Rainbow numbers for $x_{1}+x_{2}=k x_{3}$ in \mathbb{Z}_{n}

Erin Bevilacqua*, Samuel King \dagger, Jürgen Kritschgau; ${ }_{\text {; }}$
Michael Tait, Suzannah Tebon, Michael Young ${ }^{\|}$

September 13, 2018

Abstract

In this work, we investigate the fewest number of colors needed to guarantee a rainbow solution to the equation $x_{1}+x_{2}=k x_{3}$ in \mathbb{Z}_{n}. This value is called the Rainbow number and is denoted by $r b\left(\mathbb{Z}_{n}, k\right)$ for positive integer values of n and k. We find that $r b\left(\mathbb{Z}_{p}, 1\right)=4$ for all primes greater than 3 and that $r b\left(\mathbb{Z}_{n}, 1\right)$ can be deterimined from the prime factorization of n. Furthermore, when k is prime, $r b\left(\mathbb{Z}_{n}, k\right)$ can be determined from the prime factorization of n.

Introduction

Let \mathbb{Z}_{n} be the cyclic group of order n, and let an r-coloring of \mathbb{Z}_{n} be a function $c: \mathbb{Z}_{n} \rightarrow[r]$ where $[r]:=\{1, \ldots, r\}$. In this paper, we assume that each r-coloring is exact (surjective). Given an exact r coloring, we define r color classes $C_{i}=\left\{x \in \mathbb{Z}_{n} \mid c(x)=i\right\}$ for $1 \leq i \leq r$. Occasionally, when convenient, we will use R, G, B, and Y to denote the colors or the color classes red, green, blue, and yellow, respectively.

Fix an integer k. Let a triple $\left(x_{1}, x_{2}, x_{3}\right)$ be any three elements in \mathbb{Z}_{n} which are a solution to $x_{1}+x_{2} \equiv k x_{3}$ $\bmod n$. When $k=1$, we will call these triples Schur triples. Such a triple is called a rainbow triple under a coloring c when $c\left(x_{1}\right) \neq c\left(x_{2}\right), c\left(x_{1}\right) \neq c\left(x_{3}\right)$, and $c\left(x_{2}\right) \neq c\left(x_{3}\right)$. Consequently, a coloring will be called rainbow-free when there does not exist a rainbow triple in \mathbb{Z}_{n} under c.

The rainbow number of \mathbb{Z}_{n} given $x_{1}+x_{2}=k x_{3}$, denoted $r b\left(\mathbb{Z}_{n}, k\right)$, is the smallest positive integer r such that any r-coloring of \mathbb{Z}_{n} admits a rainbow triple. By convention, if such an integer does not exist, we set $r b\left(\mathbb{Z}_{n}, k\right)=n+1$. A maximum coloring is a rainbow-free r-coloring of \mathbb{Z}_{n} where $r=r b\left(\mathbb{Z}_{n}, k\right)-1$.

For a coloring c of $\mathbb{Z}_{s t}$, the $i^{\text {th }}$ residue class modulo t is the set of all the elements in $\mathbb{Z}_{s t}$ which are congruent to $i \bmod t$. Denote each residue class as $R_{i}=\left\{j \in \mathbb{Z}_{s t} \mid j \equiv i \bmod t\right\}$. We say the $i^{t h}$ residue palette modulo t is the set of colors which appear in the $i^{t h}$ residue class, and we will denote each palette as $P_{i}=\{c(j) \mid j \equiv i \bmod t\}$.

Rainbow numbers for the equation $x_{1}+x_{2}=2 x_{3}$, for which the solutions are 3 -term arithmetic progressions, have been studied in 4], [5], 7], and [9]. These problems are historically rooted in Roth's Theorem, Szemerédi's Theorem, and van der Waerden's Theorem. The first half of our paper explores the rainbow numbers of \mathbb{Z}_{n} given the Schur equation, $x_{1}+x_{2}=x_{3}$. We rely on the work of Llano and Montenjano in [8, Jungić et al. in [7], and Butler et al. in [5] to prove exact values for $r b\left(\mathbb{Z}_{n}, 1\right)$ in terms of the prime factorization of n. Our results are an extension to the results in 4], 7, and 9].

[^0]Theorem 1. For a prime $p \geq 5, r b\left(\mathbb{Z}_{p}, 1\right)=4$.
Remark 1. It can be deduced through inspection that $\operatorname{rb}\left(\mathbb{Z}_{2}, 1\right)=\operatorname{rb}\left(\mathbb{Z}_{3}, 1\right)=3$.
Theorem 1 gives exact values for $r b\left(\mathbb{Z}_{p}, 1\right)$ where p is prime. Therefore, Theorems 2 and 11 give exact values for $r b\left(\mathbb{Z}_{n}, 1\right)$. The proof for Theorem 2 is at the end of Section 1.3 .

Theorem 2. For a positive integer n with prime factorization $n=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdots p_{m}^{\alpha_{m}}$,

$$
r b\left(\mathbb{Z}_{n}, 1\right)=2+\sum_{i=1}^{m}\left(\alpha_{i}\left(r b\left(\mathbb{Z}_{p_{i}}, 1\right)-2\right)\right)
$$

We continue by considering the equation $x_{1}+x_{2}=p x_{3}$ for any prime p. Many of the techniques for the $k=1$ case generalize. However, there are complications. If we let the prime factorization of n be $n=p^{\alpha} \cdot q_{1}^{\alpha_{1}} \cdots q_{m}^{\alpha_{m}}$, then we can produce a recursive formula for $r b\left(\mathbb{Z}_{n}, p\right)$ detailed in Theorem 5.

Theorem 3. Let p, q be distinct and prime. Then $\operatorname{rb}\left(\mathbb{Z}_{q}, p\right)=4$ if and only if p, q do not satisfy either of the following conditions:

1. p generates \mathbb{Z}_{q}^{*},
2. $|p|=(q-1) / 2$ in \mathbb{Z}_{q}^{*} and $(q-1) / 2$ is odd.

Otherwise, $r b\left(\mathbb{Z}_{q}, p\right)=3$.
Theorem 4. For $p \geq 3$ prime and $\alpha \geq 1$,

$$
r b\left(\mathbb{Z}_{p^{\alpha}}, p\right)= \begin{cases}3 & p=3, \alpha=1 \\ 4 & p=3, \alpha \geq 2 \\ \frac{p+1}{2}+1 & p \geq 5\end{cases}
$$

The values for $r b\left(\mathbb{Z}_{2^{\alpha}}, 2\right)$ are resolved in [4. In conjunction with Theorems 3 and 4 Theorem 5 determines exact values for $r b\left(\mathbb{Z}_{n}, p\right)$. The proof for Theorem 5 is at the end of Section 2.4.

Theorem 5. Let n be a positive integer, and let p be prime. Let n have prime factorization $n=p^{\alpha}$. $q_{1}^{\alpha_{1}} \cdots q_{m}^{\alpha_{m}}$. Then

$$
r b\left(\mathbb{Z}_{n}, p\right)=r b\left(\mathbb{Z}_{p^{\alpha}}, p\right)+\sum_{i=1}^{m}\left(\alpha_{i}\left(r b\left(\mathbb{Z}_{q_{i}}, p\right)-2\right)\right) .
$$

In the case that $\alpha=0$, let $r b\left(\mathbb{Z}_{p^{\alpha}}, p\right)=2$.

1 Schur Triples

Section 1 is dedicated to proving Theorem 2. In Section 1.1 we introduce the idea of a dominant color to describe the structural properties of colorings of \mathbb{Z}_{p}. Additionally, we prove Proposition 9 the Schur triple counterpart of Theorem 3.2 in 7 . We use Proposition 9 to prove Theorem [1 concluding Section 1.1. In Section 1.2 we show that the lower bound of $\operatorname{rb}\left(\mathbb{Z}_{n}, 1\right)$ can be determined by the prime factorization of n. The equivalent upper bound is proved in 1.3. Combining Sections 1.2 and 1.3 proves Theorem 2

1.1 Schur Triples in \mathbb{Z}_{p}, p prime

Let c be a coloring of \mathbb{Z}_{n}. We say a sequence $S_{1}, S_{2}, \ldots, S_{k}$ of colors appears at position i if $c(i)=S_{1}, c(i+1)=$ $S_{2}, \ldots, c(i+k-1)=S_{k}$. A sequence is bichromatic if it contains exactly two colors. A color R is dominant if for $S=\{c(x): i \leq x \leq j, i<j\},|S|=2$ implies $R \in S$. That is, R appears in every bichromatic string. Using dominant colors to derive a contradiction is used in [7]. We also use this idea to describe the structure of rainbow-free colorings of \mathbb{Z}_{p}. However, we must show that a dominant color exists.

Lemma 6. There exists a dominant color in every rainbow-free coloring of \mathbb{Z}_{n}. Furthermore, $c(1)$ is dominant.

Proof. Let c be a rainbow-free coloring of \mathbb{Z}_{n}. Note that $(1, i, i+1)$ is a Schur triple for all $i \notin\{0,1\}$. Since c is rainbow-free, either $c(i)=c(i+1), c(1)=c(i)$, or $c(1)=c(i+1)$. Thus, if $c(i) \neq c(i+1)$, then $c(1)$ must appear on either i or $i+1$. This implies that $c(1)$ is dominant.

An immediate result from this lemma is that any color which doesn't appear on 1 must be adjacent to itself or the dominant color. Now we can relate the structure of our coloring to the presence of a rainbow triple. Without loss of generality, let $c(1)=R$ be dominant.

Lemma 7. Let c be an r-coloring of \mathbb{Z}_{n} with $r \geq 3$. If $B B$ and $G G$ appears in c, then there exists a rainbow Schur triple in c.

