21-260 Midterm

Problem 1 Graph the Directional Fields described by the following equations.

a) y' = xyb) y' = (y - 1)(y + 2)

Problem 2 Find the integrating factor for the following differential equations. Then use it to solve for y(t).

a)
$$y' - y = 2e^{2t}$$

b) $(\sin t)y' + (\cos t)y = e^t$

Solution 2

a) Let u(t) be the integrating factor.

$$u(t) = e^{\int -1 \, dt} = e^{-t}$$

Then the solution is

$$y(t) = \frac{1}{u(t)} \left(\int u(t) \, 2e^{2t} \, dt + c \right) = \frac{1}{e^{-t}} \left(\int 2e^t \, dt + c \right) = \frac{1}{e^{-t}} \left(2e^t + c \right) = 2e^{2t} + c \, e^t + c \, e^{-t} + c \, e^{$$

b) We can rewrite this equation in the canonical form to get

$$y' + \frac{\cos t}{\sin t} \, y = \frac{e^t}{\sin t}$$

Let u(t) be the integrating factor.

$$u(t) = e^{\int \frac{\cos t}{\sin t} dt} = e^{\ln|\sin t|} = \sin t$$

Then the solution is

$$y(t) = \frac{1}{\sin t} \left(\int \sin t \, \frac{e^t}{\sin t} \, dt + c \right) = \frac{1}{\sin t} \left(\int e^t \, dt + c \right) = \frac{1}{\sin t} (e^t + c) = \frac{e^t + c}{\sin t}$$

Problem 3 Solve the following differential equation:

$$y' = \frac{1+3x^2}{3y^2 - 6y}$$

Solution 3 The key here is to use separation of variables. So we rewrite the equation to get

$$(3y^2 - 6y)\frac{dy}{dx} = 1 + 3x^2$$

Integrating both sides gives us

$$\int 3y^2 - 6y \, dt = \int 1 + 3x^2 \, dt$$

$$y^3 - 3y^2 = x + x^3 + c$$

Note that this is the final form of the solution.

Problem 4 Solve the following initial value problems and state where the solution is valid.

a) (2x - y) + (2y - x)y' = 0 y(1) = 3b) $(9x + \frac{y-1}{x}) - (\frac{4y}{x} - 1)y' = 0$ y(1) = 0

Solution 4

a) Clearly we have to use the method of exact equations. So let M = 2x - y and N = 2y - x. Checking to see if this equation is exact we get

$$M_y = -1 = N_x \, .$$

The general solution $\phi(x,y)=c$ where $\phi(x,y)=Q(x,y)+h(y).$ Here

$$Q(x,y) = \int M(x,y)dx = \int 2x - y \, dx = x^2 - xy + c$$

and

$$h'(y) = N(x, y) - Q_y = 2y - x - (-x) = 2y$$

So integrating this we get

$$h(y) = \int 2y \, dy = y^2 + c \, .$$

Combining these two we get

$$\phi(x,y) = Q(x,y) + h(y) = x^2 + y^2 - xy = c$$

Solving for initial condition we get

$$1^2 + 3^2 - 1 \cdot 3 = 7 = c \,.$$

So the final answer is

$$x^2 + y^2 - xy = 7$$
.

b) In this problem $M = (9x + \frac{y-1}{x})$ and $N = 1 - \frac{4y}{x}$. So we first check to see whether this is exact.

$$M_y = \frac{1}{x} \neq \frac{4y}{x^2} = N_x$$

So we need to find an integrating factor. First suppose that u(x, y) is only a function of x. Then

$$\frac{1}{u(x)}\frac{du}{dx} = \frac{M_y - N_x}{N} = \frac{1/x - (4y/x^2)}{1 - 4y/x} = \frac{1}{x}.$$

Integrating and solving for u we get u(x) = x.

Now multiplying the original equation by u(x) we get

$$(9x^2 + y - 1) + (x - 4y)y' = 0$$

 So

$$Q(x,y) = \int M(x,y)dx = \int 9x^2 + y - 1 \, dx = 3x^3 + xy - x + c$$

and

$$h'(y) = N(x, y) - Q_y = x - 4y - (x) = -4y.$$

 So

$$h(y) = \int -4y \, dy = -2y^2 + c \, .$$

Combining these two we get

$$\phi(x,y) = Q(x,y) + h(y) = 3x^3 + xy - x - 2y^2 = c$$

Solving for initial condition we get

$$3 - 1 = 2 = c$$
.

