compact, zero-
dimensional Polish spaces, any homemomorphism between their Cech-
Stone remainders is trivial. It follows that two such spaces have homeo-
morphic remainders if and only if they have cocompact subspaces which
are homeomorphic.

1. INTRODUCTION

The Cech-Stone remainder X \ X of a topological space X is denoted
X*. A continuous map ¢ : X* — Y* is called trivial if there is a continuous
e : X — Y such that ¢ = e*, where e* = (e \ e and e is the unique
continuous exension of e to SX. It follows that two remainders X* and
Y™* are homeomorphic via a trivial map if and only if there are cocompact
subspaces of X and Y which are themselves homeomorphic. In this paper
we prove the following, originally announced in [2, Theorem 4.10.1];

Theorem 1. Assume TA+ MAy,. Let X and Y be locally compact, non-
compact and zero-dimensional Polish spaces. Then every every homeomor-
phism between X* and Y™ is trivial.

Here TA abbreviates Todorcevi¢’s Aziom (also widely known as the Open
Coloring Axiom, see [8]). M Ay, is the usual Martin’s Axiom for N;-many
dense sets. Both are consequences of the Proper Forcing Aziom (PFA);
hence the above result proves a special case of the more general conjecture
that PFA implies all homeomorphisms between Cech-Stone remainders of lo-
cally compact, noncompact Polish spaces are trivial. In comparison, under
the Continuum Hypothesis, all Cech-Stone remainders of locally compact,
noncompact, zero-dimensional Polish spaces are homeomorphic (a conse-
quence of Parovicenko’s theorem). T'A+ M Ay, thus implies a certain rigidity
for such remainders, whereas CH implies the opposite.

Theorem 1 follows a long line of results going back to the late 70’s when
Shelah proved that, consistently, all autohomeomorphisms of w* are trivial
([5]). Shelah and Steprans later showed that the same conclusion holds under
PFA ([6]) and Velickovi¢ improved their result by reducing the assumption
to T A+ M Ay, . The first author (]2]) extended this by proving Theorem 1 in
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the case where both X and Y are countable. All of these results rely heavily
on the zero-dimensionality of the spaces X and Y’; indeed, all results in this
direction in fact deal with isomorphisms between Boolean algebras of the
form € (X)/# (X), where €(X) is the algebra of clopen subsets of X, and
A (X) its ideal of compact-open sets. Stone duality provides the connection
to X ™ in the case where X is zero-dimensional (see e.g. [1]). Our proof does
not differ in this regard.

In section 2 we introduce some of the language required to prove The-
orem 1. Section 3 treats embeddings of & (w)/fin into € (X)/# (X); we
prove in ZFC that such maps are trivial whenever they are “definable” in a
certain sense, and then we prove under T'A 4+ M Ay, that every such map is
trivial. Section 4 completes the proof of Theorem 1 through an analysis of
coherent families of continuous functions.

2. NOTATION

Fix a zero-dimensional, locally compact and noncompact Polish space
X. We denote by € (X) the Boolean algebra of clopen subsets of X, and
by ¢ (X) its ideal of compact-open subsets of X. Let (K, | n <w) be an
increasing sequence of compact-open sets in X, such that X = J K,,. Then
(X)) is generated by the sequence (K, | n < w), ie,

KeX(X) — InKCK,

It is easy to see that ¢'(X) has size continuum, whereas % (X)) is countable.
Let Xog = Ko and X,,11 = K41\ K. When A, B € €(X) are distinct, we
write §(A, B) for the least n such that ANX,, # BN X,,. If

270AB) A+ B
MAE:{O AiB

then d is a Polish metric on % (X). In this topology, #(X) is an F, subset
of €(X). We will often identify ¢ (X) with [[,, €(X,), and & (w) with “2.
Under these identifications, % (X) maps to €,, €(X,,) (the set of functions
in [],, ¢(X,) which are nonempty on only finitely many coordinates) and
fin to <¥2. If Y and Z are zero-dimensional, locally compact Polish spaces,
0:CY)/ X (Y)—€(Z)/#(Z) is a homomorphism, and U € € (Y), then
we write ¢ [ U for the restriction ¢ [ €(U)/# (U).