Proof. Let c be an r-coloring of \mathbb{Z}_{n} with $r \geq 3$ such that $B B$ and $G G$ appears in c. Without loss of generality, assume R is dominant, and c contains $B B$ and $G G$. Then, the sequence $B B R$ must appear at some position i and the sequence $G G R$ must appear at some position j.

Consider the Schur triple $(i, j+2, i+j+2)$. Since $c(i)=B$, and $c(j+2)=R$, then either c contains a rainbow Schur triple, or $c(i+j+2)$ is R or B. Assume the second case, and consider the Schur triple $(i+2, j, i+j+2)$. Since $c(i+2)=R$, and $c(j)=G$ then either c contains a rainbow Schur triple or $c(i+j+2)$ is R. Again, assume the second case, and finally consider the triple $(i+1, j+1, i+j+2)$. Since $c(i+1)=B$, $c(j+1)=G$, and $c(i+j+2)=R$, this triple is rainbow. Therefore, c contains a rainbow Schur triple.

Therefore, if c is a rainbow-free coloring of \mathbb{Z}_{n} with R dominant, either $G G$ or $B B$ can appear in c, but not both. Next we show that there are ways to re-order colorings while maintaining whether or not Schur triples are rainbow.

Lemma 8. Let c be an r-coloring of \mathbb{Z}_{n}. If m is relatively prime to n, then c has a rainbow Schur triple if and only if $\hat{c}(x):=c(m x)$ contains a rainbow Schur triple. Additionally, the cardinality of each color class will be maintained.

Proof. Let $\left(x_{1}, x_{2}, x_{3}\right)$ be a triple in c. By definition, $x_{1}+x_{2}=x_{3}$ in \mathbb{Z}_{n} is equivalent to

$$
\begin{aligned}
x_{1}+x_{2} & =s n+r \\
x_{3} & =t n+r,
\end{aligned}
$$

as equations in the integers for some $s, t \in \mathbb{Z}$. Multiply both equations by m to get

$$
\begin{aligned}
m x_{1}+m x_{2} & =m s n+m r \\
m x_{3} & =m t n+m r
\end{aligned}
$$

Therefore, $m x_{1}+m x_{2} \equiv m r \bmod n$, and $m x_{3} \equiv m r \bmod n$, so $m x_{1}+m x_{2} \equiv m x_{3} \bmod n$. Thus, $\left(m x_{1}, m x_{2}, m x_{3}\right)$ is rainbow in \hat{c} if and only if $\left(x_{1}, x_{2}, x_{3}\right)$ is rainbow in c.

Finally, the last statement of Lemma 8 follows from the fact that if m is relatively prime to n, then the $\operatorname{map} F: x \mapsto m x$ is a bijection.

Our next result is the Schur equation counterpart to Theorem 3.2 in [7].

Proposition 9. Let p be prime. Then every 3 -coloring c of \mathbb{Z}_{p} with $\min (|R|,|G|,|B|)>1$ contains a rainbow Schur triple.

Proof. For the sake of contradiction, assume that c is a rainbow-free 3 -coloring of \mathbb{Z}_{p} and $\min (|R|,|G|,|B|)>$ 1. Without loss of generality, assume that $|R|=\min (|R|,|G|,|B|)$. Since there are at least two elements of \mathbb{Z}_{p} colored R, there exists a minimal element $1 \leq i \leq p-1$ such that $c(i)=R$ Because p is prime, i is relatively prime to p and i has a multiplicative inverse. Let $\hat{c}(x):=c(i x)$ so that $\hat{c}(1)=R$. Therefore, by Lemma 6, R is dominant in \hat{c}. By Lemma $7, B B$ and $G G$ cannot both appear in \hat{c}. Without loss of generality, assume that $G G$ does not appear in \hat{c}. Because R is dominant, R must follow each G, so $|R| \geq|G|$. Furthermore, $B R$ must appear in \hat{c}. This implies that $|R| \geq|G|+1$ in \hat{c} which implies $|R| \geq|G|+1$ in c by Lemma 8 This contradicts our assumption that $|R|=\min (|R|,|G|,|B|)$.

Lemma 10. If c is a rainbow-free r-coloring of \mathbb{Z}_{p} for a prime p with $r>2$, then $c(x)=c(-x)$.
Proof. Let c be a rainbow-free r-coloring of \mathbb{Z}_{p}. For the sake of contradiction, assume that there exists $i,-i$ with $c(i) \neq c(-i)$. Without loss of generality, let $c(i)=R$ and $c(-i)=G$. Now, let $\hat{c}(x):=c(i x)$ and let $\bar{c}(x):=c(-i x)$. By Lemma 8, \hat{c} and \bar{c} are both rainbow-free. Since $\hat{c}(1)=c(i)=R$ and $\bar{c}(1)=c(-i)=G$, R is dominant in \hat{c}, and G is dominant in \bar{c}. Notice that $\hat{c}(x)=\bar{c}(-x)$, so if two colors are adjacent at some position in \hat{c}, then they are also adjacent at some position in \bar{c}. Thus, since G is dominant in \bar{c}, G must also appear in every bichromatic sequence in \hat{c}, and, consequently, G is also dominant in \hat{c}. If both R and G are dominant in \hat{c}, then \hat{c} must only contain R and G, and $r=2$; this is a contradiction.

Note that this lemma shows that the coloring from 1 to $p-1$ must be symmetric in a rainbow-free coloring of \mathbb{Z}_{p}.

Remark 2. For any prime $p \geq 5, \mathbb{Z}_{p}$ can be colored with three colors by coloring zero uniquely and coloring 1 to $p-1$ with two colors in any way such that $c(x)=c(-x)$ for all x. This coloring is rainbow-free since any three group elements which witness three colors must contain 0, and in order to make a Schur triple of three distinct elements where one of the elements is 0 the other two elements must be x and $-x$ for some x (see also Corollary 2 in [8]).

Now we have enough information about the structure of rainbow-free colorings to prove Theorem 1. A color class C is singleton if $|C|=1$.

Proof of Theorem 1. For the sake of contradiction, suppose that $r+1=r b\left(\mathbb{Z}_{p}, 1\right)>4$ for a prime $p \geq 5$, and let c be a rainbow-free r-coloring of \mathbb{Z}_{p} with $r>3$. Note that since c is rainbow-free, at least one of the color classes in c must contain more than one element. Partition the color classes of c into three sets to define \hat{c}, an exact 3-coloring of \mathbb{Z}_{p}. We use the union of the color classes within each part of the partition as the color classes for \hat{c}. Since we are concatenating colors, \hat{c} is also rainbow-free. By Proposition 9 , regardless of how the color classes of c are partitioned, there exists some color class in \hat{c} with exactly one element. If $r \geq 5$, then there exists a partition of the five or more color classes such that each color class has more than one element. Therefore, $r=4$.

Furthermore, if two or more color classes are not singleton, then there would exist a partition of the color classes that yields no singleton color classes in \hat{c}. Therefore, all but one of the four color classes in c must be singleton.

If there are three singleton color classes in c, then there exists an $x \neq 0$ such that $c(x) \neq c(-x)$. This contradicts Lemma 10, and cannot be rainbow-free.

Thus, there does not exist an exact rainbow-free r-coloring of \mathbb{Z}_{p} for $r>3$ and $p \geq 5$.

1.2 Lower Bound

In order to prove the lower bound for $\operatorname{rb}\left(\mathbb{Z}_{n}, 1\right)$, we examine the relationship between Schur triples in \mathbb{Z}_{n} and $\mathbb{Z}_{\frac{n}{m}}$ where m divides n.

Lemma 11. If there exists a Schur triple of form $\left(x_{1}, x_{2}, x_{3}\right)$ in \mathbb{Z}_{n} where $m \mid x_{1}, x_{2}, x_{3}$ for some $m \mid n$, $m, n \in \mathbb{Z}$, then there exists a Schur triple of the form $\left(x_{1} / m, x_{2} / m, x_{3} / m\right)$ in $\mathbb{Z}_{\frac{n}{m}}$.
Proof. By definition, $x_{1}+x_{2}=x_{3}$ in \mathbb{Z}_{n} implies that in the integers

$$
\begin{aligned}
x_{1}+x_{2} & =q n+r \\
x_{3} & =t n+r,
\end{aligned}
$$

for some $q, t \in \mathbb{Z}$. Divide both equations by m to get

$$
\begin{aligned}
\frac{x_{1}}{m}+\frac{x_{2}}{m} & =q \frac{n}{m}+\frac{r}{m} \\
\frac{x_{3}}{m} & =t \frac{n}{m}+\frac{r}{m}
\end{aligned}
$$

Now we must check that $\frac{r}{m}$ is an integer. Since $m \mid\left(x_{1}+x_{2}-q n\right)$, we know $m \mid r$.
By definition, this means that there exists a Schur triple of the form $\left(x_{1} / m, x_{2} / m, x_{3} / m\right)$ in $\mathbb{Z}_{\frac{n}{m}}$.
This shows that Schur triples can be "projected" from the cyclic group \mathbb{Z}_{n} to a subgroup $\mathbb{Z} \frac{n}{m}$. Next, we will show another property of Schur triples related to the divisibility of a triple's elements by a prime.

Lemma 12. For a positive integer n and a prime p, if $x_{1}+x_{2} \equiv x_{3} \bmod n p$, then p cannot divide exactly two of $\left(x_{1}, x_{2}, x_{3}\right)$.

Proof. If $x_{1}+x_{2} \equiv x_{3} \bmod n p$, then there exist integers c_{1}, c_{2}, and r_{0} such that $x_{1}+x_{2}=c_{1} n p+r_{0}$ and $x_{3}=c_{2} n p+r_{0}$.

