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Background Material (Downloadable)

I Technion’s ‘‘Service-Engineering" Course (≥ 1995):
http://ie.technion.ac.il/serveng

I Gans (U.S.A.), Koole (Europe), and M. (Israel):
“Telephone Call Centers: Tutorial, Review and Research
Prospects." MSOM, 2003.

I Brown, Gans, M., Sakov, Shen, Zeltyn, Zhao:
“Statistical Analysis of a Telephone Call Center: A
Queueing-Science Perspective." JASA, 2005.

I Trofimov, Feigin, M., Ishay, Nadjharov:
"DataMOCCA: Models for Call/Contact Center Analysis."
Technion Report, 2004-2006.

I M. “Call Centers: Research Bibliography with Abstracts."
Version 7, December 2006.
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“Production of Justice" (Administrative) Network

Skills-Based-Routing at the Labor-Court in Haifa, Israel
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Operational Performance: 5 Judges, 3 Case-Types

Judges: The Best/Worst (Operational) Performer

45 100

    118

  59

         33

.

.

.

.
.

(6.2, 7.4) (13.5, 7.4) 

(26.3, 4.5)

(12, 4.9) 

(7.2, 4.6) 
3

001

3

0
01

01

0

3

01

3

0
0

3

01

0

1

2

3

4

5

6

7

8

9

10

0 5 10 15 20 25 30

  

 
 

Judges: Performance Analysis 
 

Case Type 0  Judge1 
Case Type 01  Judge2 
Case Type 3  Judge3 
   Judge4 
   Judge5 

Judges: Performance Analysis Judges: Performance by Case-Type 

 

A
ve

ra
ge

 N
um

be
r o

f M
on

th
s -

 W
 

 

Average Number of Cases / Month - λ 

Judges: Operational Performance – Base Case 

5



Little’s Law in Court (Creative Averaging)

Judges: The Best/Worst (Operational) Performer
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Prerequisite: Data

Averages Prevalent.
But I need data at the level of the Individual Transaction: For each
service transaction (during a phone-service in a call center, or a
patient’s stay in a hospital), its operational history = time-stamps of
events.

Sources: “Service-floor" (vs. Industry-level, Surveys, . . .)

I Administrative (Court, via “paper analysis")
I Face-to-Face (Bank, via bar-code readers)
I Telephone (Call Centers, via ACD / CTI)

I Future:
I Hospitals (via RFID)
I IVR (VRU), internet, chat (multi-media)
I Operational + Financial + Marketing / Clinical history
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Beyond Averages: Service Times in a Call Center

Histogram of Service Times in an Israeli Call Center

January-October November-December
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I 7.2% Short-Services:

Agents’ “Abandon" (improve bonus, rest)
I Distributions, not only Averages, must be measured.
I Lognormal service times prevalent in call centers
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Measurements: Face-to-Face Services
23 Bar-Code Readers at a Bank Branch

Bank – 2nd Floor Measurements 
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“Face-to-Face Services" Network

Bank Branch = Jackson Network
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Hospital Network (Marmur, Sinreich)

Generic Emergency Department (RFID)
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Figure 2.  The Unified Patient Process Chart 
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Present Focus: Call Centers

U.S. Statistics (Relevant Elsewhere)

I Over 60% of annual business volume via the telephone
I 100,000 – 200,000 call centers
I 3 – 6 million employees (2% – 4% workforce)
I 1000’s agents in a “single" call center = 70 % costs.
I 20% annual growth rate
I $200 – $300 billion annual expenditures

12



Call-Center Environment: Service Network
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Call-Centers: “Sweat-Shops of the 21st Century"
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Call-Center Network: Gallery of Models
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Beyond Averages: Waiting Times in a Call Center

Small Israeli Bank

quantiles of waiting times to those of the exponential (the straight line at the right plot). The �t is reasonable
up to about 700 seconds. (The p-value for the Kolmogorov-Smirnov test for Exponentiality is however 0 {
not that surprising in view of the sample size of 263,007).

