QED Q's

(Service-Science & -Engineering of) <u>Quality- and Efficiency-Driven Queues</u> (Call/Contact Centers)

Avishai Mandelbaum

Technion, Haifa, Israel

http://ie.technion.ac.il/serveng

CMU, Probability in (the Service) Industry, August 2007

Based on joint work with Sergey Zeltyn, ...

Technion SEE Center / Lab: Paul Feigin, Valery Trofimov, RA's, ...

1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ۹ペ

- Data-Based Introduction
 - **Simple Models at the Service of Complex Realities:**
 - Courts, Banks, Hospitals, Call Centers, ...

- Data-Based Introduction
 - Simple Models at the Service of Complex Realities:
 - Courts, Banks, Hospitals, Call Centers, ...
- ► The Basic Call-Center Model: Palm/Erlang-A (M/M/N+M)
- Validating Erlang-A? All Assumptions Violated

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Data-Based Introduction
 - Simple Models at the Service of Complex Realities:
 - Courts, Banks, Hospitals, Call Centers, ...
- ► The Basic Call-Center Model: Palm/Erlang-A (M/M/N+M)
- Validating Erlang-A? All Assumptions Violated
- But Erlang-A Works! Why? Robustness via asymptotic analysis that reveals operational regimes: QED, ED, ED+QED

▲日▶▲母▶▲日▶▲日▶ ヨークタペ

- Data-Based Introduction
 - Simple Models at the Service of Complex Realities:
 - Courts, Banks, Hospitals, Call Centers, ...
- ► The Basic Call-Center Model: Palm/Erlang-A (M/M/N+M)
- Validating Erlang-A? All Assumptions Violated
- But Erlang-A Works! Why? Robustness via asymptotic analysis that reveals operational regimes: QED, ED, ED+QED
- And many ("stochastically-challenged") call centers work as well - Why? "Right Answers for the Wrong Reasons"

▲日▶▲母▶▲日▶▲日▶ ヨークタペ

- Data-Based Introduction
 - Simple Models at the Service of Complex Realities:
 - Courts, Banks, Hospitals, Call Centers, ...
- ► The Basic Call-Center Model: Palm/Erlang-A (M/M/N+M)
- Validating Erlang-A? All Assumptions Violated
- But Erlang-A Works! Why? Robustness via asymptotic analysis that reveals operational regimes: QED, ED, ED+QED
- And many ("stochastically-challenged") call centers work as well - Why? "Right Answers for the Wrong Reasons"
- "Appendix": Demo of DataMOCCA

A D M A

Background Material (Downloadable)

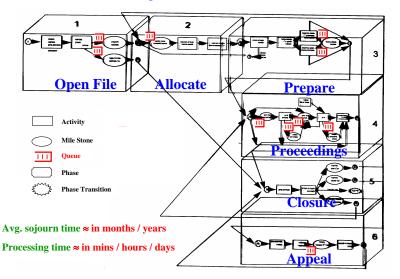
► Technion's "Service-Engineering" Course (≥ 1995): http://ie.technion.ac.il/serveng

Background Material (Downloadable)

- ► Technion's "Service-Engineering" Course (≥ 1995): http://ie.technion.ac.il/serveng
- Gans (U.S.A.), Koole (Europe), and M. (Israel): "Telephone Call Centers: Tutorial, Review and Research Prospects." MSOM, 2003.
- Brown, Gans, M., Sakov, Shen, Zeltyn, Zhao: "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective." JASA, 2005.
- Trofimov, Feigin, M., Ishay, Nadjharov: "DataMOCCA: Models for Call/Contact Center Analysis." Technion Report, 2004-2006.
- M. "Call Centers: Research Bibliography with Abstracts." Version 7, December 2006.

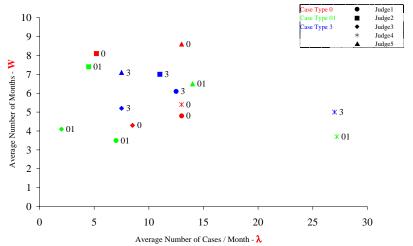
"Production of Justice" (Administrative) Network

Skills-Based-Routing at the Labor-Court in Haifa, Israel



Operational Performance: 5 Judges, 3 Case-Types

Judges: The Best/Worst (Operational) Performer

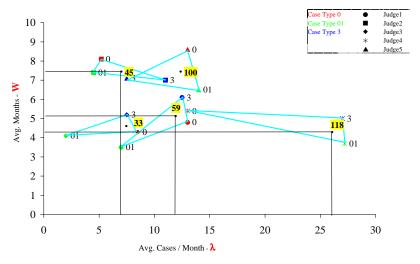


・ロット (雪) ・ ヨ)

э

Little's Law in Court (Creative Averaging)

Judges: The Best/Worst (Operational) Performer



э

Prerequisite: Data

Averages Prevalent.

But I need data at the level of the **Individual Transaction**: For each service transaction (during a phone-service in a call center, or a patient's stay in a hospital), its **operational history** = time-stamps of events.

Prerequisite: Data

Averages Prevalent.

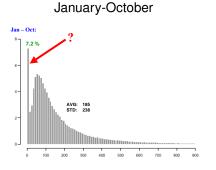
But I need data at the level of the **Individual Transaction**: For each service transaction (during a phone-service in a call center, or a patient's stay in a hospital), its **operational history** = time-stamps of events.

Sources: "Service-floor" (vs. Industry-level, Surveys, ...)

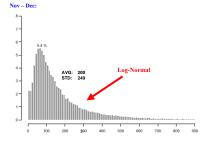
- Administrative (Court, via "paper analysis")
- Face-to-Face (Bank, via bar-code readers)
- Telephone (Call Centers, via ACD / CTI)
- Future:
 - Hospitals (via RFID)
 - IVR (VRU), internet, chat (multi-media)
 - Operational + Financial + Marketing / Clinical history

Beyond Averages: Service Times in a Call Center

Histogram of Service Times in an Israeli Call Center



November-December



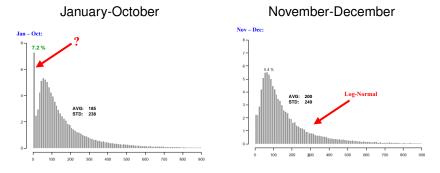
・ロット (雪) (日) (日)

э

► 7.2% Short-Services:

Beyond Averages: Service Times in a Call Center

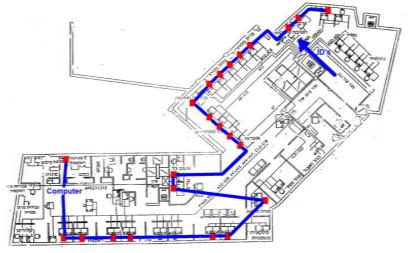
Histogram of Service Times in an Israeli Call Center



- 7.2% Short-Services: Agents' "Abandon" (improve bonus, rest)
- Distributions, not only Averages, must be measured.
- Lognormal service times prevalent in call centers

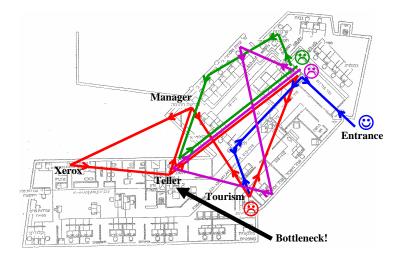
Measurements: Face-to-Face Services 23 Bar-Code Readers at a Bank Branch

Bank - 2nd Floor Measurements



"Face-to-Face Services" Network

Bank Branch = Jackson Network

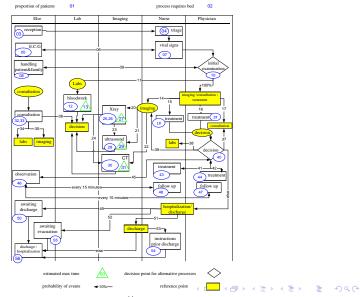


ヘロト 人間 とくほ とくほ とう

э

Hospital Network (Marmur, Sinreich)