Finally, we state Todorcevié’s Axiom. Let E be a separable metric space
and let [E]> = My U M; be a partition of the unordered pairs on E, such
that My is open when identified with a symmetric subset of £ x E minus
the diagonal. Then one of the following holds.

(1) There is an uncountable set H C E such that [H]?> C Mp.
(2) There are sets H,, C E, for n < w, such that £ = |J H,, and for each
n, [Hn]Q g Ml-
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3. EMBEDDINGS OF & (w)/fin INTO ¥(X)/ 2 (X)

Let e : X — w be a continuous map. If e~!(n) is compact for every n,
then we say e is compact-to-one. If e is compact-to-one, then the map a —
e !(a), from 2 (w) to €(X), induces a homomorphism ¢, : Z(w)/fin —
¢ (X)/# (X). Moreover, ¢, is injective if and only if e is finite on compact
sets. We call a homomorphism ¢ : Z(w)/fin — € (X)/# (X) trivial if it is
of the form ¢, for some compact-to-one, continuous e.

Lemma 3.1. SupposeY € €(X) ande, f : Y — w are continuous, compact-
to-one maps, such that e='(a)Af~(a) is compact for every a C w. Then
{zreY |e(x)# f(x)} is compact.

Proof. Suppose not; then for some infinite set I C w and all n € I, there is
a point x, € Y N X, such that e(x,) # f(zy). Since e and f are compact-
to-one, we may assume also that m # n implies e(z,) # e(x,) and f(x,,) #
f(x,). Now define a coloring F : [I]> — 3 by

0 e(@m) # flan) A f(2m) # e(zn)
F({m <n}) = 1 e(@m)= f(zn) A f(zm) # e(zn)
2 e(xm) a f(xn) N f(xm) - G(l'n)
By Ramsey’s theorem, there is an infinite set a C I which is homogeneous
for this coloring. Suppose first that a is 1-homogeneous, and let m < n < k
be members of a. Then

e(rm) = f(x,) and e(xy) = f(zr) and e(x,) = f(xg)
which implies e(x,) = f(zn), a contradiction. Similarly, a cannot be 2-
homogeneous.

Now suppose a is 0-homogeneous. Let a = agUaj be a partition of a into
two infinite sets, and put Z; = {xy, | n € a;} and Z = {xy, | n € a} = ZyUZ;.
From the homogeneity of a, it follows that ¢”Z N f”Z = (), and hence (as e
and f are injective on Z)

Z N 6_1((6”20) U (f”Zl)) =Zyp and ZnN f_l((€”Z0) U (f”Zl)) =7
So, if b =¢€"ZyU f"Zy, we have Z C e~ 1(b)Af~1(b). But Z is not compact,
so this is a contradiction. O

3.1. Definable embeddings.

Lemma 3.2. Suppose ¢ : Z(w)/fin — €(X)/ A (X) is an embedding with
a continuous lift F': G — € (X) on some comeager set G C & (w). Then ¢
18 trivial.

Proof. First we work with the case G = Z(w). For s € <¥2 and S €
P ¢ (X,) let

Ny={ae€2¥|sCa} and Ng= {A € H%(Xn) ) A extends S}

So N and Ng are basic clopen sets for “2 and €' (X) respectively. If F”" N, C
Ng we say that s forces S.
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First we build, by induction on ¢, an increasing sequence n; of integers,
and a sequence of functions ¢; : [n;,n;+1) — 2, such that

(1) for all 7, if s € ™2, then s U t; forces some S of length n;,
(2) for all 4, s,s" € ™2, k > n;t1, and u : [nj41,k) = 2, if sUE; Uwu and
s"Ut; Uu force S and S’ respectively, then SAS’ C K, .

Assume n; and t;_; are defined. First, let s;, j < 2™ enumerate "2, and
construct functions ¢/ for j < 2™ such that ¢} has domain [n;, k) for some
k, t] C tg“ for all j, and sj Ut! forces some S of length n; (this last is
possible by continuity of F'). Now any ¢ which extends t?"i and has domain
disjoint from n; will satisfy (1) in place of ¢;.

