A structure theorem for product sets in extra special groups

Thang Pham* Michael Tait ${ }^{\dagger}$ Le Anh Vinh ${ }^{\ddagger}$ Robert Won ${ }^{\S}$

Abstract

Hegyvári and Hennecart showed that if B is a sufficiently large brick of a Heisenberg group, then the product set $B \cdot B$ contains many cosets of the center of the group. We give a new, robust proof of this theorem that extends to all extra special groups as well as to a large family of quasigroups.

1 Introduction

Let p be a prime. An extra special group G is a p-group whose center Z is cyclic of order p such that G / Z is an elementary abelian p-group (nice treatments of extra special groups can be found in $[2,6]$). The extra special groups have order $p^{2 n+1}$ for some $n \geq 1$ and occur in two families. Denote by H_{n} and M_{n} the two non-isomorphic extra special groups of order $p^{2 n+1}$. Presentations for these groups are given in [4]:

$$
\begin{gathered}
H_{n}=\left\langle a_{1}, b_{1}, \ldots, a_{n}, b_{n}, c\right|\left[a_{i}, a_{j}\right]=\left[b_{i}, b_{j}\right]=1,\left[a_{i}, b_{j}\right]=1 \text { for } i \neq j, \\
\\
\left.\left[a_{i}, c\right]=\left[b_{i}, c\right]=1,\left[a_{i}, b_{i}\right]=c, a_{i}^{p}=b_{i}^{p}=c_{i}^{p}=1 \text { for } 1 \leq i \leq n\right\rangle \\
M_{n}=\left\langle a_{1}, b_{1}, \ldots, a_{n}, b_{n}, c\right|\left[a_{i}, a_{j}\right]=\left[b_{i}, b_{j}\right]=1,\left[a_{i}, b_{j}\right]=1 \text { for } i \neq j, \\
\\
\\
\left.\left[a_{i}, c\right]=\left[b_{i}, c\right]=1,\left[a_{i}, b_{i}\right]=c, a_{i}^{p}=c_{i}^{p}=1, b_{i}^{p}=c \text { for } 1 \leq i \leq n\right\rangle .
\end{gathered}
$$

From these presentations, it is not hard to see that the center of each of these groups consists of the powers of c so are cyclic of order p. It is also clear that the quotient of both groups by their centers yield elementary abelian p-groups.

In this paper we consider the structure of products of subsets of extra special groups. The structure of sum or product sets of groups and other algebraic structures has a rich history in combinatorial number theory. One seminal result is Freiman's theorem [5], which asserts that if A is a subset of integers and $|A+A|=O(|A|)$, then A must be a subset of a small generalized arithmetic progression. Green and Ruzsa [7] showed that the same result is true in any abelian group. On the other hand, commutativity is important as the theorem is not true for general non-abelian groups [8]. With this in mind, Hegyvári and Hennecart were motivated to study what actually can be said about the structure of product sets in non-abelian groups. They proved the following theorem.

[^0]Theorem 1.1 (Hegyvári-Hennecart, [9]). For every $\varepsilon>0$, there exists a positive integer n_{0} such that if $n \geq n_{0}, B \subseteq H_{n}$ is a brick and

$$
|B|>\left|H_{n}\right|^{3 / 4+\varepsilon}
$$

then there exists a non trivial subgroup G^{\prime} of H_{n}, namely its center $\left[\underline{0}, \underline{0}, \mathbb{F}_{p}\right]$, such that $B \cdot B$ contains at least $|B| / p$ cosets of G^{\prime}.

The group H_{1} is the classical Heisenberg group, so the groups H_{n} form natural generalizations of the Heisenberg group. Our main focus is on the second family of extra special groups M_{n}. The group H_{n} has a well-known representation as a subgroup of $\mathrm{GL}_{n+2}\left(\mathbb{F}_{p}\right)$ consisting of upper triangular matrices

$$
[\underline{x}, \underline{y}, z]:=\left[\begin{array}{ccc}
1 & \underline{x} & z \\
0 & I_{n} & \underline{y} \\
0 & 0 & \underline{1}
\end{array}\right]
$$

where $\underline{x}, \underline{y} \in \mathbb{F}_{p}^{n}, z \in \mathbb{F}_{p}$, and I_{n} is the $n \times n$ identity matrix. Let $\underline{e}_{i} \in \mathbb{F}_{p}^{n}$ be the $i^{\text {th }}$ standard basis vector. In the presentation for H_{n}, a_{i} corresponds to $\left[e_{i}, 0,0\right], b_{i}$ corresponds to [$0, e_{i}, 0$] and c corresponds to $[0,0,1]$. By matrix multiplication, we have