Figure 9: Distribution of waiting time (1999)
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Remark on mixtures of independent exponentials: Interestingly, the means and standard deviations in Table
19 are rather close, both annually and across all months. This suggests also an exponential distribution
for each month separately, as was indeed veri�ed, and which is apparently inconsistent with the observerd
annual exponentiality. The phenomenon recurs later as well, hence an explanation is in order. We shall be
satis�ed with demonstrating that a true mixture W of independent random varibles Wi, all of which have
coeÆcients of variation C(Wi) = 1, can also have C(W ) � 1. To this end, let Wi denote the waiting time in
month i, and suppose it is exponentially distributed with meanmi. Assume that the months are independent
and let pi be the fraction of calls performed in month i (out of the yearly total). If W denotes the mixture
of these exponentials (W =Wi with probability pi, that is W has a hyper-exponential distribution), then

C2(W ) = 1 + 2C2(M);

where M stands for a �ctitious random variable, de�ned to be equal mi with probability pi. One concludes
that if themi's do not vary much relative to their mean (C(M) << 1), which is the case here, then C(W ) � 1,
allowing for approximate exponentiality of both the mixture and its constituents.

6.2.1 The various waiting times, and their rami�cations

We �rst distinguished between queueing time and waiting time. The latter does not account for zero-waits,
and it is more relevant for managers, especially when considered jointly with the fraction of customers that
did wait. A more fundamental distinction is between the waiting times of customer that got served and those
that abandoned. Here is it important to recognize that the latter does not describe customers' patience,
which we now explain.

A third distinction is between the time that a customer needs to wait before reaching an agent vs. the time
that a customer is willing to wait before abandoning the system. The former is referred to as virtual waiting
time, since it amounts to the time that a (virtual) customer, equipped with an in�nite patience, would have
waited till being served; the latter will serve as our operational measure of customers' patience. While both
measures are obviously of great importance, note however that neither is directly observable, and hence must
be estimated.
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The “Anatomy of Waiting" for Service

Common Experience:
I Expected to wait 5 minutes, Required to 10,
I Felt like 20, Actually waited 10,
I . . . etc.

An attempt at “Modeling the Experience":
1. Time that a customer expects to wait
2. willing to wait ((Im)Patience: τ )
3. required to wait (Offered Wait:V )
4. actually waits (Wq = min(τ, V ))
5. perceives waiting.

Experienced customers ⇒ Expected = Required
“Rational" customers ⇒ Perceived = Actual.

Then left with (τ, V ) .
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Call Center Data: Hazard Rates (Un-Censored)

Israel

U.S.
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A “Waiting-Times" Puzzle at a Large Israeli Bank
waitwait
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Peaks Every 60 Seconds. Why?
I Human: Voice-announcement every 60 seconds.

I System: Priority-upgrade (unrevealed) every 60 sec’s (Theory?)

Served Customers Abandoning Customerswaithandled
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Models for Performance Analysis

I (Im)Patience: r.v. τ = Time a customer is willing to wait

I Offered-Wait: r.v. V = Time a customer is required to wait
(= Waiting time of a customer with infinite patience).

I Abandonment = {τ ≤ V}
I Service = {τ > V}
I Actual Wait Wq = min{τ, V}.

Modeling: τ = input to the model, V = output.

Operational Performance-Measure calculable in terms of (τ, V ):

I eg. Avg. Wait = E[min{τ, V}] ( E[Wq |Served] = E[V |τ > V ] )
I eg. % Abandon = P{τ ≤ V} ( P{5 sec < τ ≤ V} )

Application: Staffing – How Many Agents? (then: When? Who?)
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The Basic Staffing Model: Erlang-A (M/M/N + M)

agents

arrivals

abandonment

λ

µ

1

2

n

…

queue

θ

Erlang-A (Palm 1940’s) = Birth & Death Q, with parameters:

I λ – Arrival rate (Poisson)
I µ – Service rate (Exponential)
I θ – Impatience rate (Exponential)
I n – Number of Service-Agents.
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Testing the Erlang-A Primitives

I Arrivals: Poisson?
I Service-durations: Exponential?
I (Im)Patience: Exponential?

I Primitives independent?
I Customers / Servers Heterogeneous?
I Service discipline FCFS?
I . . . ?

Validation: Support? Refute?