As for condition (2), we first claim that for any s,s’ € ™2 and any wu :
[ni,n) — 2, where n > n;, there is some v : [n;, k) — 2 extending u, such
that whenever s Uv Uw and s/ Uv U w' force S and S’ respectively, then
SAS’ C K,,. Assume otherwise. Then we can construct increasing sequences
uj @ [ni, j) — 2, 85,85 € #(X), and {; < w, such that s Uu; and s Uu;
force S; and S} respectively, but S;NX,; # S;NX,,. Put x = sUJ; u; and
a' = s'UlJ;uj. Then x =" 2’ but F(x) N Xy, # F(a') N Xy, for all j. Now
to ensure condition (2), we apply the claim for each pair s,s’ € 2" in some
order, starting with u = t?ni from above and repeatedly extending u via the
v as in the claim. We end with a function ¢; : [n;,n;+1) — 2 as required.

Put a¢ = J{[ni,ni+1) | i =€ (mod 3)} and z¢ = |J{t; | i =€ (mod 3)},
for € = 0,1, 2. For every = C a°, let

FOz) = F(z Uzt Uz?)\ F(z' Ua?)

Then FO(z)AF(z) is compact, for every  C a®. Moreover, by the properties
of the sequence t;, there are functions hY : 2 (|ngi, n3i+1)) — C(Knaivo \
Kn,,_,) such that for all z C a°,

n3i—1
F(z) = Uh?(m N [n3i,n3i41))

(2

Now we claim that for almost all i, h? is a (Boolean algebra) homomorphism.
To see this, suppose for instance that for infinitely many ¢, there are u;, v; C
[n3i,n3i41) such that AY(u; U v;) # hY(u;) U hY(v;). Put u = (Ju; and
v = Jwv;; then FO(uUv)A(FO(u) U F°(v)) has nonempty intersection with
infinitely many X,, and hence is not compact, contradicting the fact that
© is a homomorphism. Let A? = h?([ngi, ns3i+1)); then there is a continuous
map €) : AY — [nsi,ngiy1) such that hd(z) = (e)71(z) for all x in the
domain of hY. Notice that the sets AY are pairwise disjoint; so if AY = [, A?
and €0 = U, ¥, then €® : A% — a°, and

Vo € P(ag) FOz) = (") ()

Similarly, we may define F¢, A€, and e for ¢ = 1,2. Notice that since
A°AF(a%) is compact, and the sets a® form a partition of w, it follows that
A% N A€ is compact for § # €, and A% U A U A% is cocompact. Hence by
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putting the functions e€ together on a cocompact set, we obtain a function
e : X — w such that for all z C w, F(x)Ae () is compact.

This completes the proof when G = #(w). For the general case, recall
(by a Theorem of Talagrand and Jalali-Naini, see [7, 3]) that there are a
partition w = agUaq, and sets s; C a;, such that for all z C a;, zUs1_; € G.
Hence the function Fj(zx) = F(x U s1—;) \ F(si1—;) induces ¢ on #(a;). By
the special case, then, we get functions ey : Yy — ag and e; : Y1 — a1
(where Y; = F(a;)) inducing ¢ on agp and a; respectively. Then Yy NY; and
(Yo UY1)AX are compact, and hence we may put together ey and e; on a
cocompact set to get a function e : X — w satisfying our requirements. [

Lemma 3.3. Let ¢ : Z(w)/fin — €(X)/# (X) be an embedding with a lift
F: Pw) — €(X). Suppose that there are Borel functions F, : & (w) —
€ (X), for n < w, such that for all a C w there is n with F(a)AF,(a) €
H(X). Then ¢ is trivial.
Proof. Define

J ={aCwl|ep]ais trivial}
Then .# is an ideal containing the ideal of finite sets. For each a € .#, we
fix a continuous, compact-to-one map e, : F'(a) — a which induces ¢ | a.
We also define, for such a, the function f, : a — € (F(a)) given by

fa(n) = eg*({n})
Clearly, e, is uniquely determined by f,.

Claim 3.1. .7 is not a maximal nonprincipal ideal.

