Using random polynomials in extremal graph theory

Michael Tait

Carnegie Mellon University
mtait@cmu.edu
AMS Fall Central Sectional
University of Michigan

October 20, 2018

Turán numbers

The Turán number of a graph F is the maximum number of edges that an n vertex graph may have under the condition that it does not contain F as a subgraph, denoted

$$
\operatorname{ex}(n, F)
$$

Theorem (Erdős-Stone 1946)
Let $\chi(F) \geq 2$ be the chromatic number of F. Then

$$
\operatorname{ex}(n, F)=\left(1-\frac{1}{\chi(F)-1}\right)\binom{n}{2}+o\left(n^{2}\right)
$$

Theorem (Kővári-Sós-Turán 1954)
For integers $2 \leq s \leq t$,

$$
\operatorname{ex}\left(n, K_{s, t}\right) \leq \frac{1}{2}(t-1)^{1 / s} n^{2-1 / s}+\frac{1}{2}(s-1) n
$$

$\operatorname{ex}(n, F)<n^{2-\epsilon}$ for bipartite F.

The even-cycle problem
Determine ex $\left(n, C_{2 k}\right)$.
Order of magnitude only known when $k \in\{2,3,5\}$!

$$
\begin{aligned}
& \operatorname{ex}\left(n, C_{4}\right) \sim \frac{1}{2} n^{3 / 2} \\
& .5338 n^{4 / 3} \leq \operatorname{ex}\left(n, C_{6}\right) \leq .6272 n^{4 / 3} \\
& \operatorname{ex}\left(n, C_{10}\right)=\Theta\left(n^{6 / 5}\right)
\end{aligned}
$$

KST 1954, ERS and Brown 1966
Füredi-Naor-Verstraëte 2006
Benson 1966, Wenger 1991
Connections to finite geometry, design theory, additive combinatorics, LDPC codes.

$$
\begin{aligned}
\operatorname{ex}\left(n, C_{2 k}\right) \leq & O\left(n^{1+1 / k}\right) \\
& 20 k n^{1+1 / k} \\
& 8(k-1) n^{1+1 / k} \\
& (k-1+o(1)) n^{1+1 / k} \\
& (80+o(1)) \sqrt{k} \log k n^{1+1 / k}
\end{aligned}
$$

Erdős unpublished
Bondy-Simonovits 1974
Verstreäte 2000
Pikhurko 2012
Bukh-Jiang 2017

Theorem (Lazebnik-Ustimenko-Woldar 1995)

$$
\operatorname{ex}\left(n, C_{2 k}\right)=\Omega\left(n^{1+\frac{2}{3 k-3+\eta}}\right)
$$

The even-cycle problem is hard! Let's make it easier. $C_{2 k}$ is 2 internally disjoint paths of length k between a pair of vertices.

Easier question

How many edges may be in a graph such that no pair of vertices contains t internally disjoint paths of length k between vertices? ie determine

$$
\operatorname{ex}\left(n, \Theta_{k, t}\right) .
$$

$\Theta_{k, 2}=C_{2 k}$.

Theorem (Faudree-Simonovits 1983)

$$
\operatorname{ex}\left(n, \Theta_{k, t}\right) \leq c_{k} t^{k^{2}} n^{1+1 / k}
$$

Theorem (Conlon 2014)
For any k there exists a C_{k} such that

$$
\operatorname{ex}\left(n, \Theta_{k, C_{k}}\right)=\Omega\left(n^{1+1 / k}\right)
$$

What is the dependence on t ?
Theorem (Bukh-Tait)

$$
\operatorname{ex}\left(n, \Theta_{k, t}\right) \leq c_{k} t^{1-1 / k} n^{1+1 / k}
$$

For odd k

$$
\operatorname{ex}\left(n, \Theta_{k, t}\right) \geq c_{k}^{\prime} t^{1-1 / k} n^{1+1 / k}
$$

Upper bounds: a depth first search "looks like" a tree, each level grows a lot and so one sees all of the vertices after k steps.

Lower bound: use "random polynomial graph" to construct a bipartite graph with:

- $N=\frac{n}{t / C}$ vertices
- No pair of vertices has more than C paths of length at most k between them (not necessarily disjoint)
- $\epsilon N^{1+1 / k}$ edges

Blow up each vertex by t / C vertices

- n vertices
- $\epsilon\left(\frac{n}{t / C}\right)^{1+1 / k}\left(\frac{t}{C}\right)^{2}=\Omega\left(t^{1-1 / k} n^{1+1 / k}\right)$ edges.
- How many k paths between vertices?
G random polynomial graph, G^{\prime} blown up graph. X in G is a "supervertex" of x in G^{\prime} if x was one of the t / C vertices that X blew up to.
- Let x and y have m internally disjoint paths of length k between them
- Each path $\left(x, u_{1}, \cdots, u_{k-1}, y\right)$ maps to a sequence of supervertices $\left(X, U_{1}, \cdots, U_{k-1}, Y\right)$.
- These sequences are not necessarily disjoint or distinct. However, since the paths are internally disjoint, each U_{i} can appear at most t / C times.
- There are at least $m /(t / C)$ distinct sequences of supervertices
- Since k is odd, X and Y are distinct.
- Each distinct sequence of supervertices corresponds to a walk from X to Y in G.
- There are $m /(t / C) \leq C$ distinct paths of length at most k from X to Y in $G . m \leq t$.