22
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Arrivals to Service: only Poisson-Relatives

Arrival Rate to Three Call Centers

Dec. 1995 (U.S. 700 Helpdesks) May 1959 (England)
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Service Durations: LogNormal Prevalent

Israeli Bank Survival-Functions
Log-Histogram by Service-Class
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Service Time
Survival curve, by Types
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Means (In Seconds)

NW (New) = 111

PS (Regular) = 181

NE (Stocks) = 269

IN (Internet) = 381
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I New Customers: 2 min (NW);
I Regulars: 3 min (PS);

I Stock: 4.5 min (NE);
I Tech-Support: 6.5 min (IN).

Observation: VIP require longer service times.
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(Im)Patience while Waiting (Palm 1943-53)

Irritation ∝ Hazard Rate of (Im)Patience Distribution
Regular over VIP Customers – Israeli Bank 

14

  
   

16

I Peaks of abandonment at times of Announcements
I Call-by-Call Data (DataMOCCA) required (& Un-Censoring).

Observation: VIP are more patient (Needy)
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A “Service-Time" Puzzle at an Israeli Bank
Inter-related Primitives

Average Service Time over the Day – Israeli Bank
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Figure 12: Mean Service Time (Regular) vs. Time-of-day (95% CI) (n =

42613)
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Prevalent: Longest services at peak-loads (10:00, 15:00). Why?

Explanations:
I Common: Service protocol different (longer) during peak times.
I Operational: The needy abandon less during peak times;

hence the VIP remain on line, with their long service times.
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I Operational: The needy abandon less during peak times;
hence the VIP remain on line, with their long service times.
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Prevalent: Longest services at peak-loads (10:00, 15:00). Why?
Explanations:

I Common: Service protocol different (longer) during peak times.
I Operational: The needy abandon less during peak times;

hence the VIP remain on line, with their long service times.
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Erlang-A: Practical Relevance?

Experience:
I Arrival process not pure Poisson (time-varying, σ2 too large)
I Service times not Exponential (typically close to LogNormal)
I Patience times not Exponential (various patterns observed).

I Building Blocks need not be independent (eg. long wait
possibly implies long service)

I Customers and Servers not homogeneous (classes, skills)
I Customers return for service (after busy, abandonment)
I · · · , and more.

Question: Is Erlang-A Practically Relevant?
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Estimating (Im)Patience: via P{Ab} ∝ E[Wq]

Assume Exp(θ) (im)patience. Then, P{Ab} = θ · E[Wq] .

Israeli Bank: Yearly Data

Hourly Data Aggregated
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Graphs based on 4158 hour intervals.

Estimate of mean (im)patience: 250/0.55 ≈ 450 seconds.
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Erlang-A: Fitting a Simple Model to a Complex Reality

I Small Israeli Banking Call-Center (10 agents)
I (Im)Patience (θ) estimated via P{Ab} / E[Wq]

I Graphs: Hourly Performance vs. Erlang-A Predictions,
during 1 year (aggregating groups with 40 similar hours).
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Erlang-A: Simple, but Not Too Simple

Further Natural Questions:

1. Why does Erlang-A practically work? justify robustness.
2. When does it fail? chart boundaries.
3. Generalize: time-variation, SBR, networks, uncertainty , . . .

Answers via Asymptotic Analysis, as load- and staffing-levels
increase, which reveals model-essentials:

I Efficiency-Driven (ED) regime: Fluid models (deterministic)
I Quality- and Efficiency-Driven (QED): Diffusion refinements.

Motivation: Moderate-to-large service systems (100’s - 1000’s
servers), notably call-centers.

Results turn out accurate enough to also cover 10-20 servers.
Important – relevant to hospitals (nurse-staffing: de Véricourt &
Jennings, 2006), ...
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Operational Regimes: Conceptual Framework

Assume: Offered Load R = λ
µ

(= λ × E[S]) not too small.

QD Regime: N ≈ R + δR [(N − R)/R → δ, as N, λ ↑ ∞]
I Essentially no delays: [P{Wq > 0} → 0].

ED Regime: N ≈ R − γR
I Garnett, M. & Reiman 2003
I Essentially all customers are delayed
I Wait same order as service-time; γ% Abandon (10-25%).