Proof. Assume otherwise. Fix a dense G subset W of &?(w), such that each
F,, is continuous on W. As usual, we may find a partition w = ag U a1 into
infinite sets, along with sets t9 C ag and t; C ay, such that for all z C a;,
xUti_; € W. By the assumption, one of ag or ay is not in .#; without loss
of generality, say it’s ag. Now, the function

Gn(z) = F,(zUt1) N Fy(ao)

is continuous on & (ayp), and moreover for every x C ag there is some n such
that Gp(x)AF(x) is compact. Let ¢ = .4 N P(ag). Fix a € # and for
each n,m < w let

Dz?m = {a: Ca } egl(aj) \ K = Gp(x) \Km}
Then each Dy, is closed, and #(a) = U, ,,, D - By the Baire category
theorem, it follows that there are some n,m < w and a nonempty clopen
subset U of #(a) such that U C Dy, ,,. Let H,, n < w enumerate all
functions from Z(ap) to € (X) of the form

z = (Ge((z\ J) Ut) \ Kn) Us"(z N k)

where j,k,¢,m < w, t C j, and s : k — € (K,,). Then it follows that each
H,, is continuous, and for every a € _# there is some n such that

Ve Ca Hy(z)=e; (z)
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Let 7, be the ideal of all a € _# for which the above holds. Then for any
a,b€ #,, we have f, [ anNb= f, [ anb, and so the function

U 7
a€ fn
induces ¢ on every a € #,. If #, is cofinal in _# with respect to C*, then
it follows that f, induces ¢ on ag, contradicting ag € ..

If no 7, is cofinal in ¢, then # can’t be countably directed, and it
follows that there is a partition ag = |J,, bn such that b, € _# for all n, but
there is no b € _# such that b,, C* b for all n. Let % be the set of all b C ag
such that b N b, =* () for all n; then % is a countably-directed subideal of
S U, = #.N%, then there is some n for which %, is cofinal in % .
As above, we let

f = U f a

AEUn,
and
e(r) =k < z € f(k)
and it follows that e induces ¢ on every a € % . Now consider the set
T={m<w]|e] F(by) does not induce ¢ | by, }

Suppose T is infinite. Then for each m € T we may choose some infinite
¢m C by, such that e (c,,) N F(ey,) is compact; moreover, by shrinking ¢,
we may ensure that e~1(¢,,) N F(cy) is compact for every m, k € T. We can
then find some D such that F(cy,)\ D and e~(¢,,) N D are compact for all
m. Choose some ¢ such that F(c)AD is compact. Then ¢,, C* ¢ for every
m, since F'(¢,) \ D is compact for all m. So we may choose some i, € ¢;,Ne
such that e(i,,) € D. Then the set

b= {ip | meT}

is in % . Hence e~ 1(b)AF(b) is compact, and since b C ¢, e~ (b) \ F(c) must
be compact as well. But e~'(b) N D = (), a contradiction.

Suppose now that T is finite. Then e induces ¢ on every a in the ideal
generated by % and {by, | m ¢ T'}. This ideal is dense in the powerset of
Umng by, and it follows that e induces ¢ on this set. But this means ag € .#,
another contradiction.

O

Now by induction we build subsets a,, and x,, of w, for n < w, such that
(1) an Nay, =0 for n #m,
( ) Tn C ap,
(3) ¢ is nontrivial on w \ U
(4) for every r Cw\ U,

z<n
’L<7’L

<Fn (U z; U x) N F(an)> AF(x,) & # (X)

i<n
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The existence of such a sequence clearly contradicts our assumption, since
if = |, @i, then it follows that for every n, (F,(z) N F(an))AF(xy) is not
compact.

Suppose a; and z;, for i < n, have been constructed so as to satisfy the
conditions above. Let ¢, = w\ U;,, @i, and 2z, = {U;.,, z;- Since ¢ is
nontrivial on ¢,, by Claim 3.1 it follows that there are infinite sets d,, and

d,, which partition ¢, and on both of which ¢ is nontrivial. For each y C d,,
put

Then H,(y) is a Borel set.
Claim 3.2. There is some y C d,, such that H,(y) is not comeager.