Generic Emergency Department (RFID)



Present Focus: Call Centers

U.S. Statistics (Relevant Elsewhere)

- Over 60% of annual business volume via the telephone
- 100,000 200,000 call centers
- ► 3 6 million employees (2% 4% workforce)
- ▶ 1000's agents in a "single" call center = 70 % costs.
- 20% annual growth rate
- \$200 \$300 billion annual expenditures

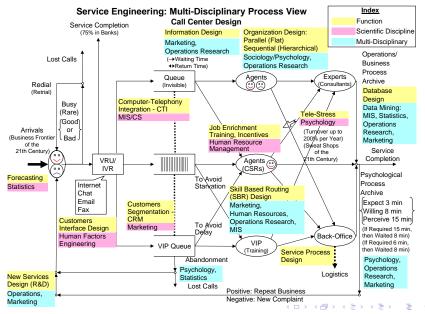
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Call-Center Environment: Service Network

< □ > < □ > < □ > < □ > < □ > = □

Call-Centers: "Sweat-Shops of the 21st Century"

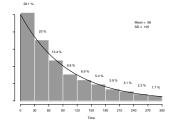
Call-Center Network: Gallery of Models

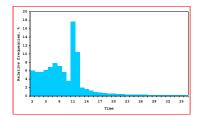


Beyond Averages: Waiting Times in a Call Center

Small Israeli Bank

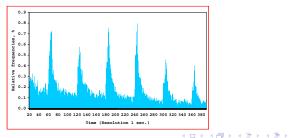
Large U.S. Bank





э

Medium Israeli Bank



The "Anatomy of Waiting" for Service

Common Experience:

- Expected to wait 5 minutes, Required to 10,
- Felt like 20, Actually waited 10,
- ... etc.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の < @

The "Anatomy of Waiting" for Service

Common Experience:

- Expected to wait 5 minutes, Required to 10,
- Felt like 20, Actually waited 10,
- ... etc.

An attempt at "Modeling the Experience":

1. Time that a customer	expects to wait	
2.	willing to wait	((Im)Patience: τ)
3.	required to wait	(Offered Wait: V)
4.	actually waits	$(W_q = \min(\tau, V))$
5.	perceives waiting.	• • •

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The "Anatomy of Waiting" for Service

Common Experience:

- Expected to wait 5 minutes, Required to 10,
- Felt like 20, Actually waited 10,
- ... etc.

An attempt at "Modeling the Experience":

1. Time that a customer	expects to wait	
2.	willing to wait	((Im)Patience: τ)
3.	required to wait	(Offered Wait: V)
4.	actually waits	$(W_q = \min(\tau, V))$
5.	perceives waiting.	

Experienced customers "Rational" customers

Experienced customers \Rightarrow Expected = Required

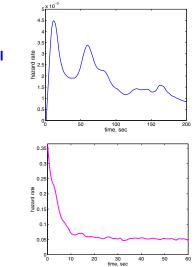
▲□▶▲□▶▲□▶▲□▶ □ のQ@

$$\Rightarrow$$
 Perceived = Actual.

Then left with (τ, V) .

Call Center Data: Hazard Rates (Un-Censored)

(Im)Patience Time τ

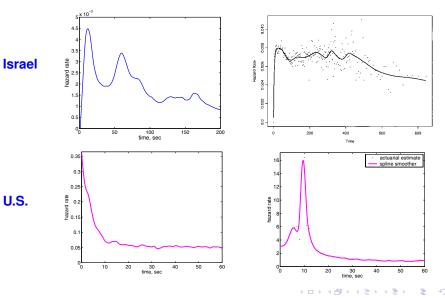


Israel

Call Center Data: Hazard Rates (Un-Censored)

(Im)Patience Time τ

Required/Offered Wait V

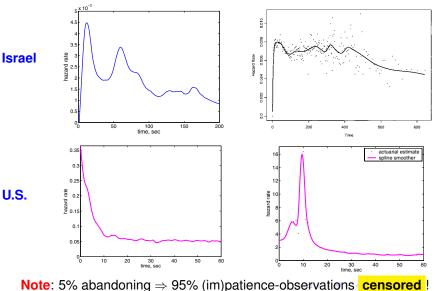


18

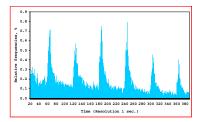
Call Center Data: Hazard Rates (Un-Censored)

(Im)Patience Time τ

Required/Offered Wait V



A "Waiting-Times" Puzzle at a Large Israeli Bank

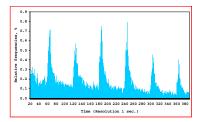


Peaks Every 60 Seconds. Why?

► Human: Voice-announcement every 60 seconds.

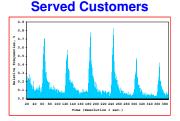
イロト イボト イヨト イヨト

A "Waiting-Times" Puzzle at a Large Israeli Bank

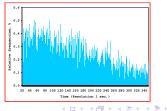


Peaks Every 60 Seconds. Why?

- Human: Voice-announcement every 60 seconds.
- System: Priority-upgrade (unrevealed) every 60 sec's (Theory?)



Abandoning Customers



Models for Performance Analysis

- (Im)Patience: r.v. τ = Time a customer is willing to wait
- Offered-Wait: r.v. V = Time a customer is required to wait
 (= Waiting time of a customer with infinite patience).
- Abandonment = $\{\tau \leq V\}$
- ► Service = {τ > V}
- Actual Wait $W_q = \min\{\tau, V\}$.

A D A 4 D A 4 D A 1 D A 0 Q Q

Models for Performance Analysis

- (Im)Patience: r.v. τ = Time a customer is willing to wait
- Offered-Wait: r.v. V = Time a customer is required to wait
 (= Waiting time of a customer with infinite patience).
- Abandonment = $\{\tau \leq V\}$
- ► Service = {τ > V}
- Actual Wait $W_q = \min\{\tau, V\}$.

Modeling: $\tau = input$ to the model, V = output.

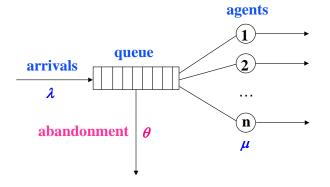
Operational Performance-Measure calculable in terms of (τ, V) :

- ▶ eg. Avg. Wait = $E[\min\{\tau, V\}]$ ($E[W_q|Served] = E[V|\tau > V]$)
- eg. % Abandon = $P\{\tau \le V\}$ ($P\{5 \text{ sec } < \tau \le V\}$)

Application: Staffing – How Many Agents? (then: When? Who?)

▲□▶▲□▶▲□▶▲□▶ □ のQで

The Basic Staffing Model: Erlang-A (M/M/N + M)



Erlang-A (Palm 1940's) = Birth & Death Q, with parameters:

- λ **Arrival** rate (Poisson)
- μ **Service** rate (Exponential)
- θ **Impatience** rate (Exponential)
- ▶ *n* Number of **Service-Agents**.

・ロット (雪) (日) (日)

э

Testing the Erlang-A Primitives

- Arrivals: Poisson?
- Service-durations: Exponential?
- (Im)Patience: Exponential?

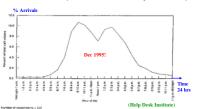
Testing the Erlang-A Primitives

- Arrivals: Poisson?
- Service-durations: Exponential?
- (Im)Patience: Exponential?
- Primitives independent?
- Customers / Servers Heterogeneous?
- Service discipline FCFS?
- ▶ ...?

Validation: Support? Refute?

