Induced Turán numbers

Michael Tait

Carnegie Mellon University mtait@cmu.edu
Atlanta Lecture Series XVIII Emory University

October 22, 2016

For \mathcal{F} a family of graphs, $\operatorname{ex}(n, \mathcal{F})$ denotes the maximum number of edges in an n-vertex graph which is F-free for all $F \in \mathcal{F}$.

Theorem (Turán's Theorem)
Let $T(n, r)$ be the complete r-partite graph with parts of size as equal as possible. Then

$$
\operatorname{ex}\left(n, K_{r+1}\right)=e(T(n, r))
$$

Theorem (Erdős-Stone-Simonovits)
Let $\chi(\mathcal{F})$ denote $\min \chi(F)$ over $F \in \mathcal{F}$, then

$$
\operatorname{ex}(n, \mathcal{F}) \sim\left(1-\frac{1}{\chi(\mathcal{F})-1}\right)\binom{n}{2}
$$

Determining Turán numbers for bipartite graphs is difficult in general.

Theorem (Kővari-Sós-Turán)

$$
\operatorname{ex}\left(n, K_{s, t}\right)=O\left(n^{2-1 / s}\right)
$$

- $\operatorname{ex}\left(n, K_{2,2}\right) \sim \frac{1}{2} n^{3 / 2}$ (Brown, Erdős-Rényi-Sós, Füredi)
- $\operatorname{ex}\left(n, K_{2, t+1}\right) \sim \frac{1}{2} \sqrt{t} n^{3 / 2}$ (Kővari-Sós-Turán, Füredi)
- $\operatorname{ex}\left(n, K_{3,3}\right) \sim \frac{1}{2} n^{5 / 3}$ (Brown, Füredi)
- $\operatorname{ex}\left(n, K_{s, t}\right)=\Theta\left(n^{2-1 / s}\right)$ for $t>(s-1)$! (Kővari-Sós-Turán, Alon-Rónyai-Szabó)

Problem

Is it true that $\operatorname{ex}\left(n, K_{s, t}\right)=\Theta\left(n^{2-1 / s}\right)$?

We begin with a stupid question: Determine

$$
\operatorname{ex}\left(n, K_{s, t}-\mathrm{ind}\right)
$$

i.e. what is the maximum number of edges in an n-vertex graph with no induced copy of $K_{s, t}$?
K_{n} has no induced $K_{s, t}$ and has $\binom{n}{2}$ edges.
Fix a graph H.
Problem
What is $\operatorname{ex}\left(n,\left\{H, K_{s, t}\right.\right.$-ind $\left.\}\right)$?
i.e. How many edges may be in an H-free graph with no induced $K_{s, t}$?

Some previous work:

- $\operatorname{ex}\left(n,\left\{K_{4}^{(3)}, e\right.\right.$-ind $\left.\}\right)$ (Razborov)
- $\operatorname{ex}\left(n,\left\{K_{1, \Delta}, 2 K_{2}\right.\right.$-ind $\left.\}\right)$ (Nešetřil-Erdős, Chung-Gyárfás-Trotter-Tuza)
- $\operatorname{ex}\left(n,\left\{K_{1, \Delta}, P_{n}\right.\right.$-ind $\left.\}\right)$ (Chung-Jiang-West, Chung-West)
- ex $\left(n,\left\{K_{r}, C_{4}\right.\right.$-ind $\left.\}\right)$ (Gyárfás-Hubenko-Solymosi, Gyárfás-Sárközy)
- Posets

Definition

The Ramsey-Turán number of a graph H, denoted by $\mathbf{R T}(n, H, m)$ is the maximum number of edges in an n-vertex H-free graph which has independence number less than m.

- RT($n, H, m)=\operatorname{ex}\left(n,\left\{H, I_{m}-\mathrm{ind}\right\}\right)$.
- Sós introduced this parameter so that one may not use a Turán graph as the (asymptotically) extremal H-free graph. Our motivation is the same.