Proof. Suppose otherwise. Then for all (y,Y) € Z(d,) x €(X), ¢ly] = [Y]
if and only if the set

{# Cdn | (Fu(za UyUa) N F(dy)AY € ¢ (X)}

is comeager. Then Gr(yp | d,) is analytic. By the Jankov-von Neumann
theorem ([4]), there is a uniformization of Gr(p | d,,) which is C-measurable,
and hence continuous on a comeager set. By Lemma 3.2, ¢ is trivial on d,,,
a contradiction. O

Fix y C d, so that H,(y) is not comeager. Since H,(y) is Borel, there
is a basic clopen set N, in #(d,) such that H,(y) is meager in N,. Let
u C d,, be the domain of s. Then there is a partition d,, \ u = d* U d}, along
with sets ¢; C di, such that for any # C d,, s Uz Ut;_; is not in H,(y). By

Claim 3.1, ¢ must be nontrivial on one of d> or d; say it’s di,. Set
an:dnUuUd_rll_i T, =yUsUt;

This completes the induction, and hence the proof of the theorem. ([l

3.2. Embeddings under T'A + M Ay, .

Theorem 2. Assume T'A+ MAy,, and suppose
p: Pw)/fin— F(X)/#(X)
is an embedding. Then @ is trivial.

Towards the proof of Theorem 2, we fix an embedding ¢ : & (w)/ fin —
€¢(X)/#(X), and an arbitrary lift F : P (w) — €(X) of . Again we
consider the ideal

J ={aCwl|p]|ais trivial}

A family o C P (w) is called almost disjoint if for all distinct a,b € o7,
anNb =*0. Such a family &/ is called treelike if there is some tree T on
w and a bijection ¢ : w — ““w under which each a € &/ corresponds to a
branch through 7', and vice-versa.

Lemma 3.4. Assume TA. Let &/ be an uncountable, tree-like, almost-
disjoint family of subsets of w. Then & \ & is countable.
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Proof. Put
E={(a,b)|Ice ZbCaCc}
and for each (a,b) € E, let o(a) be the unique element of & such that

a C o(a). Since & is treelike, o is a continuous map. Define a coloring
[E)? = My U M; by placing {(a,b), (a,b)} in My if and only if

(i) o(a) # o(a),

(ii) anb=anb, and

(i) F(a)NF(b) # F(a) N F(b).
Then My is open in the topology on E obtained by identifying (a,b) with
(a,b, F(a), F(b)).
Claim 3.3. There is no uncountable, My-homogeneous subset H of E.

Proof. Assume H is such. Put

d= [J b
(a,b)eH

Then for all (a,b) € H, dNa = b, and hence (F(d)NF(a))AF(b) is compact.
Then we may find an n, and sets A, B € ¥ (K,), so that for uncountably
many (a,b) € H we have

e (F(d)N F(a))AF(b) C K,,

e Fla)NK, = A, and

e F(b)NK, = B.
Then, for any such (a,b) and (a,b) in H,

Fla)NF(b)NK,=ANB=F(a)nF)NK,
and moreover,
(F(a)NF (b)) \ Kn = (F(a) N F(d) N F(a)) \ Kn = (F(b) N F(a)) \ Ky,

Hence there is an uncountable Mj-homogeneous subset of H, a contradic-
tion. [l

By TA, there is a sequence F,, n < w, of Mj-homogeneous sets which
cover E. Let D, be a countable, dense subset of FE,, in the topology on F
described above. Fix ¢ € & so that ¢ is not equal to o(a) for any (a,b) € D,
for any n. We’ll show that ¢ | ¢ is trivial.

Claim 3.4. There is a partition ¢ = coUcy, so that for all n and (a,b) € Ey,
if a C ¢; for some i < 2 then for every m there is (a,b) € D,, with

(1) anm=anmand bNm =bNm, -

(2) F(a)N K, = F(a) N Ky, and F(b) N Ky, = F(b) N Ky, and

(3) anb=anb.

