Eight theorems in extremal spectral graph theory

Michael Tait

Carnegie Mellon University
mtait@cmu.edu
ICOMAS 2018
May 11, 2018

Questions in extremal graph theory ask to optimize a graph invariant over a family of graphs.

- $\operatorname{ex}(n, H)$
- $\chi(G)$ when G has no K_{r} minor
- Maximum number of triangles in a graph of maximum degree Δ
- Max/Min cut
- Densest subgraph
- Many more... (any graph invariant over any family of graphs)

Spectral graph theory seeks to associate a matrix with a graph and to deduce properties of the graph from the eigenvalues and eigenvectors of the matrix.

- Expander-mixing lemma/Cheeger constant
- Community detection
- Max/Min cut
- Densest subgraph
- Many more... (many graph invariants over many families of graphs)

We are interested in extremal graph theory problems where the graph invariant is spectral.

- Maximize λ_{1} over graphs with m edges (Stanley's bound)
- Maximize λ_{1} over graphs with no K_{r+1} as a subgraph (Turán's theorem, Zarankiewicz problem)
- Minimize λ_{2} over the family of d-regular graphs (Alon-Boppana-Serre theorem)
- Relationship to other graph parameters (Hoffman ratio bound, Wilf bound on chromatic number)

Conjecture 1 (Boots-Royle 1991)
The planar graph on $n \geq 9$ vertices of maximum spectral radius is $P_{2}+P_{n-2}$.

Conjecture 2 (Cvetković-Rowlinson 1990)
The outerplanar graph on n vertices of maximum spectral radius is $K_{1}+P_{n-1}$.

Conjecture 3 (Cioabă-Gregory 2007)

Let G be a connected graph and let $x_{\max }$ and $x_{\min }$ be the maximum and minimum entries in the leading eigenvector of the adjacency matrix of G. The principal ratio of G is given by $\gamma(G)=\frac{x_{\max }}{x_{\min }}$. Then the graph on n vertices maximizing $\gamma(G)$ is a kite graph.

Conjecture 4 (Aochiche et al 2008)
The connected graph on n vertices maximizing the quantity
(spectral radius minus average degree)
is a pineapple graph.

Conjecture 5 (Aldous and Fill 1994)
Let τ be the minimum over all connected graphs on n vertices of the second eigenvalue of the normalized Laplacian.

$$
\tau \sim \frac{54}{n^{3}}
$$

Extremal graphs

Theorem (Tait-Tobin)
Conjectures 1-4 true for n large enough.

Theorem (Aksoy-Chung-Tait-Tobin)
Conjecture 5 is true.

The Colin de Verdière parameter

Given a matrix M, define the corank of M to be the dimension of its kernel. If G is an n-vertex graph, then the Colin de Verdière parameter of G is defined to be the largest corank of any $n \times n$ matrix M such that:

M1 If $i \neq j$ then $M_{i j}<0$ is $i \sim j$ and $M_{i j}=0$ if $i \nsim j$.
M2 M has exactly one negative eigenvalue of multiplicity 1.
M3 There is no nonzero matrix X such that $M X=0$ and $X_{i j}=0$ whenever $i=j$ or $M_{i j} \neq 0$.

The Colin de Verdière parameter

(i) $\mu(G) \leq 1$ if and only if G is the disjoint union of paths.
(ii) $\mu(G) \leq 2$ if and only if G is outerplanar.
(iii) $\mu(G) \leq 3$ if and only if G is planar.
(iv) $\mu(G) \leq 4$ if and only if G is linklessly embeddable.

Theorem (Tait)
For n large enough, the n-vertex graph of maximum spectral radius with Colin de Verdière parameter at most $r+1$ is the join of K_{r} and a path of length $n-r$.

Theorem (Tait)

For n large enough, the K_{r+2} minor free graph of maximum spectral radius is the join of K_{r} and an independent set of size $n-r$.

Theorem (Tait)

Let $s \geq r \geq 3$. For n large enough, if G is an n-vertex graph with no $K_{r+1, s+1}$ minor and λ is the spectral radius of its adjacency matrix, then

$$
\lambda \leq \frac{r+s+5+\sqrt{(r+s-1)^{2}+4(r(n-r)-s(r-1))}}{2}
$$

with equality if and only if $n \equiv r(\bmod s+1)$ and G is the join of K_{r} with a disjoint union of copies of K_{s+1}.

Proof Outline

The proofs all have similar structure, though the technical details are different:

- Use the conjectured extremal example to give a lower bound on the invariant in question.
- Use this lower bound to deduce rough structural information about the extremal graph.
- Once rough structure is known, deduce properties of the leading eigenvector.
- Use these properties to turn rough structure into exact structure.

$$
\lambda_{1}=\max _{x \neq 0} \frac{x^{T} A x}{x^{T} x}
$$

Let \mathbf{x} be the leading eigenvector, and let it be normalized so that it has maximum entry equal to 1 . Throughout, let z be the vertex of eigenvector entry 1. Then the eigenvalue equation is, for all $u \in V(G)$

$$
\begin{gathered}
\lambda_{1} \mathbf{x}_{u}=\sum_{v \sim u} \mathbf{x}_{v} \\
\lambda_{1}=\sum_{u \sim z} \mathbf{x}_{u} \leq d_{z} . \\
\lambda_{1}^{2}=\sum_{u \sim z} \lambda_{1} \mathbf{x}_{u}=\sum_{u \sim z} \sum_{v \sim u} \mathbf{x}_{v}=\sum_{u \sim z} \sum_{\substack{v \sim u \\
v \in N(z)}} \mathbf{x}_{v}+\sum_{u \sim z} \sum_{\substack{v \sim u \\
v \notin N(z)}} \mathbf{x}_{v}
\end{gathered}
$$