$$
[\underline{x}, \underline{y}, z] \cdot\left[\underline{x}^{\prime}, \underline{y}^{\prime}, z^{\prime}\right]=\left[\underline{x}+\underline{x}^{\prime}, \underline{y}+\underline{y}^{\prime}, z+z^{\prime}+\left\langle\underline{x}, \underline{y}^{\prime}\right\rangle\right]
$$

where \langle,$\rangle denotes the usual dot product.$
A second focus of this paper is to consider generalizations of the higher dimensional Heisenberg groups where entries come from a quasifield Q rather than \mathbb{F}_{p}. We recall the definition of a quasifield:

A set L with a binary operation $*$ is called a loop if

1. the equation $a * x=b$ has a unique solution in x for every $a, b \in L$,
2. the equation $y * a=b$ has a unique solution in y for every $a, b \in L$, and
3. there is an element $e \in L$ such that $e * x=x * e=x$ for all $x \in L$.

A (left) quasifield Q is a set with two binary operations + and $*$ such that $(Q,+)$ is a group with additive identity $0,\left(Q^{*}, *\right)$ is a loop where $Q^{*}=Q \backslash\{0\}$, and the following three conditions hold:

1. $a *(b+c)=a * b+a * c$ for all $a, b, c \in Q$,
2. $0 * x=0$ for all $x \in Q$, and
3. the equation $a * x=b * x+c$ has exactly one solution for every $a, b, c \in Q$ with $a \neq b$.

Given a quasifield Q, we define $H_{n}(Q)$ by the set of elements

$$
\left\{[\underline{x}, \underline{y}, z]: \underline{x} \in Q^{n}, \underline{y} \in Q^{n}, z \in Q\right\}
$$

and a multiplication operation defined by

$$
[\underline{x}, \underline{y}, z] \cdot\left[\underline{x}^{\prime}, \underline{y}^{\prime}, z^{\prime}\right]=\left[\underline{x}+\underline{x}^{\prime}, \underline{y}+\underline{y}^{\prime}, z+z^{\prime}+\left\langle\underline{x}, \underline{y}^{\prime}\right\rangle\right] .
$$

Then $H_{n}(Q)$ is a quasigroup with an identity element (ie, a loop), and when $Q=\mathbb{F}_{p}$ we have that $H_{n}(Q)$ is the n-dimensional Heisenberg group H_{n}.

1.1 Statement of main results

Let H_{n} be a Heisenberg group. A subset B of H_{n} is said to be a brick if

$$
B=\{[\underline{x}, \underline{y}, z] \text { such that } \underline{x} \in \underline{X}, \underline{y} \in \underline{Y}, z \in Z\}
$$

where $\underline{X}=X_{1} \times \cdots \times X_{n}$ and $\underline{Y}=Y_{1} \times \cdots \times Y_{n}$ with non empty-subsets $X_{i}, Y_{i}, Z \subseteq \mathbb{F}_{p}$.
Our theorems are analogs of Hegyvári and Hennecart's theorem for the groups M_{n} and the quasigroups $H_{n}(Q)$. In particular, their structure result is true for all extra special groups. We will define what it means for a subset B of M_{n} to be a brick in Section 2.1.

Theorem 1.2. For every $\varepsilon>0$, there exists a positive integer $n_{0}=n_{0}(\varepsilon)$ such that if $n \geq n_{0}, B \subseteq M_{n}$ is a brick and

$$
|B|>\left|M_{n}\right|^{3 / 4+\varepsilon}
$$

then there exists a non trivial subgroup G^{\prime} of M_{n}, namely its center, such that $B \cdot B$ contains at least $|B| / p$ cosets of G^{\prime}.

Combining Theorem 1.1 and Theorem 1.2, we have
Theorem 1.3. Let G be an extra special group. For every $\varepsilon>0$, there exists a positive integer $n_{0}=n_{0}(\epsilon)$ such that if $n \geq n_{0}, B \subseteq G$ is a brick and

$$
|B|>|G|^{3 / 4+\varepsilon}
$$

then there exists a non trivial subgroup G^{\prime} of G, namely its center, such that $B \cdot B$ contains at least $|B| / p$ cosets of G^{\prime}.