Proof. For each i, fix an enumeration <Af | j< w> of ¥(K;). Fix also an

enumeration p — ((p)o, (p)1, (p)2) of the triples in w, so that (p); < p for
each p and 7 < 3.
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Notice that if (a,b) € E, then for any m there is some (a,b) € D,
satisfying conditions (1) and (2) above, simply by density of D,,. Moreover,
if a C ¢, then a and a must be almost disjoint (by choice of ¢), and hence
aNband @Nb are both finite. This motivates the following definition.

Given m, we choose m™ large enough that for all n,p < m and s,t C m,
if there is some (a,b) € E,, with

eanNm=s,bNm=t,

o F(a) K, = AQ), and PO) 0 Ky, = AR,

then there is (@,b) € D,, with the same properties, which moreover satisfies
aNncCm*. Put mg=0and mp, 1 = m: for each k, and set

co =|JeNmop,maps1) e =|JeN [mapsr, mapso)
k k

Now suppose (a,b) € E,, and a C ¢y, and let m > n be given. Choose p so
that (p)o = m, and

Fla)NK,=AP"  FOb)NK,, = AP:2
Find k so that p < mgpy1. Then there is (a,b) € D,, such that
aNmogy1 = aNmogil b N maojr1 = bNmogs1

and

Fa)N Ky = F(a) N Ky, Fb)NK, =F(0)NKy,

and, moreover, aNc C mogy2. But then aNcy C mok41, and hence anb = anb
as required. O

Now define
Fo(b) = | J{F(co)nF(b) | (@) € Dy and conb=anb}

Then F}, is Borel. We claim moreover that, if (co, b) € E,, then F;,(b)AF(b) €
#(X). To see this, first suppose (a,b) € D,, and

coNb=anb
Then by M;-homogeneity of E,, (since o(cg) # o(a)), it follows that

Flco) N F(b) = F(a) N F(b)

D,, with F(b) N K,,, = F(b) N K,,; hence

Fo(b) = F(co) N F(b)
Since b C ¢y, we have F(b) \ F(cp) € H(X), so F(b)AF(b) € #(X).
By Lemma 3.3 it follows that ¢y € .#, and the same argument shows that
c1 € . Then c € .Z, as required. O

Hence F,(b) C
a,

(b). The claim above also implies that for any m there is
such a pair ( €

F
b)

Lemma 3.5. Assume TA+MAy,. If .7 is a dense P-ideal then ¢ is trivial.
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Proof. For each a € ., we fix some continuous, compact-to-one map e, :
F(a) — a which induces ¢ on a. We also define f, : w — € (X) by

fa(n) = ;' ({n})

Define a partition [#]? = My U M; by placing {a,b} € My if and only
if there is some n € a N b such that f,(n) # fp(n). Then My is open when
a € 7 is identified with f, € Y€ (X).

Claim 3.5. There is no uncountable, My-homogeneous subset H of .#.

Proof. Assume H is such a set, and that |H| = X;. Since .# is a P-ideal,
there is a set H C .# such that for every a € H there is some b € H
with @ C* b, and moreover H is a chain of order-type w; with respect to
C*. By (a weakening of) TA, there is an uncountable subset of H which is
homogeneous for one of the two colors My and M;; hence, by passing to this
subset, we may assume H is either My or M; homogeneous.

Say H is Mj-homogeneous. Put @ = |JH, and f = Uaeir fa- Then f:
a— €(X), and for all a € H we have a C* a and f5 [ (ana) =* f, [ (aNa).
Choose n so that for uncountably many a € H, we have a \ n C a, and
fala\n= fs [ a\n Thenif a,b € H are such, and f, [ n = f, [ n, we
have {a,b} € My, a contradiction.

So H is My-homogeneous. Define a poset P as follows. Put p € P if and
only if p = (Ap, my, H,) where m, < w, A, € €(Ky,,), and H, € [H]<%,
and for all distinct a,b € H), there is an n € a N b such that

~(fa(n)NA, =0 < fo(n)NA,=0)

That is, one of f,(n), fo(n) is disjoint from A,, and the other isn’t. Put
p < q if and only if my, > my, A, N Ky, = Ay, and H, 2 H,.