Assume that p divides x_{1} and x_{2}. Then there exist integers c_{3} and c_{4} such that $x_{1}=c_{3} p$ and $x_{2}=c_{4} p$. We know there exist integers c_{5} and r_{1} with $0 \leq r_{1}<p$ such that $x_{3}=c_{5} p+r_{1}$, so we want to show $r_{1}=0$. Immediately, we see that $c_{3} p+c_{4} p=c_{1} n p+r_{0}$ and $c_{5} p+r_{1}=c_{2} n p+r_{0}$, which, after substituting for r_{0}, shows us $c_{3} p+c_{4} p=c_{1} n p+c_{5} p+r_{1}-c_{2} n p$. Solving for r_{1} gives us

$$
\begin{aligned}
r_{1} & =c_{3} p+c_{4} p-c_{1} n p-c_{5} p+c_{2} n p \\
& =p\left(c_{3}+c_{4}-c_{1} n-c_{5}+c_{2} n\right)
\end{aligned}
$$

This means that p divides r_{1}, forcing $r_{1}=0$. Thus, p divides x_{3}.
Now assume p divides x_{1} and x_{3}, i.e. there exist integers c_{6} and c_{7} such that $x_{1}=c_{6} p$ and $x_{3}=c_{7} p$. We know there exist integers c_{8} and r_{2} with $0 \leq r_{2}<p$ such that $x_{2}=c_{8} p+r_{2}$, so we want to show $r_{2}=0$. Immediately, we see that $c_{6} p+c_{8} p+r_{2}=c_{1} n p+r_{0}$ and $c_{7} p=c_{2} n p+r_{0}$, which, after substituting for r_{0}, shows us $c_{6} p+c_{8} p+r_{2}=c_{1} n p+c_{7} p-c_{2} n p$. Solving for r_{2} gives us

$$
\begin{aligned}
r_{2} & =c_{1} n p+c_{7} p-c_{2} n p-c_{6} p-c_{8} p \\
& =p\left(c_{1} n+c_{7}-c_{2} n-c_{6}-c_{8}\right)
\end{aligned}
$$

This means that p divides r_{2}, forcing $r_{2}=0$. Thus, p divides x_{2}. By symmetry, this case is identical to the case where p divides x_{2} and x_{3}.

Therefore, we can see that if p divides two elements in $\left(x_{1}, x_{2}, x_{3}\right)$, then p must also divide the third.
Lemma 13. Let p, t be positive integers with p prime. If there exists a rainbow-free r-coloring of \mathbb{Z}_{t}, then there exists a rainbow-free $r+r b\left(\mathbb{Z}_{p}, 1\right)-2$-coloring of $\mathbb{Z}_{p t}$.
Proof. Let t, p be positive integers such that p is a prime. Assume \hat{c} is a rainbow-free r-coloring of \mathbb{Z}_{t}. Then let c be an exact $\left(r+r b\left(\mathbb{Z}_{p}, 1\right)-2\right)$-coloring (if $p=2$ or $p=3$, then c is an exact $(r+1)$-coloring. Otherwise, c is an exact $r+2$ coloring) of $\mathbb{Z}_{p t}$ as follows:

$$
c(x):=\left\{\begin{array}{lll}
\hat{c}(x / p) & x \equiv 0 \quad \bmod p \\
r+1 & x \equiv 1 \text { or } p-1 \quad \bmod p \\
r+2 & \text { otherwise }
\end{array}\right.
$$

Notice that if $\left(x_{1}, x_{2}, x_{3}\right)$ is a Schur triple in $\mathbb{Z}_{p t}$, then there are three cases by Lemma $12 p$ divides exactly one of $\left(x_{1}, x_{2}, x_{3}\right), p$ divides each of $\left(x_{1}, x_{2}, x_{3}\right)$, or p divides none of $\left(x_{1}, x_{2}, x_{3}\right)$.

Case 1: The two terms x_{i}, x_{j} where $i, j \in\{1,2,3\}$ that are not divisible by p are either additive inverses modulo p or are equal modulo p. Thus, $c\left(x_{i}\right)=c\left(x_{j}\right)$ and $\left(x_{1}, x_{2}, x_{3}\right)$ does not form a triple.

Case 2: The coloring of each x_{i} is inherited from \hat{c}. Since \hat{c} does not admit rainbow triples, we know that this triple will not be rainbow by Lemma 11 .

Case 3: The three integers in the triple will be colored from $\{r+1, r+2\}$, so the triple will not be rainbow. In each case, c is a rainbow-free $r+r b\left(\mathbb{Z}_{p}, 1\right)-2$-coloring of $\mathbb{Z}_{p t}$.

Proposition 14. For any positive integer $n=p_{1}^{\alpha_{1}} \cdots p_{m}^{\alpha_{m}}$,

$$
r b\left(\mathbb{Z}_{n}, 1\right) \geq 2+\sum_{i=1}^{m}\left(\alpha_{i}\left(r b\left(\mathbb{Z}_{p_{i}}, 1\right)-2\right)\right)
$$

Proof. If n is prime, there is nothing to show. Suppose that the claim holds true for n where n has N prime factors.

Assume that $n=p_{1}^{\alpha_{1}} \cdots p_{m}^{\alpha_{m}}$ where $\alpha_{1}+\cdots+\alpha_{m}=N+1$. By the induction hypothesis, there exists a rainbow-free r-coloring of $\mathbb{Z}_{n / p_{1}}$ where

$$
r=1+\sum_{i=1}^{m}\left(\alpha_{i}\left(r b\left(\mathbb{Z}_{p_{i}}, 1\right)-2\right)\right)-r b\left(\mathbb{Z}_{p_{1}}, 1\right)+2
$$

Therefore, by Lemma 13 there exists a rainbow-free $r+r b\left(\mathbb{Z}_{p_{1}}, 1\right)-2$ coloring of \mathbb{Z}_{n}. Thus, by induction

$$
r b\left(\mathbb{Z}_{n}, 1\right) \geq 2+\sum_{i=1}^{m}\left(\alpha_{i}\left(r b\left(\mathbb{Z}_{p_{i}}, 1\right)-2\right)\right)
$$

1.3 Upper Bound

To establish the upper bound for $\operatorname{rb}\left(\mathbb{Z}_{n}, 1\right)$, we consider residue classes and their corresponding residue palettes under c.

Lemma 15. Let $R_{0}, R_{1}, \ldots, R_{t-1}$ be the residue classes modulo t for $\mathbb{Z}_{s t}$, and let $P_{0}, P_{1}, \cdots, P_{t-1}$ be the corresponding residue palettes under rainbow-free c. Then $\left|P_{i} \backslash P_{0}\right| \leq 1$ for $1 \leq i \leq t-1$.

Proof. Assume that $\left|P_{i} \backslash P_{0}\right| \geq 2$. Then R_{i} must contain at least two elements which receive colors that do not appear in P_{0}. Without loss of generality, let G and B denote two colors in $P_{i} \backslash P_{0}$. Then there exists two integers m and n such that $c(m t+i)=G$ and $c(n t+i)=B$. Consider the Schur triple ($m t-n t, n t+i, m t+i$). Notice that $m t-n t \equiv 0 \bmod t, c(m t-n t) \neq G, B$. Thus, we have a rainbow triple under c in $\mathbb{Z}_{s t}$, which is a contradiction. Therefore, $\left|P_{i} \backslash P_{0}\right| \leq 1$ for $1 \leq i \leq t-1$.

Lemma 15 lets us create a well-defined reduction of a coloring of $\mathbb{Z}_{s} t$ to a coloring of \mathbb{Z}_{t}.
Lemma 16. Let s and t be positive integers. Let $R_{0}, R_{1}, \ldots, R_{t-1}$ be the residue classes modulo t for $\mathbb{Z}_{s t}$ with corresponding residue palettes P_{i}. Suppose c is a coloring of $\mathbb{Z}_{\text {st }}$ where $\left|P_{i} \backslash P_{0}\right| \leq 1$. Let \hat{c} be a coloring of \mathbb{Z}_{t} given by

$$
\hat{c}(i):= \begin{cases}P_{i} \backslash P_{0} & \text { if }\left|P_{i} \backslash P_{0}\right|=1 \\ \alpha & \text { otherwise }\end{cases}
$$

where $\alpha \notin P_{i}$ for $0 \leq i \leq t$. If \hat{c} contains a rainbow Schur triple, then c contains a rainbow Schur triple.

Proof. Suppose $\left(x_{1}, x_{2}, x_{3}\right)$ is a rainbow Schur triple in \hat{c}. Then, at least two of x_{1}, x_{2}, x_{3} must receive a color other than α. We consider the following two cases.

Case 1: Neither x_{1} nor x_{2} receive color α.
Without loss of generality, assume that $c\left(x_{1}\right)=G$ and $C\left(x_{2}\right)=B$. This implies that there exist n, m such that $c\left(n t+x_{1}\right)=G$ and $c\left(m t+x_{2}\right)=B$. There is a Schur triple of the form $\left(n t+x_{1}, m t+x_{2},(n+\right.$ $\left.m) t+\left(x_{1}+x_{2}\right)\right)$ in $\mathbb{Z}_{s t}$. Since $x_{1}+x_{2} \equiv x_{3} \bmod t,(n+m) t+\left(x_{1}+x_{2}\right)$ is in the residue class $R_{x_{3}}$. As $\hat{c}\left(x_{3}\right) \neq G, B$, we have $G, B \notin P_{x_{3}}$. Therefore, the triple $\left(n t+x_{1}, m t+x_{2},(n+m) t+\left(x_{1}+x_{2}\right)\right)$ is rainbow.