Erdős-Hajnal conjecture

For a fixed graph F, there exists a constant $c>0$ such that any graph with no induced copy of F contains either a clique or an independent set of size n^{c}.

If $\operatorname{ex}\left(n,\left\{K_{r}, F\right.\right.$-ind $\left.\}\right)=\frac{n d}{2}$, then any graph that is F-induced-free contains either a clique of size r or an independent set of size $\frac{n}{d+1}$.

First Observation

$$
\operatorname{ex}(n,\{H, F-\text { ind }\}) \geq \operatorname{ex}(n,\{H, F\})
$$

Second Observation

$$
\operatorname{ex}\left(n,\left\{C_{3}, C_{4}-\operatorname{ind}\right\}\right)=\operatorname{ex}\left(n,\left\{C_{3}, C_{4}\right\}\right)
$$

Theorem (Bollobás-Györi)

$$
\operatorname{ex}\left(n,\left\{C_{5}, C_{4}-\mathrm{ind}\right\}\right) \geq\left(\frac{2}{3 \sqrt{3}}-o(1)\right) n^{3 / 2}
$$

Theorem (Erdős-Simonovits)

$$
\operatorname{ex}\left(n,\left\{C_{5}, C_{4}\right\}\right) \leq \frac{1}{2 \sqrt{2}} n^{3 / 2}+4\left(\frac{n}{2}\right)^{1 / 2}
$$

Theorem (Loh-Tait-Timmons)

Let r, s, t be fixed, and G be a K_{r}-free graph on n vertices with no induced copy of $K_{s, t}$. Then

$$
e(G) \leq C_{r, s, t} n^{2-1 / s}
$$

Our main lemma is a clique-counting theorem:
Theorem (Loh-Tait-Timmons)
Let G be an n-vertex, K_{r}-free graph with no copy of $K_{s, t}$ as an induced subgraph. If $t_{m}(G)$ is the number of cliques of size m in G, then

$$
m \cdot t_{m}(G) \leq 2(t+r)^{t m / s}(r+s)^{s} n^{m-\frac{m-1}{s}}+(r+s)^{s} n^{m-1}
$$

Recently Alon and Shikhelman the quantity ex (n, T, H), denoting the maximum number of copies of T in an H-free graph.

$$
\operatorname{ex}\left(n, K_{2}, H\right)=\operatorname{ex}(n, H)
$$

- $\operatorname{ex}\left(n, K_{t}, K_{r}\right)$ (Erdős)
- ex $\left(C_{5}, K_{3}\right)$ (Hatami-Hladký-Král-Norine-Razborov, Grzesik)
- ex $\left(n, K_{3}, C_{2 k+1}\right)$ (Bollobás-Győri, Győri-Li)

Theorem (Alon-Shikhelman)
Let $m \geq 2$ and $t \geq s \geq m-1$, then

$$
\operatorname{ex}\left(n, K_{m}, K_{s, t}\right)=O\left(n^{m-\frac{m(m-1)}{2 s}}\right)
$$

Our theorem says ex $\left(n, K_{m},\left\{K_{r}, K_{s, t}-\mathrm{ind}\right\}\right)=O\left(n^{m-\frac{m-1}{s}}\right)$.

Proof sketch that $e(G)=O\left(n^{2-1 / s}\right)$

Lemma

If F is a graph on n vertices and $n>2 \cdot 4^{s}$, then

$$
t_{s}(F)+t_{s}(\bar{F}) \geq \epsilon_{s} n^{s} .
$$

Any set of $4^{s}>R(s, s)$ vertices contains a clique of size s in either F or \bar{F}. Each set of size s is contained in $\binom{n-s}{4^{s}-s}$ sets of size 4^{s}. Therefore

$$
t_{s}(F)+t_{s}(\bar{F}) \geq \frac{\binom{n}{4^{s}}}{\binom{n-s}{4^{s}-s}}>\frac{n^{s}}{2^{s} 4^{s^{2}}} .
$$

$$
\text { Proof sketch that } e(G)=O\left(n^{2-1 / s}\right)
$$

Let \mathcal{I}_{s} denote the set of independent sets of size s.