First we must show that P is ccc. Suppose X is an uncountable subset
of P. We may assume without loss of generality that for some fixed m and
A € €(Ky,), and for all p € X', mj, = m and A, = A, and moreover that H,
is the same size for all p € X. Let a, be the minimal element of H,, under
C*, for each p € X. Find n, so that for all a € H,,,

fap | (ap\np) C fa GZme - np

We may assume that for some fixed n, we have n, = n for all p € X.
Find p,q € X with fo, [ n = fa, [ n. Since {a,,a,} € My, there is some
k € ap Nag such that fq, (k) # fa,(k). Then k > n, and so f,, (k) N Ky, =
fag(K) N Ky, = 0. At least one of fo, (k) \ fo,(k) and fo, (k) \ fa, (k) must be
nonempty; whichever one it is, call it B. Put A, = AUB and H, = H,UH,,
and choose m, large enough that A, C K,,.. Then r = (4,,m,, H,) € P,
and r < p,q.

By M Ay,, there is a set A € ¥(X) and an uncountable H* C H such
that for all distinct a,b € H*,

Ineand —(fo(n)NA=0 < f(n)NA=0)
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Fix z C w such that F(z) = A. Then for all a € H*, e} (zNa)A(AN F(a))
is compact; hence there are k, and m, such that

est(xna\ky) =(ANF(a))\ K, and e, (a\kq)=F(a)\ Kpn,

I(CL
Then, for all n € a \ kg, n € x implies f,(n) C A, and n ¢ x implies
fa(n) N A =0. Fix distinct a,b € H* with k, =k, =k, and f, [ k= f; | k.
Then,
Vneanb (fan)NA=0 < fr(n)NA=10)
This contradicts the choice of A. ([

Now by TA, there is a cover of .# by countably many sets .#,, each of
which is M;j-homogeneous. Since .# is a P-ideal, at least one of the .%,’s
must be cofinal in .# with respect to C*. Choose such an .#,, and let
f=U{fa]la€ A} Then f is a function from some subset of w to € (X).
Setting e(x) = n if and only if € f(n), we get a function e : X — w, and
since .# is dense and ., cofinal in ., a +— e~!(a) is a lift for ¢. O

4. COHERENT FAMILIES OF CONTINUOUS FUNCTIONS

Theorem 3. Assume TA + MAy,. Let X and Y be zero-dimensional,
locally compact Polish spaces, and let ¢ : €(Y)/ A (Y) — €(X)/# (X) be
an isomorphism. Then there are compact-open K C X and L C Y, and a
homeomorphism e : X \ K — Y \ L, such that the map A+ e~ *(A) is a lift

of .

By Stone duality, a homeomorphism ¢ : X* — Y* induces an isomor-
phism ¢ : €(Y)/# (V) — €(X)/#(X), and any map e as in the conclu-
sion to Theorem 3 will in this case be a witness to the triviality of ¢. Hence
Theorem 3 implies Theorem 1.

Corollary 4.1. Suppose ¢ : €(Y)/#(Y) — €(X)/H#(X) is an isomor-
phism, with a lift F': €(Y) — €(X) which is Borel measurable. Then ¢ is
trivial.

Proof of Corollary 4.1. The assertion that ¢ is trivial is
Je e C(X,Y)VU € €(Y) F(U)Ae ™ (U) € #(X)

which is visibly 33, and hence absolute between the ground model and any
forcing extension. Since there is a forcing extension satisfying T'A + M Ay,
([8]), the result is proven. O

Before the proof of Theorem 3 we set down some more notation. Fix
X,Y and ¢ as in the statement of the theorem. Let L, be an increasing
sequence of compact subsets of Y, with union Y, and let Y, 11 = Ly41 \ Ly,
and Yy = Lg. Let & be a countable base for Y consisting of compact-open
sets, such that

o for all U € A, the set of V € % with V D U is finite and linearly
ordered by C, and
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o forall U € £ and all n < w, either U CY,, or UNY,, = 0.

It follows that for all U,V € A, either UNV =0, U CV,or V CU. Let P
be the poset of all partitions of Y into elements of %, ordered by refinement;

P<Q < YePdVeq UCV
We also use <* to denote eventual refinement;
P<"Q < VUePaVeq UCV

When P <* @ we let I'(P, Q) be the least n such that every U € P disjoint
from L, is contained in some element of Q).