QED Regime: N ≈ R + β
√

R
I Erlang 1924, Halfin & Whitt 1981
I %Delayed between 25% and 75%
I Wait one-order below service-time (sec vs. min); 1-5% Abandon.

QED+ED: N ≈ (1 − γ)R + β
√

R
I Zeltyn & M. 2006
I QED refining ED to accommodate “timely-delays": P{Wq > T}.
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QED: Practical Support

QOS parameter β = (N − R)/
√

R vs. %Abandonment

 46
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QED: Theoretical Support (Garnett, M., Reiman ‘02; Zeltyn ‘03)
       QED Theorem  (Garnett, M. and Reiman '02; Zeltyn '03) 

 
Consider a sequence of  M/M/N+G  models,  N=1,2,3,… 

Then the following points of view are equivalent: 
 

• QED           %{Wait > 0} ≈ α ,              0 < α  < 1 ;  
 
 

• Customers       %{Abandon} ≈ 
N
γ  ,            0 < γ  ;  

• Agents              OCC 
N
γβ +

−≈ 1                  −∞  < β  < ∞  ; 

• Managers    RRN β+≈   ,  ×= λR  E(S)   not small; 

 
QED performance (ASA, ...) is easily computable, all in terms 

of β   (the square-root safety staffing level) – see later. 

 

Covers also the Extremes: 

α = 1  :   N = R -  γ  R   Efficiency-driven 

α = 0  :   N = R + γ  R   Quality-driven  
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QED Approximations (Zeltyn, M. ‘06)

QED Approximations (Zeltyn)

λ – arrival rate,

µ – service rate,

N – number of servers,

G – patience distribution,

g0 – patience density at origin (g0 = θ, if exp(θ)).

N = λ
µ + β

√
λ
µ + o(

√
λ) , −∞ < β < ∞ .

P{Ab} ≈ 1√
N

· [h(β̂) − β̂
] ·

[√
µ

g0
+

h(β̂)

h(−β)

]−1

,

P

{
W >

T√
N

}
≈

[
1 +

√
g0

µ
· h(β̂)

h(−β)

]−1

· Φ̄
(
β̂ +

√
g0µ · T )

Φ̄(β̂)
,

P

{
Ab

∣∣∣∣ W >
T√
N

}
≈ 1√

N
·
√

g0

µ
· [h (

β̂ +
√

g0µ · T ) − β̂
]

.

Here

β̂ = β

√
µ

g0

Φ̄(x) = 1 − Φ(x) ,

h(x) = φ(x)/Φ̄(x) , hazard rate of N(0,1).

• Generalizing Garnett, M., Reiman (2002) (Palm 1943–53)

• No Process Limits

34



Garnett / Halfin-Whitt Functions: P{Wq > 0}
HW/GMR Delay Functions

 α vs. β
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QED Intuition via Excursions: Busy/Idle PeriodsM/M/N+M (Erlang-A) with Many Servers: N ↑ ∞

0 1 N-1 N N+1

Busy Period 

µ 2µ
Nµ(N-1)µ Nµ +

Q(0) = N : all servers busy, no queue.

Let TN,N−1 = Busy Period (down-crossing N ↓ N − 1 )

TN−1,N = Idle Period (up-crossing N − 1 ↑ N )

Then P (Wait > 0) =
TN,N−1

TN,N−1 + TN−1,N
=

[
1 +

TN−1,N

TN,N−1

]−1

.

Calculate TN−1,N =
1

λNE1,N−1
∼ 1

Nµ× h(−β)/
√

N
∼ 1√

N
· 1/µ

h(−β)

TN,N−1 =
1

Nµπ+(0)
∼ 1√

N
· β/µ

h(δ) /δ
, δ = β

√
µ/θ

Both apply as
√

N (1− ρN) → β, −∞ < β < ∞.

Hence, P (Wait > 0) ∼
[
1 +

h(δ)/δ

h(−β)/β

]−1

.

1
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QED Intuition via Excursions: Asymptotics

M/M/N+M (Erlang-A) with Many Servers: N ↑ ∞
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1
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∼ 1

Nµ× h(−β)/
√

N
∼ 1√

N
· 1/µ

h(−β)

TN,N−1 =
1

Nµπ+(0)
∼ 1√

N
· β/µ

h(δ) /δ
, δ = β

√
µ/θ

Both apply as
√

N (1− ρN) → β, −∞ < β < ∞.