Proof sketch that $e(G)=O\left(n^{2-1 / s}\right)$

Let \mathcal{I}_{s} denote the set of independent sets of size s.

Proof sketch that $e(G)=O\left(n^{2-1 / s}\right)$

$$
\begin{gathered}
d\left(x_{1}, \cdots, x_{s}\right) \leq R(r, t) \\
\sum_{\left\{x_{1}, \cdots, x_{s}\right\} \in \mathcal{I}_{s}} d\left(x_{1}, \cdots, x_{s}\right) \leq\binom{ n}{s} R(r, t)
\end{gathered}
$$

Proof sketch that $e(G)=O\left(n^{2-1 / s}\right)$

Now we double count and use the lemma and convexity.

$$
\begin{aligned}
(r+t)^{t} n^{s} & \geq \sum_{\left(x_{1}, \cdots, x_{s}\right) \in \mathcal{I}_{s}} d\left(x_{1}, \cdots, x_{s}\right)=\sum_{v \in V(G)} t_{s}(\overline{\Gamma(v)}) \\
& \geq \sum_{v \in V(G)} \epsilon_{s}(d(v))^{s}-t_{s}(\Gamma(v)) \\
& \geq \epsilon_{s} n\left(\frac{1}{n} \sum_{v \in V(G)} d(v)\right)^{s}-\sum_{v \in V(G)} t_{s}(\Gamma(v)) \\
& =\frac{\epsilon_{s} 2^{s}(e(G))^{s}}{n^{s-1}}-(s+1) t_{s+1}(G) .
\end{aligned}
$$

Our clique counting theorem gives $t_{s+1}(G)=O\left(n^{s}\right)$.

Sketch of proof that $t_{s+1}(G)=O\left(n^{s}\right)$

(Sketch of proof that $G K_{r}$-free with no induced $K_{2, t+1}$ implies $O\left(n^{2}\right)$ triangles)

Sketch of proof that $t_{s+1}(G)=O\left(n^{s}\right)$

(Sketch of proof that $G K_{r}$-free with no induced $K_{2, t+1}$ implies $O\left(n^{2}\right)$ triangles)

$$
\begin{gathered}
x \nsim z \quad \text { implies } \quad d(x, z)<R(r, t+1) \\
\#\{x, y, z\} \leq \sum_{x \nsim z} d(x, z)<R(r, t+1) n^{2}
\end{gathered}
$$

Sketch of proof that $t_{s+1}(G)=O\left(n^{s}\right)$

(Sketch of proof that $G K_{r}$-free with no induced $K_{2, t+1}$ implies $O\left(n^{2}\right)$ triangles)

Sketch of proof that $t_{s+1}(G)=O\left(n^{s}\right)$

(Sketch of proof that $G K_{r}$-free with no induced $K_{2, t+1}$ implies $O\left(n^{2}\right)$ triangles)

Sketch of proof that $t_{s+1}(G)=O\left(n^{s}\right)$

(Sketch of proof that $G K_{r}$-free with no induced $K_{2, t+1}$ implies $O\left(n^{2}\right)$ triangles)

- $\Gamma\left(y_{1}\right) \cap \Gamma\left(y_{2}\right)$ contains at least $\epsilon\left(d\left(y_{1}, y_{2}\right)\right)^{2}$ nonadjacent pairs
- Each nonadjacent pair is counted at most $\binom{R(r, t+1)}{2}$ times this way