So the final answer is

$$3x^3 + xy - x - 2y^2 = 2.$$

Problem 5 Solve the following initial value problems and state where the solution is valid.

a)
$$y'' + 2y' + y = 0$$
 $y(0) = 0$ $y'(0) = 1$
b) $y'' + 2y' + y = \sin t$ $y(0) = 0$ $y'(0) = 1$
c) $y'' + 2y' + y = \sin t + \cos t$ $y(0) = 0$ $y'(0) = 1$

Solution 5

a) The corresponding characteristic equation is

$$r^{2} + 2r + 1 = 0$$

 $(r+1)^{2} = 0.$

So the general solution is

$$y = c_1 e^{-t} + c_2 t e^{-t} \,.$$

Plugging in the initial conditions we get $0 = c_1$ from the first condition and $c_2 = 1$ from the second condition. So the final solution is $y(t) = te^{-t}$.

b) The same characteristic equation applies here, however the method of undetermined coefficient tells us that we should try the particular solution $y(t) = a \cos t$. Plugging this into the differential equation we get

$$-a\cos t + 2(-a\sin t) + a\cos t = \sin t$$

which gives us a = -1/2. The the general solution is

$$y(t) = c_1 e^{-t} + c_2 t e^{-t} - 1/2 \sin t$$

Plugging in the two initial conditions we get $c_1 = 0$ and $c_2 = 3/2$. So the final answer is

$$y(t) = 3/2te^{-t} - 1/2\sin t$$
.

c) Using the fact that all three differential equation are linear we know that we have to only solve for $y'' + 2y' + y = \cos t$ and add that solution to our previous answers. So let $y(t) = a \sin t$. The

$$-a\sin t + 2(a\cos t) + a\sin t = \cos t.$$

So a = 1/2. The general solution is of the form $y(t) = c_1 e^{-t} + c_2 t e^{-t} - 1/2 \sin t + 1/2 \cos t$. Solving for the constants using initial conditions we get

$$y(t) = -1/2e^{-t} + 1/2te^{-t} - 1/2\sin t + 1/2\cos t.$$

Problem 6 State the longest interval in which the following differential equation has a unique twice differentiable solution.

$$(x-3)y'' + xy' + \ln|x|y = 0 \quad y(1) = 0 \quad y'(1) = 1$$

Solution By theorem 3.2.1 we need to find an interval which contains the initial condition and where p(t), q(t) and g(t) are continuous. So rewriting the equation in canonical form, we get

$$y'' + \frac{x}{x-3}y' + \frac{\ln|x|}{x-3}y = 0.$$

Note that p(t) and q(t) are continuous in the interval (0,3) and the initial condition lies there.

Problem 7 Find the Wronskian corresponding to the following differential equation. What does the Wronskian tell you about the about the solution?

$$\lambda^2 y'' + xy' + (x^2 - \nu^2)y = 0$$

Solution 7 The Wronskian of this equation is

$$W(x) = e^{\int -p(x) dx} = e^{\int -\frac{x}{\lambda^2} dx} = e^{-x^2/2\lambda^2}.$$

Which is non zero everywhere. So the solution to this differential equation exists for all values of x, as long as $\lambda \neq$ and thus all initial conditions. When $\lambda = 0$ this reduces to a first order equation for which the solution exists for x > 0.

Problem 8 Calculate the Laplace transform of the following functions.

a) $\sin a t$ b) $\delta(t - \pi/4) \sin t$ Solution 8 a)

$$\mathcal{L}\{\sin at\} = \int_0^\infty e^{-st} \sin at \, dt = \frac{-1}{a} e^{-st} \cos at |_0^\infty - \frac{s}{a} \int_0^\infty e^{-st} \cos at \, dt$$
$$= \frac{1}{a} - \frac{s}{a} (\frac{1}{a} e^{-st} \sin at |_0^\infty + \frac{s}{a} \int_0^\infty e^{-st} \sin at \, dt) = \frac{1}{a} - \frac{s^2}{a^2} \int_0^\infty e^{-st} \sin at \, dt$$