Arrivals to Service: only Poisson-Relatives

Arrival Rate to Three Call Centers

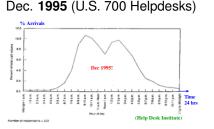


Dec. 1995 (U.S. 700 Helpdesks)

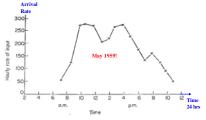
May 1959 (England)

Arrivals to Service: only Poisson-Relatives

Arrival Rate to Three Call Centers



May 1959 (England)



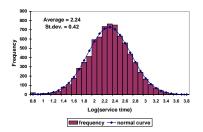
November 1999 (Israel)

Observation: Peak Loads at 10:00 & 15:00

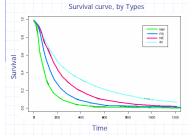
< ロ > < 同 > < 回 > < 回 >

Service Durations: LogNormal Prevalent

Israeli Bank Log-Histogram



Survival-Functions by Service-Class



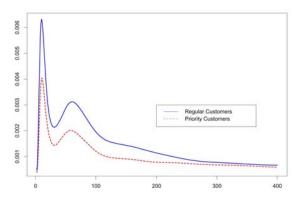
- New Customers: 2 min (NW);
- Regulars: 3 min (PS);

- Stock: 4.5 min (NE);
- Tech-Support: 6.5 min (IN).

Observation: VIP require longer service times.

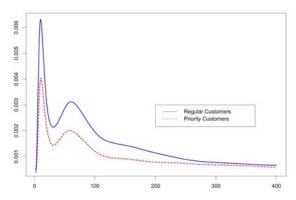
(Im)Patience while Waiting (Palm 1943-53)

$\label{eq:linear} \begin{array}{l} \mbox{Irritation} \propto \mbox{Hazard Rate of (Im)Patience Distribution} \\ \mbox{Regular over VIP Customers} - \mbox{Israeli Bank} \end{array}$



(Im)Patience while Waiting (Palm 1943-53)

$\label{eq:relation} \begin{array}{l} \mbox{Irritation} \propto \mbox{Hazard Rate of (Im)Patience Distribution} \\ \mbox{Regular over VIP Customers} - \mbox{Israeli Bank} \end{array}$



- Peaks of abandonment at times of Announcements
- Call-by-Call Data (DataMOCCA) required (& Un-Censoring).

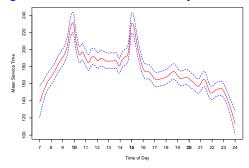
Observation: VIP are more patient (Needy)

・ロン ・雪 と ・ ヨ と

-

A "Service-Time" Puzzle at an Israeli Bank Inter-related Primitives

Average Service Time over the Day – Israeli Bank

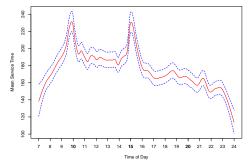


Prevalent: Longest services at peak-loads (10:00, 15:00). Why?

A B > A B >

A "Service-Time" Puzzle at an Israeli Bank Inter-related Primitives

Average Service Time over the Day – Israeli Bank



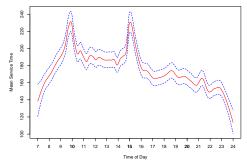
Prevalent: Longest services at peak-loads (10:00, 15:00). Why? Explanations:

Common: Service protocol different (longer) during peak times.

Image: A matrix and a matrix

A "Service-Time" Puzzle at an Israeli Bank Inter-related Primitives

Average Service Time over the Day – Israeli Bank



Prevalent: Longest services at peak-loads (10:00, 15:00). Why? Explanations:

- Common: Service protocol different (longer) during peak times.
- Operational: The needy abandon less during peak times; hence the VIP remain on line, with their long service times.

Erlang-A: Practical Relevance?

Experience:

- Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not Exponential (typically close to LogNormal)
- Patience times not Exponential (various patterns observed).
- Building Blocks need not be independent (eg. long wait possibly implies long service)
- Customers and Servers not homogeneous (classes, skills)
- Customers return for service (after busy, abandonment)
- ..., and more.

Erlang-A: Practical Relevance?

Experience:

- Arrival process **not pure Poisson** (time-varying, σ^2 too large)
- Service times not Exponential (typically close to LogNormal)
- Patience times not Exponential (various patterns observed).
- Building Blocks need not be independent (eg. long wait possibly implies long service)
- Customers and Servers not homogeneous (classes, skills)
- Customers return for service (after busy, abandonment)
- ..., and more.

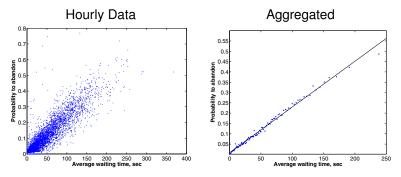
Question: Is Erlang-A Practically Relevant?

A D A 4 D A 4 D A 1 D A 0 Q Q

Estimating (Im)Patience: via P{Ab} $\propto E[W_q]$

Assume $Exp(\theta)$ (im)patience. Then, $P{Ab} = \theta \cdot E[W_q]$.

Israeli Bank: Yearly Data

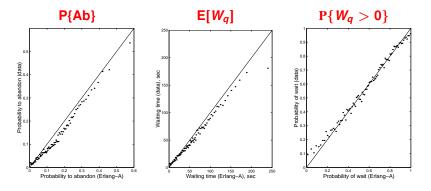


Graphs based on 4158 hour intervals.

Estimate of mean (im)patience: $250/0.55 \approx 450$ seconds.

Erlang-A: Fitting a Simple Model to a Complex Reality

- Small Israeli Banking Call-Center (10 agents)
- (Im)Patience (θ) estimated via P{Ab} / E[W_q]
- Graphs: Hourly Performance vs. Erlang-A Predictions, during 1 year (aggregating groups with 40 similar hours).



Erlang-A: Simple, but Not Too Simple

Further Natural Questions:

- 1. Why does Erlang-A practically work? justify robustness.
- 2. When does it fail? chart boundaries.
- 3. Generalize: time-variation, SBR, networks, uncertainty , ...

▲□▶▲□▶▲□▶▲□▶ □ のQで

Erlang-A: Simple, but Not Too Simple

Further Natural Questions:

- 1. Why does Erlang-A practically work? justify robustness.
- 2. When does it fail? chart boundaries.
- 3. Generalize: time-variation, SBR, networks, uncertainty , ...

Answers via **Asymptotic Analysis**, as load- and staffing-levels increase, which reveals model-essentials:

- Efficiency-Driven (ED) regime: Fluid models (deterministic)
- Quality- and Efficiency-Driven (QED): Diffusion refinements.

Erlang-A: Simple, but Not Too Simple

Further Natural Questions:

- 1. Why does Erlang-A practically work? justify robustness.
- 2. When does it fail? chart boundaries.
- 3. Generalize: time-variation, SBR, networks, uncertainty , ...

Answers via **Asymptotic Analysis**, as load- and staffing-levels increase, which reveals model-essentials:

- Efficiency-Driven (ED) regime: Fluid models (deterministic)
- Quality- and Efficiency-Driven (QED): Diffusion refinements.

Motivation: Moderate-to-large service systems (**100's - 1000's** servers), notably **call-centers**.

Results turn out **accurate** enough to also cover **10-20** servers. Important – relevant to **hospitals** (nurse-staffing: de Véricourt & Jennings, 2006), ...

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Operational Regimes: Conceptual Framework

Assume: Offered Load $R = \frac{\lambda}{\mu} (= \lambda \times E[S])$ not too small.

• Essentially no delays: $[P\{W_a > 0\} \rightarrow 0].$

QD Regime: $N \approx R + \delta R$ $[(N - R)/R \rightarrow \delta, \text{ as } N, \lambda \uparrow \infty]$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

ED Regime: $N \approx R - \gamma R$

- Garnett, M. & Reiman 2003
- Essentially all customers are delayed
- Wait same order as service-time; γ% Abandon (10-25%).