Sketch of proof that $t_{s+1}(G)=O\left(n^{s}\right)$

(Sketch of proof that $G K_{r}$-free with no induced $K_{2, t+1}$ implies $O\left(n^{2}\right)$ triangles)

$$
\begin{aligned}
O\left(n^{2}\right)=\#\{x, y, z\} & \geq \frac{1}{\binom{R(r, t+1)}{2}} \sum_{y_{1} \sim y_{2}} \epsilon\left(d\left(y_{1}, y_{2}\right)\right)^{2} \\
& \geq \frac{\epsilon_{1}}{n^{2}}\left(\sum_{y_{1} \sim y_{2}} d\left(y_{1}, y_{2}\right)\right)^{2} \\
& =\frac{\epsilon_{1}}{n^{2}}\left(3 t_{3}(G)\right)^{2}
\end{aligned}
$$

$$
\operatorname{ex}\left(n,\left\{K_{r}, K_{s, t}-\operatorname{ind}\right\}\right)=O\left(n^{2-1 / s}\right)
$$

If the average degree of a graph with no induced $K_{s, t}$ is much larger than $n^{1-1 / s}$, then the graph has a large clique.

Theorem (Gyárfás-Hubenko-Solymosi 2002, Gyárfás-Sárközy 2015) If G has average degree d and no induced C_{4}, then

$$
\omega(G)=\Omega\left(\frac{d^{2}}{n}\right)
$$

Corollary (Loh-Tait-Timmons)
If G has average degree d and no induced copy of $K_{s, t}$, then

$$
\omega(G) \geq \Omega\left(\left(\frac{d^{s}}{n^{s-1}}\right)^{\frac{s}{t(s+1)+s^{2}}}\right) .
$$

Theorem (Gyárfas-Hubenko-Solymosi 2002, Gyárfas-Sárközy 2015) If G has average degree d and no induced C_{4}, then

$$
\omega(G)=\Omega\left(\frac{d^{2}}{n}\right)
$$

Corollary (Loh-Tait-Timmons)
If G has average degree d and no induced copy of $K_{s, t}$, then

$$
\omega(G)=\Omega\left(\left(\frac{d^{s}}{n^{s-1}}\right)^{\frac{s}{t(s+1)+s^{2}}}\right) .
$$

Theorem (Loh-Tait-Timmons)
If G has average degree d and no induced $K_{2, t+1}$, then

$$
\omega(G)=\Omega\left(\left(\frac{d^{2}}{n t}\right)^{1 / t}\right)
$$

When $s=2$ or when H has a specific structure which can be exploited, we can obtain better estimates.

Theorem (Loh-Tait-Timmons)
Let H be a graph on v_{H} vertices. Then

$$
\left(\frac{1}{4} \sqrt{t}-o(1)\right) n^{3 / 2} \leq \operatorname{ex}\left(n,\left\{H, K_{2, t+1}-\operatorname{ind}\right\}\right) \leq(\sqrt{2 t}+o(1)) v_{H}^{t / 2} n^{3 / 2}
$$

Theorem (Loh-Tait-Timmons)

$$
\operatorname{ex}\left(n,\left\{C_{2 k+1}, K_{2, t+1}-\operatorname{ind}\right\}\right) \leq(\sqrt{2 k t}+o(1)) n^{3 / 2}
$$

Problem

Can one find nontrivial s, t and a sequence of graphs H and determine ex $\left(n,\left\{H, K_{s, t}-\mathrm{ind}\right\}\right)$ up to a constant factor?

Problem

We showed if G is H-free and $K_{s, t}$ induced free, then the number of cliques of order m is at most

$$
O\left(n^{m-\frac{m-1}{s}}+n^{m-1}\right)
$$

Can this be improved? Alon and Shikhelmen showed if G is $K_{s, t}$-free, then the number of cliques of order m is at most

$$
O\left(n^{m-\frac{m(m-1)}{2 s}}\right)
$$

Problem

Let G be an n-vertex K_{r}-free graph with no induced copy of $K_{s, t}$. Let λ be the spectral radius of its adjacency matrix. Show that

$$
\lambda=O\left(n^{1-1 / s}\right) .
$$