Rearranging the two sides we get

$$(1+\frac{s^2}{a^2})\mathcal{L}\{\sin at\} = \frac{1}{a}$$

which leads to

$$\mathcal{L}\{\sin at\} = \frac{a}{s^2 + a^2} \,.$$

b) The solution for this follows directly from the definition of the Dirac Delta function

$$\mathcal{L}\{\delta(t-\pi/4)\sin t\} = \int_0^\infty e^{-st}\delta(t-\pi/4)\sin t\,dt = e^{-s\pi/4}\sin\pi/4 = \frac{e^{-s\pi/4}}{\sqrt{2}}\,dt.$$

Problem 9 Use Laplace tashforms to solve the following initial value problems. a) $y'' + 2y' + y = 4e^{-t}$ y(0) = 2 y'(0) = -1b) $y'' + y = u_{\pi/2}(t) + 3\delta(t - 3\pi/2) - u_{2\pi}(t)$ y(0) = 0 y'(0) = 0Solution 0

Solution 9

a) Taking Laplace transform of both sides we get

$$s^{2}Y(s) - sy(0) - y'(0) + 2(sY(s) - y(0)) + Y(s) = \frac{4}{s+1}$$
$$(s^{2} + 2s + 1)Y(s) - 2s - 3 = \frac{4}{s+1}$$
$$Y(s) = \frac{4}{(s+1)^{3}} + \frac{2}{s+1} + \frac{1}{(s+1)^{2}}$$

Now using the fact that $\mathcal{L}{t^n e^{at}} = \frac{n!}{(s-a)^{n+1}}$.

$$y(t) = 2t^2e^{-t} + te^{-t} + 2e^{-t}$$
.

b) Taking Laplace transform of both sides we get

$$s^{2}Y(s) - sy(0) - y'(0) + Y(s) = \frac{e^{-\pi s/2}}{s} + 3e^{-3\pi s/2} - \frac{e^{-2\pi s}}{s}$$
$$Y(s) = e^{-\pi s/2} \left(\frac{1}{s} - \frac{1}{s^{2} + 1}\right) + \frac{3e^{-3\pi s/2}}{s^{2} + 1} - e^{-2\pi s} \left(\frac{1}{s} - \frac{1}{s^{2} + 1}\right).$$

The relevant equations here are $\mathcal{L}\{u_c(t)f(t-c)\} = e^{-cs}F(s), \mathcal{L}\{\sin at\} = \frac{a}{s^2+a^2} \text{ and } \mathcal{L}\{\cos at\} = \frac{s}{s^2+a^2}$. Using these we get

$$y(t) = u_{\pi/2}(t)(1 - \cos(t - \pi/2)) + 3u_{3\pi/2}(t)\sin(t - 3\pi/2) - u_{2\pi}(1 - \cos(t - 2\pi)).$$

Problem 10 Express the solution to the following differential equation in terms of a convolution integral.

$$y'' + 4y' + y = g(t)$$
 $y(0) = 2$ $y'(0) = -3$

Solution 10 Taking Laplace transforms of both sides we get

$$s^{2}Y(s) - sy(0) - y'(0) + 4(sY(s) - y(0)) + Y(s) = G(s)$$

$$(s^{2} + 4s + 1)Y(s) - 2s - 5 = G(s)$$

$$Y(s) = \frac{2(s+2)}{(s+2)^{2} - 3} + \frac{1}{(s+2)^{2} - 3} + \frac{G(s)}{(s+2)^{2} - 3}$$

Since $\mathcal{L}\left\{e^{at}\cos bt\right\} = \frac{s-a}{(s-a)^2+b^2}$ and $\mathcal{L}\left\{e^{at}\sin bt\right\} = \frac{b}{(s-a)^2+b^2}$ we get

$$y(t) = 2e^{-2t}\cos(\sqrt{3}it) + \frac{e^{-2t}}{\sqrt{3}i}\sin(\sqrt{3}it) + \int_0^t g(t-\tau)\frac{e^{-2\tau}}{\sqrt{3}i}\sin(\sqrt{3}i\tau)\,d\tau\,.$$