Hence, P (Wait > 0) ∼
[
1 +

h(δ)/δ

h(−β)/β

]−1

.

1

Special cases:
I µ = θ: Q d

= M/M/∞, since sojourn-time always exp(µ = θ).

I β = 0 (N ≈ R): P{Wait > 0} ≈ [1 +
√

θ/µ]−1.

I Both of the above: P{Wait > 0} ≈ 1/2.
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Process Limits (Queueing, Waiting)

Approximating Queueing and Waiting

• QN = {QN(t), t ≥ 0} : QN(t) = number in system at t ≥ 0.

• Q̂N = {Q̂N(t), t ≥ 0} : stochastic process obtained by

centering and rescaling:

Q̂N =
QN −N√

N

• Q̂N(∞) : stationary distribution of Q̂N

• Q̂ = {Q̂(t), t ≥ 0} : process defined by: Q̂N(t)
d→ Q̂(t).

?
-

-

-

? ?

Q̂N(t) Q̂N(∞)

Q̂(t) Q(∞)

t →∞

t →∞

N →∞ N →∞

Approximating (Virtual) Waiting Time

V̂N =
√

N VN ⇒ V̂ =

[
1

µ
Q̂

]+

(Puhalskii, 1994)

9
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Dimensioning a Service System

Operational Regimes provide a conceptual framework.

Questions:

1. How accurate are QD/ED/QED approximations?
2. How to determine the regime? QOS parameters?
3. Is there a regime robust enough to cover the others?

Answers, via many-server Asymptotic Analysis (w/ Borst &
Reiman, 2004; Zeltyn, 2006):

1. Approximations are extremely accurate.
2. Dimensioning:

I Cost / Profit Optimization: eg. Min costs of Staffing + Congestion.

I Constraint Satisfaction: eg. Min. N , s.t. QOS constraints .

3. Robustness depends:
I Without Abandonment: QED covers all, at amazing accuracy.
I With Abandonment: ED, QED, ED+QED all have a role.
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Operational Regimes: Rules-of-ThumbOperational Regimes in Practice

Constraint P{Ab} E[W ] P{W > T}

Tight Loose Tight Loose Tight Loose

1-10% ≥ 10% ≤ 10%E[τ ] ≥ 10%E[τ ] 0 ≤ T ≤ 10%E[τ ] T ≥ 10%E[τ ]

Offered Load 5% ≤ α ≤ 50% 5% ≤ α ≤ 50%

Small (10’s) QED QED QED QED QED QED

Moderate-to-Large QED ED, QED ED, QED ED+QED

(100’s-1000’s) QED QED if τ d= exp

ED: n ≈ R − γR.

QD: n ≈ R + δR.

QED: n ≈ R + β
√

R.

ED+QED: n ≈ (1 − γ)R + β
√

R.

1

ED: N ≈ R − γR (0.1 ≤ γ ≤ 0.25 ).

QD: N ≈ R + δR (0.1 ≤ δ ≤ 0.25 ).

QED: N ≈ R + β
√

R (−1 ≤ β ≤ 1 ).

ED+QED: N ≈ (1 − γ)R + β
√

R (γ, β as above).
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Back to “Why does Erlang-A Work?"

Theoretical Answer: MJ
t /G/Nt + G

d
≈ (M/M/N + M)t , t ≥ 0.

I General Patience: Behavior at the origin is all that matters.

I General Services: Empirical insensitivity beyond the mean.

I Time-Varying Arrivals: Modified Offered-Load approximations.

I Heterogeneous Customers: 1-D state collapse.

Practically: Why do (stochastically-challenged) Call Centers work?

“The right answer for the wrong reason"
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“Why does Erlang-A Work?" General Patience

agents

arrivals

abandonment

λ

µ

1

2

n

…

queue

G

(Im)Patience times Generally Distributed: M/M/n+G

Exact analysis in steady-state (Baccelli & Hebuterne, 1981): solve
Kolmogorov’s PDE’s (semi-Markov) for the offered-wait V .