For Q a finite quasifield, we similarly define a subset $B \subseteq H_{n}(Q)$ to be a brick if

$$
B=\{[\underline{x}, \underline{y}, z] \text { such that } \underline{x} \in \underline{X}, \underline{y} \in \underline{Y}, z \in Z\}
$$

where $\underline{X}=X_{1} \times \cdots \times X_{n}$ and $\underline{Y}=Y_{1} \times \cdots \times Y_{n}$ with non empty-subsets $X_{i}, Y_{i}, Z \subseteq Q$.
Theorem 1.4. Let Q be a finite quasifield of order q. For every $\varepsilon>0$, there exists an $n_{0}=n_{0}(\varepsilon)$ such that if $n \geq n_{0}, B \subseteq H_{n}(Q)$ is a brick, and

$$
|B|>\left|H_{n}(Q)\right|^{3 / 4+\varepsilon},
$$

then there exists a non trivial subquasigroup G^{\prime} of $H_{n}(Q)$, namely its center $[\underline{0}, \underline{0}, Q]$ such that $B \cdot B$ contains at least $|B| / q$ cosets of G^{\prime}.

Taking $Q=\mathbb{F}_{p}$ gives Theorem 1.1 as a corollary.

2 Preliminaries

2.1 A description of M_{n}

We give a description of M_{n} with which it is convenient to work. Define a group G whose elements are triples $[\underline{x}, \underline{y}, z]$ where $\underline{x}=\left(x_{1}, \ldots, x_{n}\right), \underline{y}=\left(y_{1}, \ldots, y_{n}\right)$, with $x_{i}, y_{i}, z \in \mathbb{F}_{p}$ for $1 \leq i \leq n$. The group operation in G is given by

$$
[\underline{x}, \underline{y}, z] \cdot\left[\underline{x}^{\prime}, \underline{y}^{\prime}, z^{\prime}\right]=\left[\underline{x}+\underline{x}^{\prime}, \underline{y}+\underline{y}^{\prime}, z+z^{\prime}+\left\langle\underline{x}, \underline{y}^{\prime}\right\rangle+f\left(\underline{y}, \underline{y}^{\prime}\right)\right]
$$

where the function $f: \mathbb{Z}^{n} \times \mathbb{Z}^{n} \rightarrow \mathbb{N}$ is defined by

$$
f\left(\left(y_{1}, \ldots, y_{n}\right),\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)\right)=\sum_{i=1}^{n}\left\lfloor\frac{y_{i} \bmod p+y_{i}^{\prime} \bmod p}{p}\right\rfloor .
$$

Concretely, f counts the number of components where (after reducing mod $p) y_{i}+y_{i}^{\prime} \geq p$. This is slight abuse of notation, as $\underline{y}, \underline{y}^{\prime} \in \mathbb{F}_{p}^{n}$, but is well-defined if we regard them as elements of \mathbb{Z}^{n}.
Lemma 2.1. With the operation defined above, G is a group isomorphic to M_{n}.
Proof. We first need to check associativity of the operation. After cancellation, this reduces to checking the equality

$$
f\left(\underline{y}+\underline{y}^{\prime}, \underline{y}^{\prime \prime}\right)+f\left(\underline{y}, \underline{y}^{\prime}\right)=f\left(\underline{y}, \underline{y}^{\prime}+\underline{y}^{\prime \prime}\right)+f\left(\underline{y}^{\prime}, \underline{y}^{\prime \prime}\right)
$$

which holds because

$$
\begin{aligned}
& \left\lfloor\frac{\left(y_{i}+y_{i}^{\prime}\right) \bmod p+y_{i} \bmod p}{p}\right\rfloor+\left\lfloor\frac{y_{i} \bmod p+y_{i}^{\prime} \bmod p}{p}\right\rfloor \\
& =\left\lfloor\frac{y_{i} \bmod p+y_{i}^{\prime} \bmod p+y_{i}^{\prime \prime} \bmod p}{p}\right\rfloor \\
& =\left\lfloor\frac{\left(y_{i}+y_{i}^{\prime}\right) \bmod p+y_{i} \bmod p}{p}\right\rfloor+\left\lfloor\frac{\left(y_{i}+y_{i}^{\prime}\right) \bmod p+y_{i} \bmod p}{p}\right\rfloor,
\end{aligned}
$$

as all three of the expressions count the largest multiple of p dividing

$$
y_{i} \bmod p+y_{i}^{\prime} \bmod p+y_{i}^{\prime \prime} \bmod p .
$$

Since G is generated $\left\{\left[e_{i}, 0,0\right],\left[0, e_{i}, 0\right],[0,0,1]\right\}$, we define a homomorphism $\varphi: G \rightarrow M_{n}$ by $\varphi\left(\left[\underline{e_{i}}, 0,0\right]\right)=a_{i}, \varphi\left(\left[0, e_{i}, 0\right]\right)=b_{i}$, and $\varphi([0,0,1])=c$. This map is clearly surjective and it is easy to check that the generators of G satisfy the relations in M_{n}. Since $|G|=p^{2 n+1}$, φ is an isomorphism and $G \cong M_{n}$, as claimed.