Operational Regimes: Conceptual Framework

Assume: Offered Load $R = \frac{\lambda}{\mu} (= \lambda \times E[S])$ not too small.

• Essentially no delays: $[P\{W_a > 0\} \rightarrow 0].$

QD Regime: $N \approx R + \delta R$ $[(N - R)/R \rightarrow \delta, \text{ as } N, \lambda \uparrow \infty]$

ED Regime: $N \approx R - \gamma R$

- Garnett, M. & Reiman 2003
- Essentially all customers are delayed
- Wait same order as service-time; γ% Abandon (10-25%).

QED Regime: $N \approx R + \beta \sqrt{R}$

- Erlang 1924, Halfin & Whitt 1981
- %Delayed between 25% and 75%
- Wait one-order below service-time (sec vs. min); 1-5% Abandon.

Operational Regimes: Conceptual Framework

Assume: Offered Load $R = \frac{\lambda}{\mu} (= \lambda \times E[S])$ not too small.

• Essentially no delays: $[P\{W_a > 0\} \rightarrow 0].$

QD Regime: $N \approx R + \delta R$ $[(N - R)/R \rightarrow \delta, \text{ as } N, \lambda \uparrow \infty]$

ED Regime: $N \approx R - \gamma R$

- Garnett, M. & Reiman 2003
- Essentially all customers are delayed
- Wait same order as service-time; γ% Abandon (10-25%).

QED Regime: $N \approx R + \beta \sqrt{R}$

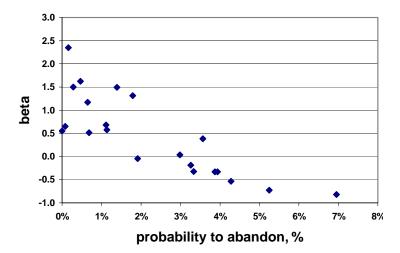
- Erlang 1924, Halfin & Whitt 1981
- %Delayed between 25% and 75%
- Wait one-order below service-time (sec vs. min); 1-5% Abandon.

QED+ED: $N \approx (1 - \gamma)R + \beta \sqrt{R}$

- Zeltyn & M. 2006
- QED refining ED to accommodate "timely-delays": $P\{W_q \ge T\}$.

QED: Practical Support

QOS parameter $\beta = (N - R)/\sqrt{R}$ vs. %Abandonment



QED: Theoretical Support (Garnett, M., Reiman '02; Zeltyn '03)

Consider a sequence of M/M/N+G models, N=1,2,3,...

Then the following **points of view** are equivalent:

• **QED** % {Wait > 0}
$$\approx \alpha$$
, $0 < \alpha < 1$;

• **Customers** % {Abandon}
$$\approx \frac{\gamma}{\sqrt{N}}$$
, $0 < \gamma$;

• Agents OCC
$$\approx 1 - \frac{\beta + \gamma}{\sqrt{N}}$$
 $-\infty < \beta < \infty$;

• **Managers** $N \approx R + \beta \sqrt{R}$, $R = \lambda \times E(S)$ not small;

QED performance (ASA, ...) is easily computable, all in terms of β (the square-root safety staffing level) – see later $\beta \in \mathbb{R}$ and $\beta \in \mathbb{R}$

QED Approximations (Zeltyn, M. '06)

G – patience distribution,

 g_0 – patience density at origin $(g_0 = \theta, \text{ if } \exp(\theta)).$

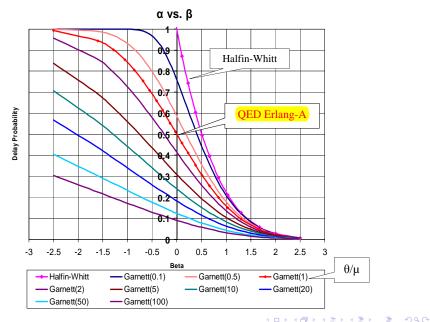
$$\begin{split} \mathbf{N} &= \frac{\lambda}{\mu} + \beta \sqrt{\frac{\lambda}{\mu}} + \mathbf{o}(\sqrt{\lambda}) \,, \qquad -\infty < \beta < \infty \,. \\ & \mathsf{P}\{\mathsf{Ab}\} \; \approx \; \frac{1}{\sqrt{N}} \cdot \left[h(\hat{\beta}) - \hat{\beta}\right] \cdot \left[\sqrt{\frac{\mu}{g_0}} + \frac{h(\hat{\beta})}{h(-\beta)}\right]^{-1} \,, \\ & \mathsf{P}\left\{W > \frac{T}{\sqrt{N}}\right\} \; \approx \; \left[1 + \sqrt{\frac{g_0}{\mu}} \cdot \frac{h(\hat{\beta})}{h(-\beta)}\right]^{-1} \cdot \frac{\Phi\left(\hat{\beta} + \sqrt{g_0\mu} \cdot T\right)}{\Phi(\hat{\beta})} \,, \\ & \mathsf{P}\left\{\mathsf{Ab} \; \left|W > \frac{T}{\sqrt{N}}\right\} \; \approx \; \frac{1}{\sqrt{N}} \cdot \sqrt{\frac{g_0}{\mu}} \cdot \left[h\left(\hat{\beta} + \sqrt{g_0\mu} \cdot T\right) - \hat{\beta}\right] \,. \end{split}$$

Here

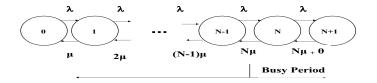
$$\begin{split} \hat{\beta} &= \beta \sqrt{\frac{\mu}{g_0}} \\ \bar{\Phi}(x) &= 1 - \Phi(x) , \\ h(x) &= \phi(x) / \bar{\Phi}(x) , \text{ hazard rate of } N(0, 1). \end{split}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Garnett / Halfin-Whitt Functions: $P\{W_q > 0\}$



QED Intuition via Excursions: Busy/Idle Periods



Q(0) = N: all servers busy, no queue.

Let $T_{N,N-1}$ = Busy Period (down-crossing $N \downarrow N-1$) $T_{N-1,N}$ = Idle Period (up-crossing $N-1 \uparrow N$)

Then
$$P(Wait > 0) = \frac{T_{N,N-1}}{T_{N,N-1} + T_{N-1,N}} = \left[1 + \frac{T_{N-1,N}}{T_{N,N-1}}\right]^{-1}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Calculate
$$T_{N-1,N} = \frac{1}{\lambda_N E_{1,N-1}} \sim \frac{1}{N\mu \times h(-\beta)/\sqrt{N}} \sim \frac{1}{\sqrt{N}} \cdot \frac{1/\mu}{h(-\beta)}$$

 $T_{N,N-1} = \frac{1}{N\mu\pi_+(0)} \sim \frac{1}{\sqrt{N}} \cdot \frac{\beta/\mu}{h(\delta)/\delta}, \quad \delta = \beta\sqrt{\mu/\theta}$
Both apply as $\sqrt{N} (1 - \rho_N) \to \beta, -\infty < \beta < \infty.$

Hence,
$$P(Wait > 0) \sim \left[1 + \frac{h(\delta)/\delta}{h(-\beta)/\beta}\right]^{-1}$$
.

Calculate
$$T_{N-1,N} = \frac{1}{\lambda_N E_{1,N-1}} \sim \frac{1}{N\mu \times h(-\beta)/\sqrt{N}} \sim \frac{1}{\sqrt{N}} \cdot \frac{1/\mu}{h(-\beta)}$$

 $T_{N,N-1} = \frac{1}{N\mu\pi_+(0)} \sim \frac{1}{\sqrt{N}} \cdot \frac{\beta/\mu}{h(\delta)/\delta}, \quad \delta = \beta\sqrt{\mu/\theta}$
Both apply as $\sqrt{N} (1 - \rho_N) \to \beta, -\infty < \beta < \infty.$

Hence,
$$P(Wait > 0) \sim \left[1 + \frac{h(\delta)/\delta}{h(-\beta)/\beta}\right]^{-1}$$
.