Case 2: One of x_{1} or x_{2} is colored α.
Without loss of generality, assume that $c\left(x_{1}\right)=\alpha, c\left(x_{2}\right)=B$, and $c\left(x_{3}\right)=G$. Then $c\left(n t+x_{2}\right)=B$ for some n, and $c\left(m t+x_{3}\right)=G$ for some m. There is a Schur triple of the form $\left((m-n) t+\left(x_{3}-x_{2}\right), n t+\right.$ $\left.x_{2}, m t+x_{3}\right)$ in $\mathbb{Z}_{s t}$. Since $x_{1}+x_{2} \equiv x_{3} \bmod t,(m-n) t+\left(x_{3}-x_{2}\right)$ is in the residue class $R_{x_{1}}$. As $\hat{c}\left(x_{1}\right)=\alpha$, we have $G, B \notin P_{x_{1}}$. Therefore, the triple $\left((m-n) t+\left(x_{3}-x_{2}\right), n t+x_{2}, m t+x_{3}\right)$ is rainbow.

Hence, if \hat{c} has a rainbow Schur triple, then c has a rainbow Schur triple.
We use the coloring described in Lemma 16 to prove an upper bound for $r b\left(\mathbb{Z}_{s t}, 1\right)$.
Proposition 17. Let s and t be positive integers. Then $r b\left(\mathbb{Z}_{s t}, 1\right) \leq r b\left(\mathbb{Z}_{s}, 1\right)+r b\left(\mathbb{Z}_{t}, 1\right)-2$.
Proof. Let c be an exact r-coloring of $\mathbb{Z}_{s t}$, and let \hat{c} be a coloring constructed from c as in Lemma 16 Notice that the set of colors used in c is comprised of the colors in R_{0} and each color used in \hat{c} other than α. Thus, $r=\left|P_{0}\right|+|\hat{c}|-1$, where $|\hat{c}|$ is the number of colors appearing in \hat{c}. If c is a rainbow-free coloring of $\mathbb{Z}_{s t}$, then R_{0} is a rainbow-free coloring of \mathbb{Z}_{s}. Thus, $\left|P_{0}\right| \leq r b\left(\mathbb{Z}_{s}, 1\right)-1$. Also, \hat{c} is a rainbow-free coloring of \mathbb{Z}_{t}, so $|\hat{c}| \leq r b\left(\mathbb{Z}_{t}, 1\right)-1$. Thus, $r \leq r b\left(\mathbb{Z}_{s}, 1\right)+r b\left(\mathbb{Z}_{t}, 1\right)-3$. If we let c be the maximum rainbow-free coloring of $\mathbb{Z}_{s t}$, then $r=r b\left(\mathbb{Z}_{s t}, 1\right)-1$. This shows that $r b\left(\mathbb{Z}_{s t}, 1\right) \leq r b\left(\mathbb{Z}_{s}, 1\right)+r b\left(\mathbb{Z}_{t}, 1\right)-2$.

Using both the upper bound we just established and the lower bound established in Proposition 14 of Section 1.2 we prove Theorem 2

Proof of Theorem 圆 Recursively applying Proposition 17 to prime factors of n yields

$$
r b\left(\mathbb{Z}_{n}, 1\right) \leq 2+\sum_{i=1}^{m}\left(\alpha_{i}\left(r b\left(\mathbb{Z}_{p_{i}}, 1\right)-2\right)\right) .
$$

Since this is identical to the lower bound from Proposition 14 in Section 1.2 we can conclude

$$
r b\left(\mathbb{Z}_{n}, 1\right)=2+\sum_{i=1}^{m}\left(\alpha_{i}\left(r b\left(\mathbb{Z}_{p_{i}}, 1\right)-2\right)\right) .
$$

2 Triples for $x_{1}+x_{2}=p x_{3}, p$ prime

Section 2 is dedicated to proving Theorem [5 Section [2.1] we establish exact values for $r b\left(\mathbb{Z}_{q}, p\right)$ where $p \neq q$ are prime. Finding an exact value for $r b\left(\mathbb{Z}_{p}, p\right)$ is more difficult, and is the subject of Section [2.2 Some properties of rainbow-free colorings of \mathbb{Z}_{q} are used in the construction of the general lower bound in Section 2.3 The equivalent upper bound is proved in [2.4 Combining Sections 2.3 and 2.3 proves Theorem 5

2.1 Exact values for $r b\left(\mathbb{Z}_{q}, p\right), p \neq q$ prime

Lemmas 20, 21, 22, 23 establish the upper bound $r b\left(\mathbb{Z}_{q}, p\right) \leq 4$. These lemmas are proven by assuming that there exists a rainbow-free r-coloring c with $r \geq 4$, and reducing c to a 3-coloring \hat{c}. In each case, we find that \hat{c} does not conform to the structure of a rainbow-free 3 -coloring outlined in Theorem 18 proven in 8 . For convenience, we include Theorem 18 and the necessary definitions from 8].

For a subset $X \subseteq \mathbb{Z}_{q}^{*}$ and $a \in \mathbb{Z}_{q}^{*}$ define $a X:=\{a x \mid x \in X\}, X+a:=\{x+a \mid x \in X\}$, and $X-a:=X+(-a)$. We say the set $a X$ is the dilation of X by a. Let $\langle x\rangle \leq \mathbb{Z}_{q}^{*}$ denote the subgroup multiplicatively generated by x. A subset $X \in \mathbb{Z}_{q}^{*}$ is H-periodic if X is the union of cosets of H, where $H \leq \mathbb{Z}_{p}^{*}$. In the case that X is $\langle-1\rangle$-periodic, we say that X is symmetric. This coincides with the notion that X is symmetric if and only if $X=-X$.

Theorem 18. [[8], Theorem 2] A 3-coloring $\mathbb{Z}_{q}=A \cup B \cup C$ with $1 \leq|A| \leq|B| \leq|C|$ is rainbow-free for $x_{1}+x_{2}=k x_{3}$ if and only if, up to dilation, one of the following holds.

1. $A=\{0\}$ and both B and C are symmetric and $\langle k\rangle$-periodic subsets.
2. $A=\{1\}$ for
(i) $k=2 \bmod q,(B-1)$ and $(C-1)$ are symmetric and $\langle 2\rangle$-periodic subsets.
(ii) $k=-1 \bmod q,(B \backslash\{2\})+2^{-1},(C \backslash\{2\})+2^{-1}$ are symmetric subsets.
3. $|A| \geq 2$, for $k=-1 \bmod q$ and A, B, and C are arithmetic progressions with difference 1 such that $A=\left[a_{1}, a_{2}-1\right], B=\left[a_{2}, a_{3}-1\right]$, and $C=\left[a_{3}, a_{1}-1\right]$, with $\left(a_{1}+a_{2}+a_{3}\right)=1$ or 2 .

Suppose that $q \geq 5$ is prime. Let c be a coloring of \mathbb{Z}_{q} with color classes C_{1}, \ldots, C_{r} with $1 \leq\left|C_{1}\right| \leq$ $\left|C_{2}\right| \leq \cdots \leq\left|C_{r}\right|$ and $r \geq 4$.

Observation 19. If $C_{1}=\{0\}$ and $C_{2}=\{x\}$, then $(x,-x, 0)$ is a rainbow triple for $x \neq 0$.
Therefore, if c has two or more singleton color classes, we can assume that $\{0\}$ is not a color class. Furthermore, since dilation preserves the rainbow-free property, we can assume that if $\left|C_{2}\right|=1$, then $C_{1}=\{1\}$.

Lemma 20. If $p \not \equiv-1 \bmod q$ and $\left|C_{2}\right|=1$, then c admits a rainbow triple.
Proof. Consider the coloring \hat{c} given by the color classes $C_{1}, C_{2}, \bigcup_{i=3}^{r} C_{i}$. If \hat{c} admits a rainbow triple, then c also admits a rainbow triple and we are done. If \hat{c} does not admit a rainbow triple, then \hat{c} must conform to case 2.(i) in Theorem 18. Therefore, $p \equiv 2 \bmod q$. In this case, triples satisfying $x_{1}+x_{2}=k x_{3}$ in \mathbb{Z}_{q} are 3 -term arithmetic progressions. In [5] Proposition 3.5 establishes that $r b\left(\mathbb{Z}_{q}, 2\right) \leq 4$. Therefore, there exists a rainbow triple under c.

Lemma 21. If $p \equiv-1 \bmod q$ and $\left|C_{3}\right|=1$, then c admits a rainbow triple.
Proof. Let $C_{2}=\{x\}, C_{3}=\{y\}$. For the sake of contradiction, assume that c is rainbow free.
If $x=2$, then $(x,-3,1)$ is a rainbow triple. The same argument for y shows that $x, y \neq 2$.
Consider the coloring \hat{c} given by the color classes $C_{1}, C_{2}, \bigcup_{i=3}^{r} C_{i}$. Then by Theorem 18 we must have
$C_{2} \backslash\{2\}+2^{-1}$ is symmetric and so $x+2^{-1}=-2^{-1}-x$. Solving for x gives that $x=-2^{-1}$. Considering the coloring given by $C_{1}, C_{3}, C_{2} \cup \bigcup_{i=4}^{r} C_{i}$ gives that $y=-2^{-1}$, which is a contradiction.

Lemma 22. If $p \not \equiv-1 \bmod q$, and $\left|C_{2}\right| \geq 2$, then c admits a rainbow triple.
Proof. For the sake of contradiction, suppose that c does not admit a rainbow triple. Consider the coloring \hat{c} given by $C_{1} \cup C_{2}, C_{3}, \bigcup_{i=4}^{r} C_{i}$. Since $\left|C_{3}\right| \geq\left|C_{2}\right| \geq 2$, notice that \hat{c} does not have a singleton color class and is rainbow-free. This contradicts Theorem 18 .

Lemma 23. If $p \equiv-1 \bmod q$ and $\left|C_{3}\right| \geq 2$, then c admits a rainbow triple.