For a given P € P, let sp : Y — P be the unique function satisfying
x € sp(x) for all x € Y; similarly, when P,Q € P and P < @Q we let
spg : P — @ be the unique function satisfying U C spg(U) for all U € P.
These maps induce embeddings op : Z(P)/fin — € (Y)/# (Y) and opg :
Z(Q)/ fin — Z(P)/fin in the usual way.

Proof of Theorem 3. For each P € P, let op = woop. Then ¢p is an embed-
ding of #(P)/fin into € (X)/# (X). By Theorem 3, there is a continuous
map ep : X — P such that a = ep'(a) lifts pp. Note that if P,Q € P and
P <* @, then the following diagram commutes;

P(P)/fin — 2 @(X) ) (X)
UPQ] /
2(Q)/ fin

So by Lemma 3.1, the set {z € X | spg(ep(z)) # eg(x)} is compact.
Now let [P]? = My U M; be the partition defined by

{P,Q} e My <= Fr € X sppvgler(r)) # sqrvqleq(r))

Here PV Q@ is the finest partition coarser than both P and Q. If we define
fp: B — €(X) by

fr(U) ={z € X |ep(z) CU}
then we have
{P,Q} e My < U €% fpU)# foU)

and it follows that My is open in the topology on P obtained by identifying
P with fp.

Claim 4.1. There is no uncountable, My-homogeneous subset of P.

Proof. Suppose H is such, and has size N;. Using M Ay, with a simple
modification of Hechler forcing, we see that there is some P € P such that
P =* P for all P € H. By thinning out H and refining a finite subset of P,
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we may assume that P = P for all P € H, and moreover that there is an 7
such that for all P € H,

{z e X |spplep(r)) #ep(r)} C Kn
Now fix P,QQ € H such that ep [ Kz = eq | Kp. Then sppygoep =
5Q,pvQ © eqQ, contradicting the fact that {P,Q} € M. O

By TA, there is a countable cover of P by M;-homogeneous sets; since P
is countably directed under =*, it follows that one of them, say Q, is cofinal
in P. It follows moreover that for some n, we have

VPeP3IQeQ TI'(Q,P)<n
That is, Q is cofinal in P under >" defined by
P<"Q < YUeP UNL,=0 = IVeQUCV)

Claim 4.2. There is a compact set K C X and a unique continuous map
e: X\ K — Y satisfying
Vee X\ K e(z)€ m ep(x)
PeQ
Proof. Fix x € X. If P,@Q € Q, then by M;-homogeneity of Q we have

sprvQ(ep(r)) = sq.pvq(eq(x))

Then, the unique member of PV (@ containing ep(x) is the same as the unique
member of PV ) containing eg(z). It follows that ep(z) Neg(z) # 0, and
so either ep(z) C eg(z) or vice-versa. Then the collection {ep(z) | P € Q}
is a chain, and hence by compactness has nonempty intersection.

Now let

K={zeX|VPeQep(x) CL,} C [ ep' (PNE(Ly))
PeQ

Then K is contained in a compact set. If x € X \ K and P € Q, then ep(x)
is disjoint from L,,. Then for any x € X \ K and € > 0, there is some P € Q
such that ep(z) has diameter less than e (since Q is cofinal in P under >").
Thus e, as defined above, is unique.

To see that e is continuous, note that for any open U C X,

reet(U) < IPeQ eplx)CU

Claim 4.3. The map U ~ e 1(U) lifts ¢.

Proof. Fix P € Q, and let U € P. Then clearly, for allz € X\ K, ep(z) =U
if and only if e(x) € U. Since there are only finitely many U € P such that
one of ep' ({U}) or e '(U) meets K, it follows that

VXU € Pep'({U}) = e H(U)
Then U ~ e~ Y(U) lifts ¢p.
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Now fix A € €(Y). Then there is some P € P such that A can be written
as a union of a subset of P. Find @) € Q with () <* P; then, up to a compact
set, A can be written as a union of some subset a of (). Hence,

P[] = pqla] = [e7'(A)]
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