With this description, there is a natural way to define a brick in M_{n}. A subset B of M_{n} is said to be a brick if

$$
B=\{[\underline{x}, \underline{y}, z] \text { such that } \underline{x} \in \underline{X}, \underline{y} \in \underline{Y}, z \in Z\}
$$

where $\underline{X}=X_{1} \times \cdots \times X_{n}$ and $\underline{Y}=Y_{1} \times \cdots \times Y_{n}$ with non empty-subsets $X_{i}, Y_{i}, Z \subseteq \mathbb{F}_{p}$.

2.2 Tools from spectral graph theory

For a graph G with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$, the adjacency matrix of G is the matrix with a 1 in row i and column j if $v_{i} \sim v_{j}$ and a 0 otherwise. Since this is a real, symmetric matrix, it has a full set of real eigenvalues. Let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of its adjacency matrix.

If G is a d-regular graph, then its adjacency matrix has row sum d. In this case, $\lambda_{1}=d$ with the all-one eigenvector 1 . Let \mathbf{v}_{i} denote the corresponding eigenvector for λ_{i}. We will make use of the trick that for $i \geq 2, \mathbf{v}_{i} \in \mathbf{1}^{\perp}$, so $J \mathbf{v}_{i}=0$ where J is the all-one matrix of size $n \times n$ (see [3] for more background on spectral graph theory).

It is well-known (see [1, Chapter 9] for more details) that if λ_{2} is much smaller than the degree d, then G has certain random-like properties. A graph is called bipartite if its vertex set can be partitioned into two parts such that all edges have one endpoint in each part. For G be a bipartite graph with partite sets P_{1} and P_{2} and $U \subseteq P_{1}$ and $W \subseteq P_{2}$, let $e(U, W)$ be the number of pairs (u, w) such that $u \in U, w \in W$, and (u, w) is an edge of G. We recall the following well-known fact (see, for example, [1]).

Lemma 2.2 (Corollary 9.2.5, [1]). Let $G=(V, E)$ be d-regular bipartite graph on $2 n$ vertices with partite sets P_{1} and P_{2}. For any two sets $B \subseteq P_{1}$ and $C \subseteq P_{2}$, we have

$$
\left|e(B, C)-\frac{d|B \| C|}{n}\right| \leq \lambda_{2} \sqrt{|B||C|} .
$$

2.3 Sum-product graphs

Let Q be a finite quasifield. The sum-product graph $S P_{Q, n}$ is defined as follows. $S P_{Q, n}$ is a bipartite graph with its vertex set partitioned into partite sets \mathbf{X} and \mathbf{Y}, where $\mathbf{X}=\mathbf{Y}=$ $Q^{n} \times Q$. Two vertices $U=(\underline{x}, z) \in \mathbf{X}$ and $V=\left(\underline{y}, z^{\prime}\right) \in \mathbf{Y}$ are connected by an edge, $(U, V) \in E\left(S P_{Q, n}\right)$, if and only if $\langle\underline{x}, \underline{y}\rangle=z+z^{\prime}$. We need information about the eigenvalues of $S P_{Q, n}$.
Lemma 2.3. If Q is a quasifield of order q, then the graph $S P_{Q, n}$ is q^{n} regular and has $\lambda_{2} \leq 2^{1 / 2} q^{n / 2}$.

We provide a proof of Lemma 2.3 for completeness in the appendix, and we note that similar lemmas were proved in [11] and [10].