Proof. For the sake of contradiction, suppose that c does not admit a rainbow triple. There are two cases: $\left|C_{2}\right| \geq 2$, or $\left|C_{2}\right|=1$.

Case 1: Assume that $\left|C_{2}\right| \geq 2$ and $C_{1}=\{x\}$. By Theorem 18 the coloring $C_{1} \cup C_{2}, C_{3}, \bigcup_{i=4}^{r} C_{i}$ is of the form

$$
\begin{gathered}
C_{1} \cup C_{2}=\left[a_{1}, a_{2}-1\right] \\
C_{3}=\left[a_{2}, a_{3}-1\right] \\
\bigcup_{i=4}^{r} C_{i}=\left[a_{3}, a_{1}-1\right]
\end{gathered}
$$

x is not adjacent to at least one of C_{3} or $\bigcup_{i=4}^{r} C_{i}$. Without loss of generality, assume x is not adjacent to C_{3} (the other case follows the same argument). Consider the coloring \hat{c} given by $C_{2}, C_{1} \cup C_{3}, \bigcup_{i=4}^{r} C_{i}$. Notice that \hat{c} can only be dilated by 1 or -1 to preserve the interval structure of $\bigcup_{i=4}^{r} C_{i}$. However, dilating by 1 or -1 will not make $C_{1} \cup C_{3}$ an arithmetic progression with difference 1 . This is a contradiction.

Case 2: Assume that $\left|C_{2}\right|=1$. Consider the coloring \hat{c} given by $C_{1} \cup C_{2}, C_{3}, \bigcup_{i=4}^{r} C_{i}$. By Theorem 18 , \hat{c} is of the form

$$
\begin{gathered}
C_{1} \cup C_{2}=\left[a_{1}, a_{2}-1\right] \\
C_{3}=\left[a_{2}, a_{3}-1\right] \\
\bigcup_{i=4}^{r} C_{i}=\left[a_{3}, a_{1}-1\right]
\end{gathered}
$$

with $a_{1}+a_{2}+a_{3} \in\{1,2\}$. Since every set is an arithmetic progression with difference $1, a_{2}-1=a_{1}+1$. This implies that $a_{3} \in\left\{-2 a_{1}-1,-2 a_{1}\right\}$. This implies that $c\left(-2 a_{1}-1\right) \neq c\left(a_{1}\right), c\left(a_{1}+1\right)$. Therefore, triple $\left(-2 a_{1}-1, a_{1}, a_{1}+1\right)$ is rainbow, which is a contradiction.

Proof of Theorem [3. By Lemmas 20, 21, 22, and 23, we know that $r b\left(\mathbb{Z}_{q}, p\right) \leq 4$. Therefore, it suffices to show that there exists a rainbow-free 3 -coloring of \mathbb{Z}_{q} if and only if p, q do not satisfy either condition 1 or 2 . First we will prove that if there exists a rainbow-free 3 -coloring, then p, q do not satisfy conditions 1 and 2 .

Let c be a rainbow-free 3 -coloring. There are two cases, $p \not \equiv-1 \bmod q$ or $p \equiv-1 \bmod q$.
Case 1: By Theorem 18 either 0 is uniquely colored, or $p \equiv 2 \bmod q$.
Suppose 0 is uniquely colored and $c(1)=R$. Notice that if $c(x)=R$, then $c(p x)=R$ and $c(-x)=R$. If p, q satisfy either 1 or 2 , then $\left\{p^{i},-p^{i} \mid i \in \mathbb{Z}\right\}=\mathbb{Z}_{q}^{*}$, which contradicts the fact that c is a 3-coloring.

Suppose $p \equiv 2 \bmod q$. Then neither 1 nor 2 are satisfied by Theorem 3.5 in [7.
Case 2: Suppose $p \equiv-1 \bmod q$. Then $|p|=2$. If $(q-1) / 2$ is odd, then $(q-1) / 2 \neq 2$. Therefore, neither 1 nor 2 are satisfied.

To prove the reverse direction, suppose that p, q do not satisfy either 1 or 2 . Let c be given by

$$
C_{1}=\{0\}, C_{2}=\left\{p^{i},-p^{i} \mid i \in \mathbb{Z}\right\}, C_{3}=\mathbb{Z}_{q}^{*} \backslash C_{2}
$$

Since p, q do not satisfy either 1 or $2, C_{3}$ is non-empty. Notice that any rainbow triple must contain 0 and some element $y \in C_{2}$. However, if $0, y, z$ is a triple, then $z \in C_{2}$. Therefore, c is rainbow-free.

The following corollary is used in Section 2.3 to prove a general lower bound for $r b\left(\mathbb{Z}_{n}, p\right)$.
Corollary 24. There exists a maximum rainbow-free coloring of \mathbb{Z}_{q} where 0 is uniquely colored and the color classes are symmetric.

2.2 Exact values for $r b\left(\mathbb{Z}_{p^{\alpha}}, p\right), p$ prime

In order to determine the rainbow numbers for equations of the form $x_{1}+x_{2}=p x_{3}$ for prime $p \geq 3$ we still need to determine $r b\left(\mathbb{Z}_{p^{\alpha}}, p\right)$ for $\alpha \geq 1$. We will prove Theorem 4 using induction. Observation 25 and Propositions 26, 27, and 28 provide the lower bound and base case for our induction argument. Lemmas 29 and 30 provide the basic structure of a rainbow-free coloring of $\mathbb{Z}_{p^{\alpha}}$. Lastly, Lemmas 31, and 32 exploit the structure to derive a contradiction by forcing a rainbow triple. Throughout this section, for $0 \leq k \leq p-1$, recall that the $k^{t h}$ residue class $\bmod p$ is the set $R_{k}=\left\{j \in \mathbb{Z}_{p^{\alpha}}: j \equiv k \bmod p\right\}$ and that the $k^{t h}$ residue palette P_{k} is the set of colors which appear on R_{k}.

Observation 25. Notice $\operatorname{rb}\left(\mathbb{Z}_{3}, 3\right)=3$ and $\operatorname{rb}\left(\mathbb{Z}_{9}, 3\right)=4$.
Proposition 26. Let $p \geq 3$ be prime. Then $r b\left(\mathbb{Z}_{p}, p\right)=\frac{p+1}{2}+1$.
Proof. To prove the lower bound, consider the following coloring:

$$
c(x)=\left\{\begin{array}{ll}
x & 0 \leq x \leq \frac{p+1}{2} \\
-x & \text { otherwise }
\end{array} .\right.
$$

Notice that $c(x)=c(-x)$ for all $x \in \mathbb{Z}_{p}$. Furthermore, if $\left(x_{1}, x_{2}, x_{3}\right)$ is a triple, then $x_{1}=-x_{2}$. Thus, c is a rainbow-free $\frac{p+1}{2}$ coloring, and $r b\left(\mathbb{Z}_{p}, p\right)>\frac{p+1}{2}$.

To prove the upper bound, assume that c is an $\frac{p+1}{2}+1$ coloring of \mathbb{Z}_{p}. By the pigeonhole principle, there exists $x \in \mathbb{Z}_{p}$ such that $x \neq 0$ and $c(x) \neq c(-x)$. Since $p \geq 3, x \neq-x$, and there exist $y \neq x,-x$ such that $c(y) \neq c(x), c(-x)$. Therefore, $(x,-x, y)$ is a rainbow-triple, and $r b\left(\mathbb{Z}_{p}, p\right) \leq \frac{p+1}{2}+1$.

For the rest of the section, we will assume that $\alpha \geq 2$.
Proposition 27. For $\alpha \geq 2$,

$$
r b\left(\mathbb{Z}_{3^{\alpha}}, 3\right)>3
$$

Proof. Suppose that $\alpha \geq 3$ and \bar{c} is a rainbow-free 3 -coloring of \mathbb{Z}_{9}. Let c be a 3 -coloring of $\mathbb{Z}_{p^{\alpha}}$ given by $c(i):=\bar{c}(i \bmod 9)$. Assume that x_{1}, x_{2}, x_{3} is a triple in $\mathbb{Z}_{3^{\alpha}}$. Then x_{1}, x_{2}, x_{3} is a triple in \mathbb{Z}_{9} and cannot be rainbow.

Proposition 28. For prime $p \geq 5$ and $\alpha \geq 1$,

$$
r b\left(\mathbb{Z}_{p^{\alpha}}, p\right) \geq \frac{p+1}{2}+1
$$

Proof. Color all of R_{i}, R_{p-i} color i for $0 \leq i \leq \frac{p+1}{2}$. Suppose $x_{1}+x_{2}=p x_{3}$ and $x_{1} \equiv j$ mod p for $0 \leq j \leq p-1$. Then $x_{2} \equiv p-j \bmod p$, and x_{1}, x_{2}, x_{2} is not rainbow.

Lemma 29. If c does not admit a rainbow triple, then

$$
P_{i}=P_{p-i}
$$

when $0<i<p$.
Proof. For the sake of contradiction, suppose that there exists $0<i<p$ with $G \in P_{i} \backslash P_{p-i}$. Then there exists an element $p x+i$ with color G in R_{i}. Let $p y+p-i$ be an element in R_{p-i}. Notice that

$$
\begin{aligned}
& x_{1}=p(p y-x+p-1-i)+p-i \\
& x_{2}=p x+i \\
& x_{3}=p y+p-i
\end{aligned}
$$

is a triple. Since $G \notin P_{p-i}$, we have $c\left(x_{3}\right)=c\left(x_{1}\right)$. Furthermore, $x_{1}-x_{3}=p(p y-x+p-1-i)+p-i-p y-p+i=$ $p(y(p-1)-x+p-1)$. Since $p y+p-i$ was arbitrary, we can choose y so that $y(p-1)-x+p-1 \not \equiv 0$
$\bmod p$. Since $y(p-1)-x+p-1 \not \equiv 0 \bmod p$, we know that $y(p-1)-x+p-1$ is an additive generator of $\mathbb{Z}_{p^{\alpha-1}}$. This implies that $P_{p-i}=\{B\}$.