Special cases:

• $\mu = \theta$: $Q \stackrel{d}{=} M/M/\infty$, since sojourn-time always $\exp(\mu = \theta)$.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Calculate
$$T_{N-1,N} = \frac{1}{\lambda_N E_{1,N-1}} \sim \frac{1}{N\mu \times h(-\beta)/\sqrt{N}} \sim \frac{1}{\sqrt{N}} \cdot \frac{1/\mu}{h(-\beta)}$$

 $T_{N,N-1} = \frac{1}{N\mu\pi_+(0)} \sim \frac{1}{\sqrt{N}} \cdot \frac{\beta/\mu}{h(\delta)/\delta}, \quad \delta = \beta\sqrt{\mu/\theta}$
Both apply as $\sqrt{N} (1 - \rho_N) \to \beta, -\infty < \beta < \infty.$

Hence,
$$P(Wait > 0) \sim \left[1 + \frac{h(\delta)/\delta}{h(-\beta)/\beta}\right]^{-1}$$
.

Special cases:

• $\mu = \theta$: $Q \stackrel{d}{=} M/M/\infty$, since sojourn-time always $\exp(\mu = \theta)$.

$$\blacktriangleright \beta = \mathbf{0} \ (N \approx R): \ P\{Wait > \mathbf{0}\} \approx [1 + \sqrt{\theta/\mu}]^{-1}.$$

Calculate
$$T_{N-1,N} = \frac{1}{\lambda_N E_{1,N-1}} \sim \frac{1}{N\mu \times h(-\beta)/\sqrt{N}} \sim \frac{1}{\sqrt{N}} \cdot \frac{1/\mu}{h(-\beta)}$$

 $T_{N,N-1} = \frac{1}{N\mu\pi_+(0)} \sim \frac{1}{\sqrt{N}} \cdot \frac{\beta/\mu}{h(\delta)/\delta}, \quad \delta = \beta\sqrt{\mu/\theta}$
Both apply as $\sqrt{N} (1 - \rho_N) \to \beta, -\infty < \beta < \infty.$

Hence,
$$P(Wait > 0) \sim \left[1 + \frac{h(\delta)/\delta}{h(-\beta)/\beta}\right]^{-1}$$
.

Special cases:

• $\mu = \theta$: $Q \stackrel{d}{=} M/M/\infty$, since sojourn-time always $\exp(\mu = \theta)$.

• $\beta = \mathbf{0} (N \approx R)$: $P\{Wait > 0\} \approx [1 + \sqrt{\theta/\mu}]^{-1}$.

• Both of the above: $P{Wait > 0} \approx 1/2$.

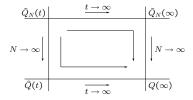
(日)

Process Limits (Queueing, Waiting)

Q̂_N = {Q̂_N(t), t ≥ 0} : stochastic process obtained by centering and rescaling:

$$\hat{Q}_N = \frac{Q_N - N}{\sqrt{N}}$$

- $\hat{Q}_N(\infty)$: stationary distribution of \hat{Q}_N
- $\hat{Q} = {\hat{Q}(t), t \ge 0}$: process defined by: $\hat{Q}_N(t) \stackrel{d}{\rightarrow} \hat{Q}(t)$.



Approximating (Virtual) Waiting Time

$$\hat{V}_{N} = \sqrt{N} V_{N} \Rightarrow \hat{V} = \left[\frac{1}{\mu} \hat{Q}\right]^{+} \qquad (\text{Puhalskii, 1994})$$

Operational Regimes provide a **conceptual framework**.

Operational Regimes provide a **conceptual framework**.

Questions:

- 1. How accurate are QD/ED/QED approximations?
- 2. How to determine the regime? QOS parameters?
- 3. Is there a regime robust enough to cover the others?

Operational Regimes provide a **conceptual framework**.

Questions:

- 1. How accurate are QD/ED/QED approximations?
- 2. How to determine the regime? QOS parameters?
- 3. Is there a regime robust enough to cover the others?

Answers, via many-server **Asymptotic Analysis** (w/ Borst & Reiman, 2004; Zeltyn, 2006):

1. Approximations are **extremely accurate**.

Operational Regimes provide a **conceptual framework**.

Questions:

- 1. How accurate are QD/ED/QED approximations?
- 2. How to determine the regime? QOS parameters?
- 3. Is there a regime robust enough to cover the others?

Answers, via many-server **Asymptotic Analysis** (w/ Borst & Reiman, 2004; Zeltyn, 2006):

- 1. Approximations are **extremely accurate**.
- 2. Dimensioning:
 - **Cost / Profit Optimization:** eg. Min costs of Staffing + Congestion.
 - Constraint Satisfaction: eg. Min. N, s.t. QOS constraints.

Operational Regimes provide a **conceptual framework**.

Questions:

- 1. How accurate are QD/ED/QED approximations?
- 2. How to determine the regime? QOS parameters?
- 3. Is there a regime robust enough to cover the others?

Answers, via many-server **Asymptotic Analysis** (w/ Borst & Reiman, 2004; Zeltyn, 2006):

- 1. Approximations are **extremely accurate**.
- 2. Dimensioning:
 - **Cost / Profit Optimization:** eg. Min costs of Staffing + Congestion.
 - Constraint Satisfaction: eg. Min. N, s.t. QOS constraints.
- 3. Robustness depends:
 - Without Abandonment: QED covers all, at amazing accuracy.
 - ► With Abandonment: ED, QED, ED+QED all have a role.

Operational Regimes: Rules-of-Thumb

Constraint	P{Ab}		E[W]		$\mathbf{P}\{W > T\}$	
	Tight	Loose	Tight	Loose	Tight	Loose
	1-10%	$\geq 10\%$	$\leq 10\% E[\tau]$	$\geq 10\% E[\tau]$	$0 \le T \le 10\% \mathrm{E}[\tau]$	$T \ge 10\% \mathrm{E}[\tau]$
Offered Load					$5\% \le \alpha \le 50\%$	$5\% \leq \alpha \leq 50\%$
Small (10's)	QED	QED	QED	QED	QED	QED
Moderate-to-Large	QED	ED,	QED	ED,	QED	ED+QED
(100's-1000's)		QED		QED if $\tau \stackrel{d}{=} \exp$		

ED: $N \approx \mathbf{R} - \gamma \mathbf{R}$ (0.1 $\leq \gamma \leq$ 0.25). **QD:** $N \approx \mathbf{R} + \delta \mathbf{R}$ (0.1 $\leq \delta \leq$ 0.25). **QED:** $N \approx \mathbf{R} + \beta \sqrt{\mathbf{R}}$ (-1 $\leq \beta \leq$ 1). **ED+QED:** $N \approx (1 - \gamma)\mathbf{R} + \beta \sqrt{\mathbf{R}}$ (γ, β as above).

Back to "Why does Erlang-A Work?"

Theoretical Answer: $M_t^J/G/N_t + G \stackrel{d}{\approx} (M/M/N + M)_t, t \ge 0.$

- General Patience: Behavior at the origin is all that matters.
- General Services: Empirical insensitivity beyond the mean.
- Time-Varying Arrivals: Modified Offered-Load approximations.
- Heterogeneous Customers: 1-D state collapse.

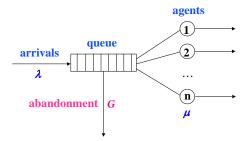
Back to "Why does Erlang-A Work?"