3 Proof of Theorem 1.2

Lemma 3.1. Let $B \subseteq M_{n}$ be a brick in M_{n} with $B=[\underline{X}, \underline{Y}, Z]$ where $\underline{X}=X_{1} \times \cdot \times X_{n}$ and $\underline{Y}=Y_{1} \times \cdots \times Y_{n}$. For given $\underline{a}=\left(a_{1}, \ldots, a_{n}\right), \underline{b}=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{F}_{p}^{n}$, suppose that

$$
|Z|^{2} \prod_{i=1}^{n}\left|X_{i} \cap\left(a_{i}-X_{i}\right)\right|\left|Y_{i} \cap\left(b_{i}-Y_{i}\right)\right|>2 p^{n+2}
$$

then we have

$$
B \cdot B \supseteq\left[\underline{a}, \underline{b}, \mathbb{F}_{p}\right] .
$$

Proof. Let $X_{i}^{\prime}=X_{i} \cap\left(a_{i}-X_{i}\right), Y_{i}^{\prime}=Y_{i} \cap\left(b_{i}-Y_{i}\right), X^{\prime}=\left(X_{1}^{\prime}, \ldots, X_{n}^{\prime}\right)$, and $Y^{\prime}=\left(Y_{1}^{\prime}, \ldots, Y_{n}^{\prime}\right)$. We first have

$$
B \cdot B \supseteq\left\{[\underline{x}, \underline{y}, z] \cdot\left[\underline{a}-\underline{x}, \underline{b}-\underline{y}, z^{\prime}\right]: \underline{x} \in X^{\prime}, \underline{y} \in Y^{\prime}, z, z^{\prime} \in Z\right\} .
$$

On the other hand, it follows from the multiplicative rule in M_{n} that for

$$
[\underline{x}, \underline{y}, z] \cdot\left[\underline{a}-\underline{x}, \underline{b}-\underline{y}, z^{\prime}\right]=\left[\underline{a}, \underline{b}, z+z^{\prime}+\langle\underline{x},(\underline{b}-\underline{y})\rangle+f(\underline{y}, \underline{b}-\underline{y})\right] .
$$

To conclude the proof of the lemma, it is enough to prove that

$$
\left\{z+z^{\prime}+\langle\underline{x},(\underline{b}-\underline{y})\rangle+f(\underline{y}, \underline{b}-\underline{y}): z, z^{\prime} \in Z, \underline{x} \in X^{\prime}, \underline{y} \in Y^{\prime}\right\}=\mathbb{F}_{p}
$$

under the condition $|Z|^{2}\left|X^{\prime}\right|\left|Y^{\prime}\right|>2 p^{n+2}$.
To prove this claim, let λ be an arbitrary element in \mathbb{F}_{p}, we define two sets in the sumproduct graph $S P_{\mathbb{F}_{p}, n}, E \subseteq \mathbf{X}$ and $F \subseteq \mathbf{Y}$ as follows:

$$
E=X^{\prime} \times(-Z+\lambda), F=\left\{(\underline{b}-\underline{y},-z-f(\underline{y}, \underline{b}-\underline{y})): z \in Z, \underline{y} \in Y^{\prime}\right\} .
$$

It is clear that $|E|=|Z|\left|X^{\prime}\right|$ and $|F|=|Z|\left|Y^{\prime}\right|$. It follows from Lemma 2.2 and Lemma 2.3 that if $|Z|^{2}\left|X^{\prime}\right|\left|Y^{\prime}\right|>2 p^{n+2}$, then $e(E, F)>0$. It follows that there exist $\underline{x} \in X^{\prime}, \underline{y} \in Y^{\prime}$, and $z, z^{\prime} \in Z$ such that

$$
z+z^{\prime}+\langle\underline{x},(\underline{b}-\underline{y})\rangle+f(\underline{y}, \underline{b}-\underline{y})=\lambda .
$$

Since λ is chosen arbitrarily, we have

$$
\left\{z+z^{\prime}+\langle\underline{x},(\underline{b}-\underline{y})\rangle+f(\underline{y}, \underline{b}-\underline{y}): z, z^{\prime} \in Z, \underline{x} \in X^{\prime}, \underline{y} \in Y^{\prime}\right\}=\mathbb{F}_{p} .
$$

Proof of Theorem 1.2. We follow the method of [9, Theorem 1.3]. First we note that if $|Z|>p / 2$, then we have $Z+Z=\mathbb{F}_{p}$. This implies that

$$
B \cdot B=\left[2 \underline{X}, 2 \underline{Y}, \mathbb{F}_{p}\right]
$$

Therefore, $B \cdot B$ contains at least $|B \cdot B| / p \geq|B| / p$ cosets of the subgroup $\left[\underline{0}, \underline{0}, \mathbb{F}_{p}\right]$. Thus, in the rest of the proof, we may assume that $|Z| \leq p / 2$.
For $1 \leq i \leq n$, we have