QED analysis (w/ Zeltyn, 2006): n ≈ R + β
√

R.
I Assume (Im)Patience density g(0) > 0.
I V asymptotics (λ ↑ ∞): Laplace Method, leading to
I QED Approximations: Use Erlang-A as is, with θ ↔ g(0).
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General Patience: Fitting Erlang-A

Israeli Bank: Yearly Data

Hourly Data Aggregated
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Theory:
Erlang-A: P{Ab} = θ · E[Wq]; M/M/N+G: P{Ab} ≈ g(0) · E[Wq].

Recipe:
In both cases, use Erlang-A, with θ̂ = P̂{Ab}/Ê[Wq] (slope above).
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Why Does Erlang-A Work? General Services

Established: M/M/N+G ≈ M/M/N+M (θ = g(0)).

Now: M/G/N+G ≈ M/M/N+G (E[S] same in both).

Numerical Experiments: Whitt (2004), Rosenshmidt (2006)
demonstrate a useful fit for typical call-center parameters.

Lognormal (CV=1) vs. Exponential Service Times, QED Regime;
100 agents, average patience = average service
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QED G-Services: G/DK /N+G (w/ Momčilović, ongoing).
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Why Does Erlang-A Work? Time-Varying Arrival Rates

Established: M/G/N+G ≈ M/M/N+M (θ = g(0)).

Now: Mt/G/Nt + G ≈ (M/G/N + G)t (Nt , λ well chosen).

Two steps (Feldman, M., Massey & Whitt, 2006):

1. Modified Offered-Load: λ

I Consider Mt/G/Nt + G with arrival rate λ(t), t ≥ 0.
I Approximate its time-varying performance at time t with a

stationary M/G/Nt + G, in which λ = Eλ(t − Se).

(Se
d
= residual-service: congestion-lag behind peak-load.)

2. Square-Root Staffing: Nt

I Let Rt = Eλ(t − Se) × ES be the Offered-Load at time t
(Rt = Number-in-system in a corresponding Mt/G/∞.)

I Staff Nt = Rt + β
√

Rt .

Serendipity: Time-stable performance, supported by ISA = Iterative
Staffing Algorithm, and QED diffusion limits (Mt/M/N + M, µ = θ).
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     Example: "Real" Call Center 
 
(The "Right Answer" for the "Wrong Reasons") 

 
 
Time-Varying (two-hump) arrival functions common  
(Adapted from Green L., Kolesar P., Soares J. for benchmarking.) 
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Assume: Service and abandonment times are both  

 Exponential, with mean 0.1 (6 min.) 
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Garnett / Halfin-Whitt Functions: P{Wq > 0}
HW/GMR Delay Functions

 α vs. β
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QED Erlang-A
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Delay Probability α 
Delay Probability
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   Real Call Center: Empirical waiting time, given positive wait 

  (1) α=0.1 (QD)         (2) α=0.5 (QED)            (3) α=0.9 (ED)     
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QED Staffing  (β=0 iff α=0.5) 
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  The "Right Answer" (for the "Wrong Reasons")  
 

Prevalent Practice                 (PSA) ⎡ ⎤)()( SEtNt ⋅= λ
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Practice  ≈ "Right"       β ≈ 0                                (QED) 
 
                        and        )(tλ  ≈ stable over service-durations 

 

Practice Improved          ⎡ ⎤)()]([ SESEtNt ⋅−= λ

 

When  Optimal ?   for moderately-patient customers:  

 
1.  Satisfization   At least 50% to be serve immediately ⇔
 
2.  Optimization ⇔  Customer-Time = 2 x Agent-Salary       
      



Why Does Erlang-A Work? Multi-Class Customers

Now: MJ
t /G/Nt + G ≈ (MJ/G/N + G)t (well staffed & controlled).

Service Levels: Class 1 = VIP , . . ., Class J = best-effort.

Staffing, Control (w/ Gurvich & Armony 2005; Feldman & Gurvich):
I Consider MJ

t /G/Nt + G with arrival rates λj(t), t ≥ 0.
I Assume i.i.d. servers.
I Let Rt = E

∑
j λj(t − Se)× ES be the Offered-Load at time t .

I Staff Nt = Rt + β
√

Rt , with β determined by a desired QED
performance for the lowest-priority class J.