Theoretical Answer: $M_t^J/G/N_t + G \stackrel{d}{\approx} (M/M/N + M)_t, t \ge 0.$

- General Patience: Behavior at the origin is all that matters.
- General Services: Empirical insensitivity beyond the mean.
- ► Time-Varying Arrivals: Modified Offered-Load approximations.
- ► Heterogeneous Customers: 1-D state collapse.

Practically: Why do (stochastically-challenged) Call Centers work? "The right answer for the wrong reason"

"Why does Erlang-A Work?" General Patience



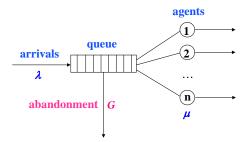
(Im)Patience times Generally Distributed: M/M/n+G

Exact analysis in steady-state (Baccelli & Hebuterne, 1981): solve Kolmogorov's PDE's (semi-Markov) for the offered-wait *V*.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

э

"Why does Erlang-A Work?" General Patience



(Im)Patience times Generally Distributed: M/M/n+G

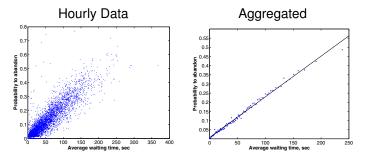
Exact analysis in steady-state (Baccelli & Hebuterne, 1981): solve Kolmogorov's PDE's (semi-Markov) for the offered-wait *V*.

QED analysis (w/ Zeltyn, 2006): $\boldsymbol{n} \approx \boldsymbol{R} + \beta \sqrt{\boldsymbol{R}}$.

- Assume (Im)Patience density g(0) > 0.
- **V** asymptotics $(\lambda \uparrow \infty)$: Laplace Method, leading to
- QED Approximations: Use Erlang-A as is, with $\theta \leftrightarrow g(0)$.

General Patience: Fitting Erlang-A

Israeli Bank: Yearly Data



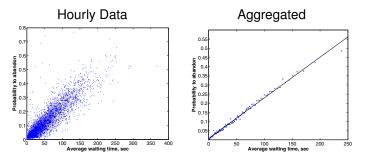
Theory: Erlang-A: $P{Ab} = \theta \cdot E[W_q];$

M/M/N+G: P{Ab} $\approx g(0) \cdot E[W_q]$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General Patience: Fitting Erlang-A

Israeli Bank: Yearly Data



Theory:

Erlang-A: $P{Ab} = \theta \cdot E[W_q];$

M/M/N+G: P{Ab} $\approx g(0) \cdot E[W_q]$.

< ロ > < 同 > < 回 > < 回 >

Recipe:

In both cases, use Erlang-A, with $\hat{\theta} = \widehat{\mathsf{P}\{\mathsf{Ab}\}}/\widehat{\mathsf{E}[W_q]}$ (slope above).

Established: $M/M/N+G \approx M/M/N+M$ ($\theta = g(0)$).

Established: $M/M/N+G \approx M/M/N+M$ ($\theta = g(0)$).

Now: $M/G/N+G \approx M/M/N+G$ (E[S] same in both).

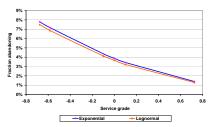
Established: $M/M/N+G \approx M/M/N+M$ ($\theta = g(0)$).

Now: $M/G/N+G \approx M/M/N+G$ (E[S] same in both).

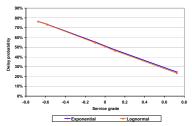
Numerical Experiments: Whitt (2004), Rosenshmidt (2006) demonstrate a **useful fit** for typical call-center parameters.

Lognormal (CV=1) vs. Exponential Service Times, QED Regime; 100 agents, average patience = average service

Fraction Abandoning



Delay Probability



Established: $M/M/N+G \approx M/M/N+M$ ($\theta = g(0)$).

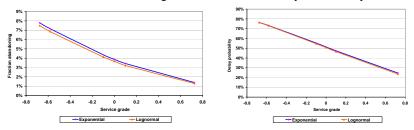
Now: $M/G/N+G \approx M/M/N+G$ (E[S] same in both).

Numerical Experiments: Whitt (2004), Rosenshmidt (2006) demonstrate a **useful fit** for typical call-center parameters.

Lognormal (CV=1) vs. Exponential Service Times, QED Regime; 100 agents, average patience = average service

Fraction Abandoning

Delay Probability



QED G-Services: $G/D_K/N+G$ (w/ Momčilović, ongoing).

Established: $M/G/N+G \approx M/M/N+M$ ($\theta = g(0)$).

Established: $M/G/N+G \approx M/M/N+M$ ($\theta = g(0)$).

Now: $M_t/G/N_t + G \approx (M/G/N + G)_t$ $(N_t, \lambda \text{ well chosen}).$

Established: $M/G/N+G \approx M/M/N+M$ ($\theta = g(0)$).

Now: $M_t/G/N_t + G \approx (M/G/N + G)_t$ $(N_t, \lambda \text{ well chosen}).$

Two steps (Feldman, M., Massey & Whitt, 2006):

- 1. Modified Offered-Load: λ
 - Consider $M_t/G/N_t + G$ with arrival rate $\lambda(t), t \ge 0$.
 - Approximate its time-varying performance at time t with a stationary M/G/Nt + G, in which λ = Eλ(t − Se).
 (Se ^d = residual-service: congestion-lag behind peak-load.)

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Established: $M/G/N+G \approx M/M/N+M$ ($\theta = g(0)$).

Now: $M_t/G/N_t + G \approx (M/G/N + G)_t$ $(N_t, \lambda \text{ well chosen}).$

Two steps (Feldman, M., Massey & Whitt, 2006):

- 1. Modified Offered-Load: λ
 - Consider $M_t/G/N_t + G$ with arrival rate $\lambda(t), t \ge 0$.
 - Approximate its time-varying performance at time t with a stationary M/G/Nt + G, in which λ = Eλ(t S_e).
 (S_e ^d = residual-service: congestion-lag behind peak-load.)

2. Square-Root Staffing: Nt

- ► Let $R_t = E\lambda(t S_e) \times ES$ be the Offered-Load at time t(R_t = Number-in-system in a corresponding $M_t/G/\infty$.)
- Staff $N_t = R_t + \beta \sqrt{R_t}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Established: $M/G/N+G \approx M/M/N+M$ ($\theta = g(0)$).

Now: $M_t/G/N_t + G \approx (M/G/N + G)_t$ $(N_t, \lambda \text{ well chosen}).$

Two steps (Feldman, M., Massey & Whitt, 2006):

- 1. Modified Offered-Load: λ
 - Consider $M_t/G/N_t + G$ with arrival rate $\lambda(t), t \ge 0$.
 - Approximate its time-varying performance at time t with a stationary M/G/Nt + G, in which λ = Eλ(t S_e).
 (S_e ^d = residual-service: congestion-lag behind peak-load.)

2. Square-Root Staffing: Nt

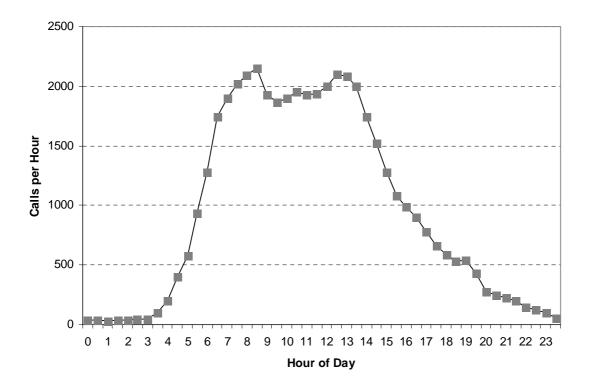
- ► Let $R_t = E\lambda(t S_e) \times ES$ be the Offered-Load at time t (R_t = Number-in-system in a corresponding $M_t/G/\infty$.)
- Staff $N_t = R_t + \beta \sqrt{R_t}$.