Let $p z+j$ be an element with $c(p z+j) \notin\{G, B\}$. Then

$$
\begin{aligned}
& x_{1}=p(p z-x+j-1)+p-i \\
& x_{2}=p x+i \\
& x_{3}=p z+j
\end{aligned}
$$

is a rainbow triple, which is a contradiction.
Notice that by Lemma 29, it is sufficient to only consider the structure of R_{i} for $0<i<\frac{p+1}{2}$.
Lemma 30. Suppose c does not admit a rainbow triple. If there exists $0<i<p$ such that $\left|P_{i} \backslash P_{0}\right| \geq 1$, then $\left|P_{0}\right|=1$.

Proof. Since c does not admit a rainbow triple, $P_{i}=P_{p-i}$. Without loss of generality, suppose that $G \in P_{i} \backslash P_{0}$ and let $c\left(p a_{1}+i\right)=c\left(p a_{2}+p-i\right)=G$. Let $p b \in R_{0}$ be arbitrary. Consider the following triple:

$$
\begin{aligned}
& x_{1}=p b \\
& x_{2}=p\left(p a_{1}+i-b\right) \\
& x_{3}=p a_{1}+i .
\end{aligned}
$$

Since c is rainbow-free, $c\left(x_{1}\right)=c\left(x_{2}\right)$. Next, consider the following triple:

$$
\begin{aligned}
& x_{1}^{\prime}=p\left(p a_{1}+i-b\right) \\
& x_{2}^{\prime}=p\left(p a_{2}+p-i-p a_{1}-i+b\right) \\
& x_{3}^{\prime}=p a_{2}+p-i
\end{aligned}
$$

Since c is rainbow-free, $c\left(x_{1}^{\prime}\right)=c\left(x_{2}^{\prime}\right)$. This implies that

$$
c(p b)=c\left(p\left(p a_{2}+p-i-p a_{1}-i+b\right)\right)
$$

Notice that difference in position between x_{2}^{\prime} and $p b$, given by $p a_{2}+p-i-p a_{1}-i+b-b$, does not depend on b. Furthermore, $p a_{2}+p-i-p a_{1}-i+b-b$ is relatively prime to $p^{\alpha-1}$. Therefore, all elements in R_{0} receive the same color.

Lemma 31. Let p be prime with $p \geq 5$. If there exists $0<i<\frac{p+1}{2}$ such that $\left|P_{i} \backslash P_{0}\right| \geq 2$ and $G \notin P_{i} \cup P_{0}$, then c admits a rainbow triple.

Proof. For the sake of contradiction, suppose that c does not admit a rainbow triple. Since $p \geq 5$ and $\left|P_{0}\right|=1$, there exists $j \neq i$ such that $0<j<p$ and $G \in P_{j} \backslash\left(P_{i} \cup P_{0}\right)$. By Lemma 29, $P_{j}=P_{p-j}$ and $P_{i}=P_{p-i}$. Let $c\left(p a_{1}+j\right)=c\left(p a_{2}+p-j\right)=G$. Let $p b+i \in R_{i}$ be arbitrary. Consider the following triple:

$$
\begin{aligned}
& x_{1}=p b+i \\
& x_{2}=p\left(p a_{1}+j-b-1\right)+p-i \\
& x_{3}=p a_{1}+j
\end{aligned}
$$

Then $c\left(x_{1}\right)=c\left(x_{2}\right)$. Next consider the following triple:

$$
\begin{aligned}
& x_{1}^{\prime}=p\left(p a_{1}+j-b-1\right)+p-i \\
& x_{2}^{\prime}=p\left(p a_{2}+p-j-p a_{1}-j+b\right)+i \\
& x_{3}^{\prime}=p a_{2}+p-j
\end{aligned}
$$

Then $c\left(x_{1}^{\prime}\right)=c\left(x_{2}^{\prime}\right)$. This implies that

$$
c(p b+i)=c\left(p\left(p a_{2}+p-j-p a_{1}-j+b\right)+i\right)
$$

Notice that the difference in position between x_{2}^{\prime} and $p b+i$, given by $p a_{1}+p-j-p a_{1}-j+b-b$, does not depend on b. Furthermore, $p a_{2}+p-j-p a_{1}-j+b-b$ is relatively prime to $p^{\alpha-1}$. Therefore, all elements in R_{i} receive the same color. This is a contradiction, since $\left|P_{i}\right| \geq 2$.

Lemma 32. If $p \geq 5, \mathbb{Z}_{p^{\alpha}}$ is colored with at least 4 colors, and there exists $0<i<\frac{p+1}{2}$ with $\operatorname{Im}(c)=P_{i} \cup P_{0}$ and $\left|P_{i} \backslash P_{0}\right| \geq 2$, then c admits a rainbow triple.

Proof. For the sake of contradiction, suppose that c does not admit a rainbow triple. By Lemma 30, let $P_{0}=\{R\}$. By Lemma 29, $P_{i}=P_{p-i}$. Since P_{i} contains all colors except possibly R, there exists a, b, d such that $c(p a+i)=G, c(p b+p-i)=B$ and $c(p d+i)=B$. Consider the following triple:

$$
\begin{aligned}
& x_{1}=p a+i \\
& x_{2}=p(p b+p-i-a-1)+p-i \\
& x_{3}=p b+p-i .
\end{aligned}
$$

Then $c\left(x_{2}\right) \in\{B, G\}$. Let $x \in\{a, d\}$ such that $c(p x+i) \neq c\left(x_{2}\right)$ and consider the following triple:

$$
\begin{aligned}
& x_{1}^{\prime}=p(p b-p-i-a-1)+p-i \\
& x_{2}^{\prime}=p(p x-p b+p+2 i+a)+i \\
& x_{3}^{\prime}=p x+i .
\end{aligned}
$$

Notice that $c\left(x_{2}^{\prime}\right) \in\{B, G\}$. Furthermore, the difference in position between x_{2}^{\prime} and $p a+i$, given by $p x-p b+p+2 i \equiv 2 i \bmod p$, does not depend on a, b, d modulo p. Therefore, for any $x \in \mathbb{Z}_{p}$ there exists $a \equiv x$ such that $c(p a+i) \in\{B, G\}$.

Since P_{p-i} contains all colors of c except for possibly R, there exists y such that $c(p y+p-i)=Y$. Select $a \equiv-1-y \bmod p$ such that $c(p a+i) \in\{B, G\}$. Then the triple $(p y+p-i, p a+i, a+y+1)$ is rainbow since $a+y+1 \in R_{0}$.

Proof of Theorem 4 Proposition 27 provides the lower bound for $p=3, \alpha \geq 2$. Observation 25 covers the case when $p=3, \alpha=1,2$.

We will proceed by induction on α. Suppose that $r b\left(\mathbb{Z}_{p^{\alpha-1}}, 3\right)=4$ for some $\alpha \geq 3$. Let c be a 4 coloring of $\mathbb{Z}_{3^{\alpha}}$. For the sake of contradiction, suppose that c does not admit a rainbow triple. If $\left|P_{0}\right|=4$, then c admits a rainbow triple by the induction hypothesis. Therefore, $\left|P_{0}\right| \leq 3$ and there exits $0<i<p$ such that $\left|P_{i} \backslash P_{0}\right| \geq 1$. By Lemma 30, $\left|P_{0}\right|=1$. This implies that $\operatorname{im}(c)=\left|P_{i} \backslash P_{0}\right|$. By Lemma 32, c admits a rainbow triple. This completes the case when $p=3$.

Let $p \geq 5$. With Proposition 26 as the base case, we will proceed by induction on α. Suppose that $r b\left(\mathbb{Z}_{p^{\alpha-1}}, p\right)=\frac{p+1}{2}+1$ for some $\alpha \geq 2$. For the sake of contradiction, suppose that c does not admit a rainbow triple. If $\left|P_{0}\right|=\frac{p+1}{2}+1$, then c admits a rainbow triple by the induction hypothesis. Therefore, $\left|P_{0}\right| \leq \frac{p+1}{2}$ and there exists $0<j<p$ such that $\left|P_{j} \backslash P_{0}\right| \geq 1$. By Lemma 30, $P_{0}=\{R\}$. By the pigeon hole principle, there exists $0<i<\frac{p+1}{2}$ such that $\left|P_{i} \backslash P_{0}\right| \geq 2$. Notice that one of the following must hold:

1. $G \notin P_{i} \cup P_{0}$ for some color $G \neq R$,
2. $\operatorname{im}(c)=P_{i} \cup P_{0}$.

Therefore, by Lemmas 31 and $32 c$ must admit a rainbow triple. This completes the case when $p \geq 5$.

2.3 Lower bound for $r b\left(\mathbb{Z}_{n}, p\right)$, p prime

Since p is the coefficient of the equation that we are considering, we will use q to denote a prime other than p. Using values for $r b\left(\mathbb{Z}_{q}, k\right)$, we establish a lower bound for $\operatorname{rb}\left(\mathbb{Z}_{n}, p\right)$. In order to proceed in a similar manner as with the Schur equation, two lemmas about the structure of triples are necessary.