$\lambda_{1}>\sqrt{r(n-r)}$ $\quad \lambda_{1}>\sqrt{n-1}$

Lemma

For any $u \in V(G)$,

$$
d_{u}>n \cdot \mathbf{x}_{u}-11 \sqrt{n} .
$$

Proof:

$$
\begin{aligned}
\lambda_{1}^{2} \mathbf{x}_{u} & =\sum_{y \sim u} \sum_{v \sim y} \mathbf{x}_{v} \\
& \leq d_{u}+\sum_{y \sim u} \sum_{v \sim y}^{v \neq u} \\
& \leq d_{u}+2 \sum_{y \neq u} \mathbf{x}_{y} \\
& \leq d_{u}+\frac{2}{\lambda_{1}} \sum_{u \nsim v} d_{v} \\
& \leq d_{u}+\frac{4(2 n-3)}{\lambda_{1}}
\end{aligned}
$$

(count 2-walks from u)

$$
\left(\mathbf{x}_{u} \leq 1\right)
$$

$$
\text { (no } K_{2,3} \text {) }
$$

(eigenvalue equation)

$$
(e(G) \leq 2 n-3)
$$

Lemma
For all other $u \in V(G)$,

$$
\mathbf{x}_{u}=O\left(\frac{1}{\sqrt{n}}\right) .
$$

Proof:

- The vertex of eigenvector entry 1 has $n-C \sqrt{n}$ neighbors.
- G has no $K_{2,3}$, so every other vertex has degree at most $C \sqrt{n}+2$.

$$
d_{u}>n \cdot \mathbf{x}_{u}-O(\sqrt{n})
$$

$\lambda_{1}>\sqrt{r(n-r)}$	$\lambda_{1}>\sqrt{n-1}$	$\gamma(G) \geq n^{(1-\varepsilon) n}$	$\lambda_{1}-\bar{d} \gtrsim \frac{n}{4}$	$\tau_{1} \gtrsim \frac{54}{n^{3}}$
r vxs of large degree	Vertex of large degree	Diameter large	$\lambda_{1} \sim \frac{n}{2}, \bar{d} \sim \frac{n}{4}$	Diameter large
Other entries small	Other entries small	Pendant path	$\sim K_{n / 2}$	Vector bimodal
	Vertex of degree $n-1$			

Lemma

The vertex of large degree has degree $n-1$.
Proof: Let $B=V(G) \backslash(N(z) \cup\{z\})$. Assume $y \in B$ and show a contradiction.

Claim
$\sum_{u \in B} \mathbf{x}_{u}<\frac{C}{\sqrt{n}}<1$.

$$
\begin{gathered}
V\left(G^{+}\right)=V(G) \\
E\left(G^{+}\right)=E(G) \cup\{z y\} \backslash\{\{v y\}: v y \in E(G)\} \\
\lambda_{1}\left(A^{+}\right)-\lambda_{1}(A) \geq \frac{\mathbf{x}^{T}\left(A^{+}-A\right) \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\frac{2 \mathbf{x}_{y}}{\mathbf{x}^{t} \mathbf{x}}\left(1-\sum_{v \sim y} \mathbf{x}_{v}\right) .
\end{gathered}
$$

$\lambda_{1}>\sqrt{r(n-r)}$	$\lambda_{1}>\sqrt{n-1}$	$\gamma(G) \geq n^{(1-\varepsilon) n}$	$\lambda_{1}-\bar{d} \gtrsim \frac{n}{4}$	$\tau_{1} \gtrsim \frac{54}{n^{3}}$
r vxs of large degree	Vertex of large degree	Diameter large	$\lambda_{1} \sim \frac{n}{2}, \bar{d} \sim \frac{n}{4}$	Diameter large
Other entries small	Other entries small	Pendant path	$\sim K_{n / 2}$	Vector bimodal
r vxs of degree $n-1$	Vertex of degree $n-1$	very dense piece	$\sim \frac{n}{2}$ leaves	" $+/$-" cliques
	$G=P_{1}+P_{n-1}$			

Theorem

The outerplanar graph maximizing λ_{1} is $P_{1}+P_{n-1}$.
Proof:

- Any other vertex may have degree at most 3 (including z), otherwise G contains $K_{2,3}$.
- The neighborhood of the vertex of degree $n-1$ may not contain a cycle.
- G is a subgraph of $P_{1}+P_{n-1}$. By Perron-Frobenius and Rayleigh quotient, $G=P_{1}+P_{n-1}$.

Question

Characterize the extremal graph minimizing τ_{1}.

Question
What is the regular graph minimizing τ_{1} ?

Question
Which graph minimizes the principal eigenvector's 1-norm?

Question
Which graph maximizes $\lambda_{1}-\lambda_{n}$?

Question
Maximize the spectral radius of a planar subgraph of a random graph (say $p=1 / 2$).