Serendipity: Time-stable performance, supported by **ISA** = Iterative Staffing Algorithm, and QED diffusion limits $(M_t/M/N + M, \mu = \theta)$.

Example: "Real" Call Center

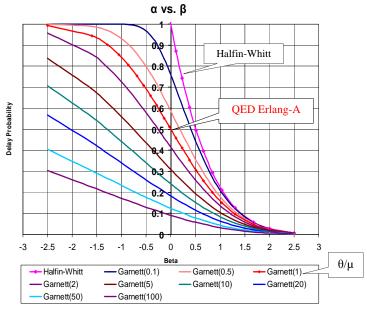
(The "Right Answer" for the "Wrong Reasons")

Time-Varying (two-hump) arrival functions common (Adapted from Green L., Kolesar P., Soares J. for benchmarking.)



Assume: Service and abandonment times are both Exponential, with mean 0.1 (6 min.)

Garnett / Halfin-Whitt Functions: $P\{W_q > 0\}$

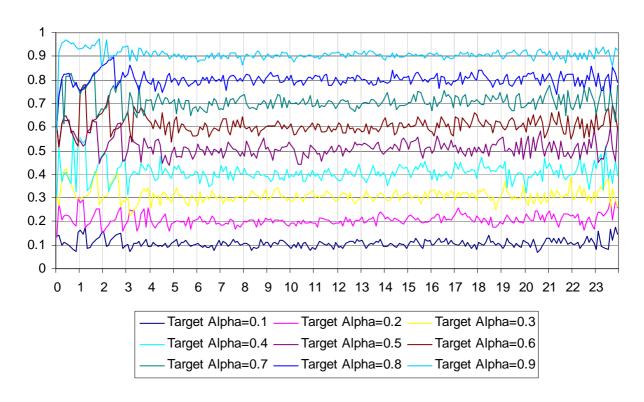


33

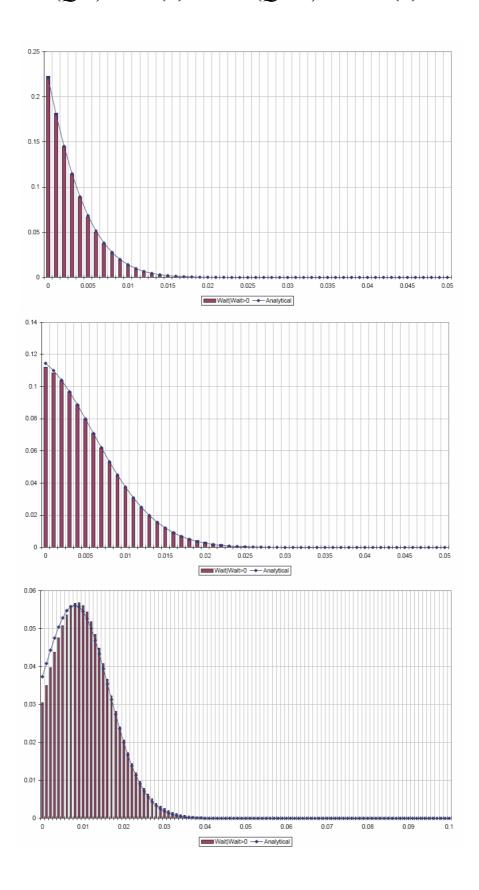
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

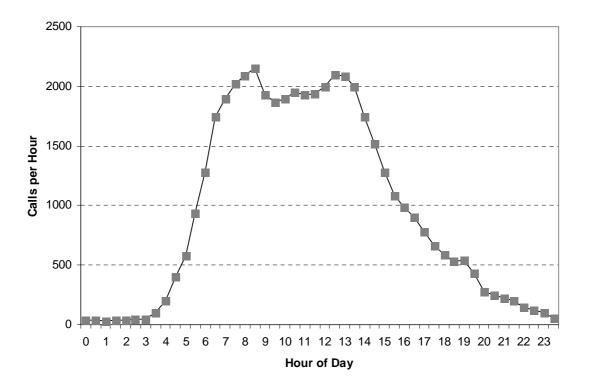
Delay Probability α

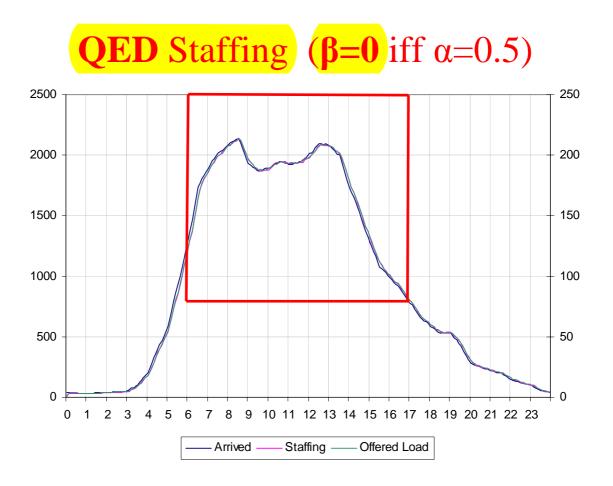
Delay Probability



Real Call Center: Empirical waiting time, given positive wait(1) α =0.1 (QD)(2) α =0.5 (QED)(3) α =0.9 (ED)







The "Right Answer" (for the "Wrong Reasons")

Prevalent Practice	$N_t = \left\lceil \lambda(t) \cdot E(S) \right\rceil$	(PSA)
"Right Answer"	$N_t \approx R_t + \beta \cdot \sqrt{R_t}$	(MOL)

$$R_t = E\lambda(t-S) \cdot E(S)$$

The "Right Answer" (for the "Wrong Reasons") Prevalent Practice $N_t = \left\lceil \lambda(t) \cdot E(S) \right\rceil$ (PSA) "Right Answer" $N_t \approx R_t + \beta \cdot \sqrt{R_t}$ (MOL) $R_t = E\lambda(t-S) \cdot E(S)$ <mark>β ≈ 0</mark> Practice \approx "Right" (QED) $\lambda(t) \approx$ stable over service-durations and **Practice Improved** $N_t = \lceil \lambda [t - E(S)] \cdot E(S) \rceil$

The "Right Answer" (for the "Wrong Reasons")			
Prevalent Practice	$N_t = \left\lceil \lambda(t) \cdot E(S) \right\rceil$	(PSA)	
"Right Answer"	$N_t \approx R_t + \beta \cdot \sqrt{R_t}$	(MOL)	
	$R_t = E\lambda(t-S)$	$) \cdot E(S)$	
Practice ≈ "Right"	$\beta \approx 0$	(<mark>QED</mark>)	
and	$\lambda(t) \approx$ stable over serv	vice-durations	
Practice Improved	$N_t = \left[\lambda [t - E(S)] \cdot E \right]$	(S)	
When Optimal ? for moderately-patient customers:			

1. Satisfization \Leftrightarrow At least 50% to be serve immediately

2. **Optimization** \Leftrightarrow Customer-Time = 2 x Agent-Salary

Now: $M_t^J/G/N_t + G \approx (M^J/G/N + G)_t$ (well staffed & controlled). **Service Levels**: Class 1 = **VIP**, ..., Class *J* = **best-effort**.

Now: $M_t^J/G/N_t + G \approx (M^J/G/N + G)_t$ (well staffed & controlled). **Service Levels:** Class 1 = **VIP**, ..., Class *J* = **best-effort**.

Staffing, Control (w/ Gurvich & Armony 2005; Feldman & Gurvich):

- Consider $M_t^J/G/N_t + G$ with arrival rates $\lambda_i(t), t \ge 0$.
- Assume i.i.d. servers.

