Solutions to Homework Set 4

1) Suppose that Eventown has fewer than $2^{\lfloor n / 2\rfloor}$ clubs. Prove that there is room for a new club without violating the Eventown rules.

Solution: It suffices to show that every maximal totally isotropic subspace of F_{2}^{n} has dimension $\lfloor n / 2\rfloor$. Let U be a totally isotropic subspace of dimension $\leq(n-2) / 2$. So $\operatorname{dim}\left(U^{\perp}\right) \geq 2+\operatorname{dim}(U)$. This means that we can find two vectors $u, v \in U^{\perp}$ such that no nontrivial linear combination of them belongs to U. If either u or v is isotropic, then adding them to U contradicts maximality of U. Otherwise, $(u+v) \cdot(u+v)=u \cdot u+v \cdot v=0$ and we can add $u+v$ to U.
2) Show that if n is even, then there exist at least $2^{n(n+2) / 8} /(n!)^{2}$ nonisomorphic solutions to the Oddtown problem of size n. Prove that for large n this is greater than $2^{n^{2} / 9}$.

Solution: Let $n=2 k$. Let A be any symmetric k by k matrix with $0-1$ entries, and let

$$
B=\left(\begin{array}{cc}
A+I_{k} & A \\
A & A+I_{k}
\end{array}\right) .
$$

Then it is easy to see that $B B^{T}=I_{n}$ (over the field of 2 elements), so B is an oddtown incidence matrix. The number of of such A is $2^{1+\cdots+k}=$ $2^{k(k+1) / 2}=2^{n(n+2) / 8}$, since the entries in the lower half including the diagonal determine A. We must divide this by $(n!)^{2}$ to obtain a lower bound on the number of pairwise nonisomorphic matrices, since any permutation of the rows and columns does not change the isomorphism class. For large n, $2^{n(n+2) / 8} /(n!)^{2}>2^{n^{2} / 9}$, since

$$
\left(\frac{n(n+2)}{8}-\frac{n^{2}}{9}\right) \ln 2=\left(\frac{n^{2}}{72}+\frac{n}{4}\right) \ln 2>(2-o(1)) n \ln n .
$$

(here you need the estimate $\log (n!) \sim n \log n$).
3) Let V be a vector space of dimension n over K. Let $V^{* *}$ be the dual space of V^{*}. Give an explicit isomorphism between V and $V^{* *}$.

Solution: To each element $w \in V$, assign the element $g_{v} \in V^{* *}$, defined by $g_{v}(f)=f(v)$, for all $f \in V^{*}$. It is standard to check that this is linear and 1-1. So V is isomorphic to some subspace of $V^{* *}$. But we know that V and
$V^{* *}$ have the same dimension, so they must be isomorphic. (I dont think this uses the existence of a scalar product on V)
4) Let V be finite dimensional over R with positive definite scalar product. Let A be an operator on V. Show that the image of A^{T} is the orthogonal space to the kernel of A.

Solution: For every $v \in V$ and $w \in \operatorname{ker}(A)$ we have

$$
\left\langle A^{T} v, w\right\rangle=\langle v, A w\rangle=\langle v, 0\rangle=0
$$

so $A^{T}(V) \subset \operatorname{ker}(A)^{\perp}$. On the other hand, if $v \in A^{T}(V)^{\perp}$ and $x \in V$, then $\langle A v, x\rangle=\left\langle v, A^{T} x\right\rangle=0$ so $A v=0$ and $v \in \operatorname{ker}(A)$. Thus $A^{T}(V)^{\perp} \subset$ $\operatorname{ker}(A)$. Taking the orthogonal complement of both sides yields the opposite containment.