Lemma 33. If $x_{1}+x_{2}=k x_{3}$ is a triple in \mathbb{Z}_{n} where $m \mid x_{1}, x_{2}, x_{3}$ for some $m \mid n, m, n \in \mathbb{Z}$, then there exists a triple of the form $x_{1} / m+x_{2} / m=k x_{3} / m$ in $\mathbb{Z}_{\frac{n}{m}}$.
Proof. By definition $x_{1}+x_{2}=k x_{3}$ in \mathbb{Z}_{n} implies:

$$
\begin{aligned}
x_{1}+x_{2} & =q n+r \\
k x_{3} & =t n+r
\end{aligned}
$$

Divide both equations by m to get:

$$
\begin{aligned}
\frac{x_{1}}{m}+\frac{x_{2}}{m} & =q \frac{n}{m}+\frac{r}{m} \\
k \frac{x_{3}}{m} & =t \frac{n}{m}+\frac{r}{m}
\end{aligned}
$$

Now we must check that $\frac{r}{m}$ is an integer. Since $m \mid\left(x_{1}+x_{2}-q n\right)$, we know $m \mid r$. By definition, this means there exists a triple of the form $x_{1} / m+x_{2} / m=x_{3} / m$ in $\mathbb{Z}_{\frac{n}{m}}$.

Next, we show that q cannot divide exactly two terms of a triple.
Lemma 34. Let $\left(x_{1}, x_{2}, x_{3}\right)$ be a triple of the form $x_{1}+x_{2}=k x_{3}$ in $\mathbb{Z}_{q n}$. If q is relatively prime to k and q divides two of the terms in $\left(x_{1}, x_{2}, x_{3}\right)$ then q must divide the third term in $\left(x_{1}, x_{2}, x_{3}\right)$.

Proof. We consider the case where q divides x_{1}, x_{2} and the case where q divides x_{1}, x_{3}.
Case 1: Assume q divides x_{1}, x_{2}. By definition the equation $x_{1}+x_{2}=k x_{3}$ in $\mathbb{Z}_{q n}$ means:

$$
\begin{aligned}
x_{1}+x_{2} & =c_{1} q n+r \\
k \cdot x_{3} & =c_{2} q n+r
\end{aligned}
$$

We rearrange the first equation to get q divides $x_{1}+x_{2}-c_{1} q n$ which implies that q divides r. Thus q divides $c_{2} q n+r$ which mplies q divides $k x_{3}$. We know q and k are relativity prime, therefore q must divide x_{3}.

Case 2: Similarly, assume q divides x_{1}, x_{3}. By definition the equation $x_{1}+x_{2}=k x_{3}$ in $\mathbb{Z}_{q n}$ means:

$$
\begin{aligned}
x_{1}+x_{2} & =c_{1} q n+r \\
k \cdot x_{3} & =c_{2} q n+r
\end{aligned}
$$

From the second equation we get q divides $k x_{3}-c_{2} q n$ which implies that q divides r. Thus q divides $x_{1}-c_{1} \cdot q n-r$ which implies q divides x_{2}.

Notice that Lemmas 33 and 34 are stated for the equation $x_{1}+x_{2}=k x_{3}$ without the stipulation that k is prime. We can use the above lemmas to find our lower bound.
Lemma 35. Let q, t be positive integers with q prime, and $q \neq p$. If there exists a rainbow-free r-coloring of \mathbb{Z}_{t}, then there exists a rainbow-free $\left(r+r b\left(\mathbb{Z}_{q}, p\right)-2\right)$-coloring of $\mathbb{Z}_{q t}$.
Proof. Let $q, t \in \mathbb{Z}$ such that q is prime, and $q \neq p$. Let \hat{c} be a rainbow-free r-coloring for \mathbb{Z}_{t} and let \bar{c} be a maximum coloring of \mathbb{Z}_{q} such that 0 is uniquely colored and the other color classes are symmetric subsets, as described in Corollary 24, Let c be an exact ($r+1$)-coloring of $\mathbb{Z}_{q t}$ if $r b\left(\mathbb{Z}_{q}, p\right)=3$ or an exact ($r+2$)-coloring of $\mathbb{Z}_{q t}$ if $\operatorname{rb}\left(\mathbb{Z}_{q}, p\right)=4$ as follows:

$$
c(x)=\left\{\begin{array}{ll}
\hat{c}\left(\frac{x}{q}\right) & x \equiv 0 \quad \bmod q \\
r+\bar{c}(x & \bmod q)
\end{array}\right. \text { otherwise }
$$

Since q and p are distinct primes, q and p are relatively prime. By Lemma [34] since q is relatively prime to p, q cannot divide exactly two of the terms in $\left(x_{1}, x_{2}, x_{3}\right)$ for the equation $x_{1}+x_{2}=p x_{3}$. Therefore, for all triples in $\mathbb{Z}_{q t}, q$ can divide all three elements, no elements, or exactly one element of the triple.

Case 1: If q divides all three terms in $\left(x_{1}, x_{2}, x_{3}\right)$, then by the constructions of c, the triple has the same colors as the triple $\left(\frac{x_{1}}{q}, \frac{x_{2}}{q}, \frac{x_{3}}{q}\right)$ in \hat{c}. By Lemma 33, if $\left(x_{1}, x_{2}, x_{3}\right)$ is a triple in $\mathbb{Z}_{q t}$ and $q \mid x_{1}, x_{2}, x_{3}$, then $\left(\frac{x_{1}}{q}, \frac{x_{2}}{q}, \frac{x_{3}}{q}\right)$ is a triple in \mathbb{Z}_{t}. Thus, since \hat{c} is a rainbow-free coloring, triples where all three elements are divisible by q cannot be rainbow in c.

Case 2: Suppose q divides none of the terms in $\left(x_{1}, x_{2}, x_{3}\right)$, there is a maximum of two colors added on terms not divisible by q. Thus, there are at most two colors coloring the elements in any such triple, and triples of the form $\left(x_{1}, x_{2}, x_{3}\right)$ with each x_{i} not divisible by q are not rainbow.

Case 3: Suppose q divides exactly one of $\left(x_{1}, x_{2}, x_{3}\right)$. First assume q divides x_{1}. Notice that if $x_{1}+x_{2} \equiv$ $p x_{3} \bmod q t$ then $x_{1}+x_{2} \equiv p x_{3} \bmod q$. Since 0 is uniquely colored in \bar{c}, the rainbow-free coloring of \mathbb{Z}_{q}, any triple in \mathbb{Z}_{q} of the form $0+x_{2} \equiv p x_{3} \bmod q$ is colored so that x_{2} and x_{3} receive the same color. In this case, $c\left(x_{2}\right)=r+\bar{c}\left(x_{2} \bmod q\right)$ and $c\left(x_{3}\right)=r+\bar{c}\left(x_{3} \bmod q\right)$, so $\left(x_{1}, x_{2}, x_{3}\right)$ is not rainbow under c. If q divides either x_{2} or x_{3} the argument proceeds the same way.

Proposition 36. Let p be prime and let n be an integer with prime factorization $n=p^{\alpha} \cdot q_{1}^{\alpha_{1}} \cdot q_{2}^{\alpha_{2}} \cdots q_{m}^{\alpha_{m}}$ where q_{i} is prime, $q_{i} \neq q_{j}$ for $i \neq j$ and $\alpha_{i} \geq 0$. Then,

$$
r b\left(\mathbb{Z}_{n}, p\right) \geq r b\left(\mathbb{Z}_{p^{\alpha}}, p\right)+\sum_{i=1}^{m}\left(\alpha_{i}\left(r b\left(\mathbb{Z}_{q_{i}}, p\right)-2\right)\right)
$$

Proof. If n is a power of p, then there is nothing to show. Suppose that the claim holds true for n where n has N prime factors that are not p.

Assume that $n=p^{\alpha} \cdot q_{1}^{\alpha_{1}} \cdot q_{2}^{\alpha_{2}} \cdots q_{m}^{\alpha_{m}}$ where $\alpha_{1}+\cdots+\alpha_{m}=N+1$. By the induction hypothesis, there exists a rainbow-free r-coloring of $\mathbb{Z}_{n / q_{1}}$ where

$$
r=r b\left(\mathbb{Z}_{p^{\alpha}}, p\right)+\sum_{i=1}^{m}\left(\alpha_{i}\left(r b\left(\mathbb{Z}_{q_{i}}, p\right)-2\right)\right)-r b\left(\mathbb{Z}_{q_{1}}, p\right)+2
$$

Therefore, by Lemma 35 there exists a rainbow-free $\left.r+\mathbb{Z}_{q_{1}}, p\right)-2$ coloring of Z_{n}. Thus, by induction

$$
r b\left(\mathbb{Z}_{p^{\alpha}}, p\right)+\sum_{i=1}^{m}\left(\alpha_{i}\left(r b\left(\mathbb{Z}_{q_{i}}, p\right)-2\right)\right) .
$$

2.4 Upper bound for $r b\left(\mathbb{Z}_{n}, p\right)$, p prime

In this section we prove an upper bound matching Proposition 36. The proof of the upper bound uses the following lemmas.

Lemma 37. Suppose c is a rainbow-free coloring of $\mathbb{Z}_{q t}$ for $x_{1}+x_{2}=p x_{3}$ where t is some positive integer and $q \neq p$ is prime. Let R_{0}, \cdots, R_{t-1} be the residue classes modulo t of $\mathbb{Z}_{q t}$, with corresponding color palettes P_{0}, \cdots, P_{t-1}. Let j be an index such that $\left|P_{j}\right| \geq\left|P_{i}\right|$ for all $0 \leq i \leq t-1$. Then $\left|P_{i} \backslash P_{j}\right| \leq 1$ for all $0 \leq i \leq t-1$.

Proof. For the sake of contradiction, assume that there exists i such that $\left|P_{i} \backslash P_{j}\right| \geq 2$. This implies that there exists $t u+i$ and $t v+i$ with colors G and B respectively, that are not in P_{j}. Without loss of generality, $v>u$

First suppose that $P_{p i-j} \neq P_{j}$. There are two cases: either $P_{p i-j}$ has a color that is not in P_{j}, or P_{j} has a color that is not in $P_{p i-j}$.