Let \mathcal{P}_{d}^{s} be the set of polynomials over \mathbb{F}_{q} of total degree at most d in s variables. Linear combinations of $X_{1}^{d_{1}} \cdots X_{s}^{d_{s}}$ with $\sum d_{i} \leq d$.

Definition

We use the term random polynomial to refer to a polynomial chosen uniformly from \mathcal{P}_{d}^{s}.

Choosing a random polynomial is equivalent to choosing the coefficient of each monomial $X_{1}^{d_{1}} \cdots X_{s}^{d_{s}}$ independently and uniformly from \mathbb{F}_{q}. Given a fixed $\vec{x} \in \mathbb{F}_{q}^{s}$,

$$
\mathbb{P}(f(\vec{x})=0)=\frac{1}{q}
$$

If d is large enough,

$$
\mathbb{P}\left(f\left(\overrightarrow{x_{1}}\right)=f\left(\overrightarrow{x_{2}}\right)=\cdots=f\left(\overrightarrow{x_{m}}\right)=0\right)=\left(\frac{1}{q}\right)^{m}
$$

Definition: Random polynomial graph
Define G a bipartite graph with partite sets $U=V=\mathbb{F}_{q}^{k}$. Let f_{1}, \cdots, f_{k-1} be random polynomials chosen independently from $\mathcal{P}_{2 k^{2}}^{2 k}$. $\vec{u} \in U$ is adjacent to $\vec{v} \in V$ if and only if

$$
f_{1}(\vec{u}, \vec{v})=f_{2}(\vec{u}, \vec{v})=\cdots=f_{k-1}(\vec{u}, \vec{v})=0 .
$$

$\mathbb{P}(\vec{u} \sim \vec{v})=\left(\frac{1}{q}\right)^{k-1} . \mathbb{E}($ edges $)=q^{2 k} \frac{1}{q^{k-1}}=q^{k+1}=\Omega\left(N^{1+1 / k}\right)$.

G	$G_{N, p}$
q^{k+1} edges	q^{k+1} edges
$\mathbb{P}($ fixed set of m edges $)=\left(\frac{1}{q^{k-1}}\right)^{m}$	$\mathbb{P}(m$ edges $)=\left(\frac{1}{q^{k-1}}\right)^{m}$
$\mathbb{P}($ fixed k path from x to $y)=\left(\frac{1}{q^{k-1}}\right)^{k}$	$\mathbb{P}($ fixed k path $)=\left(\frac{1}{q^{k-1}}\right)^{k}$
$S=\# k$ paths from x to y	$T=\# k$ paths from x to y
$\mathbb{E}(S)=N^{k-1}\left(\frac{1}{q^{k-1}}\right)^{k}=1$	$\mathbb{E}(T)=1$
S is the number of points on a variety	$T \sim$ poisson

Lang-Weil: Either $S \leq C$ or $S \geq q$.

$$
\mathbb{P}(S>C)=\mathbb{P}(S>q) \leq \frac{\mathbb{E}(S)}{q}=\frac{1}{q}
$$

Sunny

Let $\operatorname{ex}_{r}\left(n, \Theta_{k, t}\right)$ be the maximum number of edges in an r uniform hypergraph where no pair of vertices has t internally disjoint (Berge) paths of length k between them. Several researchers have studied $\mathrm{ex}_{r}\left(n, \Theta_{k, 2}\right)$.

Theorem (He-Tait)
For each k, there is a constant C_{k} such that

$$
\operatorname{ex}_{r}\left(n, \Theta_{k, t}\right)=O_{k, t, r}\left(n^{1+1 / k}\right)
$$

and

$$
\operatorname{ex}_{r}\left(n, \Theta_{k, C_{k}}\right)=\Omega_{k, r}\left(n^{1+1 / k}\right)
$$

Open Problems

- For k even $\epsilon t^{1 / k} n^{1+1 / k} \leq \operatorname{ex}\left(n, \Theta_{k, t}\right) \leq c t^{1-1 / k} n^{1+1 / k}$.
- Lower the dependence on k in the constant C_{k}.
- Determine the dependence on t in the hypergraph question.