► Let
$$R_t = E \sum_j \lambda_j (t - S_e) \times ES$$
 be the **Offered-Load** at time *t*.

Now: $M_t^J/G/N_t + G \approx (M^J/G/N + G)_t$ (well staffed & controlled). **Service Levels:** Class 1 = **VIP**, ..., Class *J* = **best-effort**.

Staffing, Control (w/ Gurvich & Armony 2005; Feldman & Gurvich):

- Consider $M_t^J/G/N_t + G$ with arrival rates $\lambda_i(t), t \ge 0$.
- Assume i.i.d. servers.
- Let $R_t = E \sum_j \lambda_j (t S_e) \times ES$ be the **Offered-Load** at time *t*.
- ► Staff $N_t = R_t + \beta \sqrt{R_t}$, with β determined by a desired QED performance for the lowest-priority class *J*.
- Control via threshold priorities, where the thresholds are determined by ISA according to desired service levels.
- Approximate time-varying performance at time t with a stationary threshold-controlled $M^J/G/N_t + G$, in which $\lambda_j = E\lambda_j(t S_e)$.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Now: $M_t^J/G/N_t + G \approx (M^J/G/N + G)_t$ (well staffed & controlled). **Service Levels:** Class 1 = **VIP**, ..., Class *J* = **best-effort**.

Staffing, Control (w/ Gurvich & Armony 2005; Feldman & Gurvich):

- Consider $M_t^J/G/N_t + G$ with arrival rates $\lambda_j(t), t \ge 0$.
- Assume i.i.d. servers.
- ► Let $R_t = E \sum_j \lambda_j (t S_e) \times ES$ be the **Offered-Load** at time *t*.
- ► **Staff** $N_t = R_t + \beta \sqrt{R_t}$, with β determined by a desired QED performance for the lowest-priority class **J**.
- Control via threshold priorities, where the thresholds are determined by ISA according to desired service levels.
- Approximate time-varying performance at time t with a stationary threshold-controlled $M^J/G/N_t + G$, in which $\lambda_j = E\lambda_j(t S_e)$.

Serendipity: Multi-Class Multi-Skill, w/ class-dependent services. Support: ISA, QED diffusion limits (Atar, M. & Shaikhet, 2007).

Sac

Additional Simple (QED) Models of Complex Realities: Exponential Services; i.i.d. Customers, i.i.d. Servers

- Performance Analysis:
 - Khudiakova, Feigin, M. (Semi-Open): Call-Center + IVR/VRU;
 - De Véricourt, Jennings (Closed + Delay), then w/ Yom-Tov (Semi-Open): Nurse staffing (ratios), bed sizing;
 - Randhawa, Kumar (Closed + Loss): Subscriber queues.
- Optimal Staffing: Accurate to within 1, even with very small n's, for both constraint-satisfaction and cost/revenue optimization (staffing, abandonment and waiting costs).
 - ► Armony, Maglaras: (*M*_x/M/N) Delay information (Equilibrium);
 - Borst, M., Reiman (M/M/N): Asymptotic framework;
 - Zeltyn, M. (M/M/N+G): Optimization still ongoing.
- Time-Varying Queues, via 2 approaches:
 - Jennings, M., Massey, Whitt, then w/ Feldman: Time-Stable Performance (ISA, leading to Modified Offered Load);
 - M., Massey, Reiman, Rider, Stolyar: Unavoidable Time-Varying Performance (Fluid & Diffusion models, via Uniform Acceleration).

Less-Simple (QED) Models: General Service-Times

The Challenge: Must keep track of the state of *n* individual servers, as $n \uparrow \infty$. (Recall Kiefer & Wolfowitz).

- Shwartz, M. (M/G/N), Rosenshmidt, M. (M/G/N+G): Simulations; LogNormal better then Exp, 2-valued same as D.
- Whitt (GI/M+0/N): Covering $CV \ge 1$;
- Puhalskii, Reiman (GI/PH/N): Markovian process-limits (no steady-state); also priorities;
- Jelencović, M., Momčilović (GI/D/N): steady-state (via round-robin); then M., Momčilović (G/D_K/N): process-limits, via "Lindley-Trees"; G/D_K/N+G ongoing.
- Kaspi, Ramanan (G/G/N): Fluid, next Diffusion (measure-valued ages, following Kiefer & Wolfowitz);
- ► Reed (GI/GI/N): Fluid, Diffusion (Skorohod-Like Mapping).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シのへで

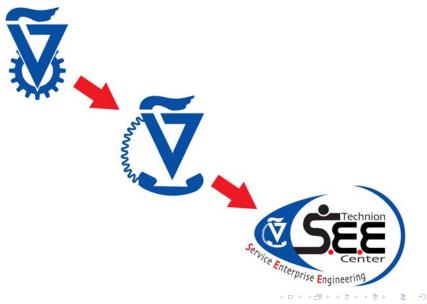
Complex (QED) Models: Skills-Based Routing

(Heterogeneous Customers or/and Servers - Theory)

- V-Model: Harrison, Zeevi; Atar, M., Reiman; Gurvich, M., Armony; then Class-dependent services: Atar, M., Shaikhet;
- Reversed-V: Armony, M.; then Pool-dependent services: Dai, Tezcan; Gurvich, Whitt (G-cµ); Atar, M., Shaikhet (Abandonment);
- General: Atar, then w/ Shaikhet (Null-controllability, Throughput-suboptimality); Gurvich, Whitt (FQR);
- Distributed Networks: Tezcan;
- ► Random Service Rates: Atar (Fastest or longest-idle server).

A D A 4 D A 4 D A 1 D A 0 Q Q

The Technion SEE Center / Laboratory



- **Technion**: P. Feigin, V. Trofimov, Statistics / SEE Laboratory.
- Wharton: L. Brown, N. Gans, H. Shen (UNC).
- industry:
 - ▶ U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents.
 - Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents; ongoing.

(日)

- **Technion**: P. Feigin, V. Trofimov, Statistics / SEE Laboratory.
- **Wharton**: L. Brown, N. Gans, H. Shen (UNC).
- industry:
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents.
 - Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents; ongoing.

Project Goal: Designing and Implementing a (universal) data-base/data-repository and interface for storing, retrieving, analyzing and displaying **Call-by-Call-based Data** / **Information**.

A D A 4 D A 4 D A 1 D A 0 Q Q

- **Technion**: P. Feigin, V. Trofimov, Statistics / SEE Laboratory.
- **Wharton**: L. Brown, N. Gans, H. Shen (UNC).
- industry:
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents.
 - Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents; ongoing.

Project Goal: Designing and Implementing a (universal) data-base/data-repository and interface for storing, retrieving, analyzing and displaying **Call-by-Call-based Data** / **Information**.

System Components:

- Clean Databases: operational-data of individual calls / agents.
- Graphical Online Interface: easily generates graphs and tables, at varying resolutions (seconds, minutes, hours, days, months).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シのへで

- **Technion**: P. Feigin, V. Trofimov, Statistics / SEE Laboratory.
- Wharton: L. Brown, N. Gans, H. Shen (UNC).
- industry:
 - U.S. Bank: 2.5 years, 220M calls, 40M by 1000 agents.
 - Israeli Cellular: 2.5 years, 110M calls, 25M calls by 750 agents; ongoing.

Project Goal: Designing and Implementing a (universal) data-base/data-repository and interface for storing, retrieving, analyzing and displaying **Call-by-Call-based Data** / **Information**.

System Components:

- Clean Databases: operational-data of individual calls / agents.
- Graphical Online Interface: easily generates graphs and tables, at varying resolutions (seconds, minutes, hours, days, months).

Free for academic adoption: ask for a DVD (3GB).