I Control via threshold priorities, where the thresholds are
determined by ISA according to desired service levels.

I Approximate time-varying performance at time t with a
stationary threshold-controlled MJ/G/Nt + G, in which
λj = Eλj(t − Se).

Serendipity: Multi-Class Multi-Skill, w/ class-dependent services.
Support: ISA, QED diffusion limits (Atar, M. & Shaikhet, 2007).
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t /G/Nt + G ≈ (MJ/G/N + G)t (well staffed & controlled).

Service Levels: Class 1 = VIP , . . ., Class J = best-effort.
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∑
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√
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Additional Simple (QED) Models of Complex Realities:
Exponential Services; i.i.d. Customers, i.i.d. Servers

I Performance Analysis:
I Khudiakova, Feigin, M. (Semi-Open): Call-Center + IVR/VRU;
I De Véricourt, Jennings (Closed + Delay), then w/ Yom-Tov

(Semi-Open): Nurse staffing (ratios), bed sizing;
I Randhawa, Kumar (Closed + Loss): Subscriber queues.

I Optimal Staffing: Accurate to within 1, even with very small n’s,
for both constraint-satisfaction and cost/revenue optimization
(staffing, abandonment and waiting costs).

I Armony, Maglaras: (Mx /M/N) Delay information (Equilibrium);
I Borst, M., Reiman (M/M/N): Asymptotic framework;
I Zeltyn, M. (M/M/N+G): Optimization still ongoing.

I Time-Varying Queues, via 2 approaches:
I Jennings, M., Massey, Whitt, then w/ Feldman: Time-Stable

Performance (ISA, leading to Modified Offered Load);
I M., Massey, Reiman, Rider, Stolyar: Unavoidable Time-Varying

Performance (Fluid & Diffusion models, via Uniform Acceleration).
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Less-Simple (QED) Models: General Service-Times

The Challenge: Must keep track of the state of n individual servers,
as n ↑ ∞. (Recall Kiefer & Wolfowitz).

I Shwartz, M. (M/G/N), Rosenshmidt, M. (M/G/N+G): Simulations;
LogNormal better then Exp, 2-valued same as D.

I Whitt (GI/M+0/N): Covering CV ≥ 1;
I Puhalskii, Reiman (GI/PH/N): Markovian process-limits (no

steady-state); also priorities;
I Jelencović, M., Momc̆ilović (GI/D/N): steady-state (via

round-robin); then M., Momc̆ilović (G/DK /N): process-limits, via
“Lindley-Trees"; G/DK /N+G ongoing.

I Kaspi, Ramanan (G/G/N): Fluid, next Diffusion (measure-valued
ages, following Kiefer & Wolfowitz);

I Reed (GI/GI/N): Fluid, Diffusion (Skorohod-Like Mapping).
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Complex (QED) Models: Skills-Based Routing
(Heterogeneous Customers or/and Servers - Theory)

I V-Model: Harrison, Zeevi; Atar, M., Reiman; Gurvich, M.,
Armony;
then Class-dependent services: Atar, M., Shaikhet;

I Reversed-V: Armony, M.;
then Pool-dependent services: Dai, Tezcan; Gurvich, Whitt
(G-cµ); Atar, M., Shaikhet (Abandonment);

I General: Atar, then w/ Shaikhet (Null-controllability,
Throughput-suboptimality); Gurvich, Whitt (FQR);

I Distributed Networks: Tezcan;
I Random Service Rates: Atar (Fastest or longest-idle server).

50



The Technion SEE Center / Laboratory
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DataMOCCA = Data MOdels for Call Center Analysis

I Technion: P. Feigin, V. Trofimov, Statistics / SEE Laboratory.
I Wharton: L. Brown, N. Gans, H. Shen (UNC).
I industry:

I U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents.
I Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents;

ongoing.

Project Goal: Designing and Implementing a (universal)
data-base/data-repository and interface for storing, retrieving,
analyzing and displaying Call-by-Call-based Data / Information.

System Components:
I Clean Databases: operational-data of individual calls / agents.
I Graphical Online Interface: easily generates graphs and tables,

at varying resolutions (seconds, minutes, hours, days, months).

Free for academic adoption: ask for a DVD (3GB) .
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