Case 1: Suppose that $c(s t+p i-j) \notin P_{j}$. Without loss of generality, $c(s t+p i-j) \neq G$. Then

$$
\begin{aligned}
& x_{1}=t s+p i-j \\
& x_{2}=p t u+-t s+j \\
& x_{3}=t u+i
\end{aligned}
$$

is a rainbow triple.
Case 2: Suppose that $c(t s+j) \notin P_{p i-j}$. Then

$$
\begin{aligned}
& x_{1}=t s+j \\
& x_{2}=p t u-t s+p i-j \\
& x_{3}=t u+i
\end{aligned}
$$

is rainbow.
Since c is assumed to be rainbow-free, both cases result in a contradiction. Therefore, $P_{j}=P_{p i-j}$.
Let $t s+j \in R_{j}$. Since c is rainbow-free, $c(p t u-t s+p i-j)=c(t s+j)$. Similarly, the triple

$$
\{t(p u-s)+p i-j, t(p v-p u+s)+j, t v+i\}
$$

shows that $c(p t v-p t u+t s+j)=c(p t u-t s+p i-j)=c(t s+j)$. Notice that the difference of position between $p t v-p t u+t s+j$ and $t s+j$ in R_{j} is $p(v-u)$. Since $p \neq q$ is prime and $v-u<q$, we know that $p(v-u)$ generates \mathbb{Z}_{q}. Therefore, R_{j} is monochromatic; this contradicts the maximality of $\left|P_{j}\right|$.

Lemma 37 allows us to create a well-defined reduction of a coloring of $\mathbb{Z}_{q t}$ to a coloring of \mathbb{Z}_{t}.
Lemma 38. Let t be a positive integer and $q \neq p$ be prime. Let $R_{0}, R_{1}, \cdots, R_{t-1}$ be the residue classes modulo t for $\mathbb{Z}_{q t}$ with corresponding residue palettes $\left\{P_{i}\right\}$. Let j be an index such that $\left|P_{j}\right| \geq\left|P_{i}\right|$ for all $0 \leq i<t$. Suppose c is a coloring of $\mathbb{Z}_{q t}$ where $\left|P_{i} \backslash P_{j}\right| \leq 1$. Let \hat{c} be a coloring of \mathbb{Z}_{t} such that:

$$
\hat{c}(i):= \begin{cases}P_{i} \backslash P_{j} & \text { if }\left|P_{i} \backslash P_{j}\right|=1 \\ \alpha & \text { otherwise }\end{cases}
$$

If \hat{c} contains a rainbow triple then c contains a rainbow triple.
Proof. Suppose that $\left(x_{1}, x_{2}, x_{3}\right)$ is a rainbow triple in \mathbb{Z}_{t} under \hat{c}. There are two cases: $\hat{c}\left(x_{3}\right)=\alpha$, or $\hat{c}\left(x_{3}\right) \neq \alpha$.
Case 1: If $\hat{c}\left(x_{3}\right)=\alpha$, then $\alpha \neq \hat{c}\left(x_{1}\right), \hat{c}\left(x_{2}\right)$. Without loss of generality, suppose that x_{1} and x_{2} are colored G and B, respectively. This implies that there exists u, v such that $c\left(t u+x_{1}\right)=G$ and $c\left(t v+x_{2}\right)=B$. We must find integer s such that

$$
u+v-p s \equiv\left\{\begin{array}{lll}
1 & \bmod q & x_{1}+x_{2} \geq t \\
0 & \bmod q & x_{1}+x_{2}<t
\end{array} .\right.
$$

Since p and q are relatively prime, we can alway solve for s. Therefore, there exists a rainbow triple in $\mathbb{Z}_{q t}$ under c.

Case 2: Assume $\hat{c}\left(x_{3}\right) \neq \alpha$. Without loss of generality, $\hat{c}\left(x_{1}\right) \neq \alpha$, and there exists u, v such that $c\left(t u+x_{1}\right)=G$ and $c\left(t v+x_{3}\right)=B$ where $G, B \notin P_{x_{2}}$. Notice that $p t v-t u+p x_{3}-x_{1} \in R_{x_{2}}$. Therefore, there exist a rainbow triple in $\mathbb{Z}_{q t}$ under c.
Proposition 39. Let t be a positive integer, and let q and p be distinct primes. Then

$$
r b\left(\mathbb{Z}_{q t}, p\right) \leq r b\left(\mathbb{Z}_{t}, p\right)+r b\left(\mathbb{Z}_{q}, p\right)-2 .
$$

Proof. Let c be a rainbow-free r-coloring of $\mathbb{Z}_{q t}$, and let \hat{c} be a coloring constructed from c as described in Lemma 38 Notice that the set of colors used in c is comprised of the colors in R_{j} and each color used in \hat{c} other than α. Thus, we know that $r=\left|P_{j}\right|+|\hat{c}|-1$, where $|\hat{c}|$ is the number of colors appearing in \hat{c}.

Since c is a rainbow-free coloring of $\mathbb{Z}_{q t}$, then $\left.c\right|_{R_{j}}$ must be a rainbow-free coloring of \mathbb{Z}_{q}, so $\left|P_{j}\right| \leq$ $r b\left(\mathbb{Z}_{q}, p\right)-1$. Furthermore, \hat{c} is a rainbow-free coloring of \mathbb{Z}_{t}, implying that $|\hat{c}| \leq r b\left(\mathbb{Z}_{t}, p\right)-1$. Therefore, $r \leq r b\left(\mathbb{Z}_{t}, p\right)+r b\left(\mathbb{Z}_{q}, p\right)-3$. If we let c be the maximum rainbow-free coloring of $\mathbb{Z}_{q t}$, then $r=r b\left(\mathbb{Z}_{q t}, p\right)-1$. This shows that $r b\left(\mathbb{Z}_{q t}, p\right) \leq r b\left(\mathbb{Z}_{t}, p\right)+r b\left(\mathbb{Z}_{q}, p\right)-2$.

We can use Proposition 39 to find a matching upper bound for Proposition 36
Proof of Theorem 5. Recursively applying Proposition 39 for every prime factor $p_{i} \neq p$ of n gives

$$
r b\left(\mathbb{Z}_{n}, p\right) \leq r b\left(\mathbb{Z}_{p^{\alpha}}, p\right)+\sum_{i=1}^{m}\left(\alpha_{i}\left(r b\left(\mathbb{Z}_{q_{i}}, p\right)-2\right)\right)
$$

Since this is identical to the lower bound from Proposition 36 we can conclude

$$
r b\left(\mathbb{Z}_{n}, p\right)=r b\left(\mathbb{Z}_{p^{\alpha}}, p\right)+\sum_{i=1}^{m}\left(\alpha_{i}\left(r b\left(\mathbb{Z}_{q_{i}}, p\right)-2\right)\right) .
$$

Acknowledgements

This research took place primarily at SUAMI at Carnegie Mellon University and the authors would like to thank the NSA for funding the program.

References

[1] M. Axenovich, and D. Fon-Der-Flaass, On rainbow arithmetic progressions. European Journal of Combinatorics 11 (2004), no. 1, Research Paper 1, 7pp.
[2] M. Axenovich, and R.R. Martin, Sub-Ramsey numbers for arithmetic progressions. Graphs Comb. 22 (2006), no. 1, 297-309.
[3] F.A. Behrend, On sets of integers which contain no three terms in arithmetical progression. Proc. Nat. Acad. Sci. USA 32 (1946), 331-332.
[4] Z. Berikkyzy, A. Schulte, and M. Young. Anti-van der Waerden numbers of 3-term arithmetic progressions. Electronic Journal of Combinatorics, 24(2): \#P2.39, (2017).
[5] S. Butler, C. Erickson, L. Hogben, K. Hogenson, L. Kramer, R. Kramer, J. Lin, R. Martin, D. Stolee, N. Warnberg, and M. Young, Rainbow arithmetic progressions. Journal of Combinatorics, 7 (4) (2016), 595-626.
[6] W.T. Gowers, A new proof of Szemerédi's theorem. Geom. Funct. Anal. 11 (2001), n0. 3, 465-588.
[7] V. Jungić, J. Licht (Fox), M. Mahdian, J. Nešetřil, and R. Radoičić, Rainbow arithmetic progressions and anti-Ramsey results. Combin. Probab. Comput. 12 (2003), no. 5-6, 599-620.
[8] B. Llano and A. Montenjano, Rainbow-free colorings for $x+y=c z$ in \mathbb{Z}_{p}. Discrete Mathematics, 312 (17) (2012), 2566-2573.
[9] M. Young, Rainbow arithmetic progressions in finite abelian groups. To appear in Journal of Combinatorics. arXiv:1603.08153 [math.CO].

[^0]: * Department of Mathematics, Pennsylvania State University, State College, PA 16801, USA, eib5092@psu.edu. NSA Grant H98230-18-1-0043.
 ${ }^{\dagger}$ Department of Mathematics, University of Rochester, Rochester, NY 14627, sking19@u.rochester.edu. NSA Grant H98230-18-1-0043.
 \ddagger Department of Mathematics, Iowa State University, Ames, IA 50011, USA, jkritsch@iastate.edu
 §Departemnt of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15289, mtait@cmu.edu. Research supported by NSF Grant DMS-1606350.

 『Department of Mathematics, Beloit College, Beloit, WI 53589, tebonsr@beloit.edu. NSA Grant H98230-18-1-0043
 ${ }^{\|}$Department of Mathematics, Iowa State University, Ames, IA 50011, USA, myoung@iastate.edu. Research supported by NSF Grant DMS-1719841 and NSA Grant H98230-18-1-0043.