$$
\sum_{a_{i} \in \mathbb{F}_{p}}\left|X_{i} \cap\left(a_{i}-X_{i}\right)\right|=\left|X_{i}\right|^{2}, \quad \sum_{b_{i} \in \mathbb{F}_{p}}\left|Y_{i} \cap\left(b_{i}-Y_{i}\right)\right|=\left|Y_{i}\right|^{2},
$$

which implies that

$$
\prod_{i=1}^{n}\left(\sum_{a_{i} \in \mathbb{F}_{p}}\left|X_{i} \cap\left(a_{i}-X_{i}\right)\right|\right)\left(\sum_{b_{i} \in \mathbb{F}_{p}}\left|Y_{i} \cap\left(b_{i}-Y_{i}\right)\right|\right)=\prod_{i=1}^{n}\left|X_{i}\right|^{2}\left|Y_{i}\right|^{2} .
$$

Therefore we obtain

$$
\begin{equation*}
\sum_{\underline{a}, b \in \mathbb{b} \in \mathbb{F}_{p}^{n}} \prod_{i=1}^{n}\left|X_{i} \cap\left(a_{i}-X_{i}\right)\right|\left|Y_{i} \cap\left(b_{i}-Y_{i}\right)\right|=\prod_{i=1}^{n}\left|X_{i}\right|^{2}\left|Y_{i}\right|^{2} \tag{1}
\end{equation*}
$$

Let N be the number of pairs $(\underline{a}, \underline{b}) \in \mathbb{F}_{p}^{n} \times \mathbb{F}_{p}^{n}$ such that

$$
|Z|^{2} \prod_{i=1}^{n}\left|X_{i} \cap\left(a_{i}-X_{i}\right)\right|\left|Y_{i} \cap\left(b_{i}-Y_{i}\right)\right|>2 p^{n+2}
$$

It follows from Lemma 3.1 that $\left[\underline{a}, \underline{b}, \mathbb{F}_{p}\right] \subseteq B \cdot B$ for such pairs $(\underline{a}, \underline{b})$. Then by equation (1)

$$
\left(\prod_{i=1}^{n}\left|X_{i}\right|\left|Y_{i}\right|\right) N+2 p^{n+2}\left(p^{2 n}-N\right)>\left(\prod_{i=1}^{n}\left|X_{i}\right|\left|Y_{i}\right|\right)^{2}
$$

and so

$$
N>\frac{\prod_{i=1}^{n}\left|X_{i}\right|^{2}\left|Y_{i}\right|^{2}-2 p^{3 n+2}}{\prod_{i=1}^{n}\left|X_{i}\right|\left|Y_{i}\right|-2 p^{n+2}}
$$

By the assumption of Theorem 1.2, we have

$$
\begin{equation*}
|B|=|Z|\left(\prod_{i=1}^{n}\left|X_{i}\right|\left|Y_{i}\right|\right)>\left|M_{n}\right|^{3 / 4+\varepsilon}=p^{3 n / 2+3 / 4+\varepsilon(2 n+1)} . \tag{2}
\end{equation*}
$$

Thus when $n>1 / \epsilon$, we have

$$
\prod_{i=1}^{n}\left|X_{i}\right|\left|Y_{i}\right|>p^{3 n / 2+7 / 4}
$$

since $|Z| \leq p$.
In other words,

$$
N \geq\left(1-2 p^{-3 / 2}\right) \prod_{i=1}^{n}\left|X_{i}\right|\left|Y_{i}\right|=\left(1-2 p^{-3 / 2}\right) \frac{|B|}{|Z|} \geq \frac{|B|}{p}
$$

since $|Z| \leq p / 2$.

4 Proof of Theorem 1.4

Lemma 4.1. Let Q be a quasifield of order q and let $[\underline{X}, \underline{Y}, Z]=B \subseteq H_{n}(Q)$ be a brick. For a given $\underline{a}=\left(a_{1}, \ldots, a_{n}\right), \underline{b}=\left(b_{1}, \ldots, b_{n}\right) \in Q^{n}$, suppose that

$$
|Z|^{2} \prod_{i=1}^{n}\left|X_{i} \cap\left(a_{i}-X_{i}\right) \| Y_{i} \cap\left(b_{i}-Y_{i}\right)\right|>2 q^{n+2}
$$

then we have

$$
B \cdot B \supseteq[\underline{a}, \underline{b}, Q] .
$$

Proof. The proof is similar to that of Lemma 3.1, so we leave some details to the reader. Let

$$
X^{\prime}=\left(X_{1} \cap\left(a_{1}-X_{1}\right), \ldots, X_{n} \cap\left(a_{n}-X_{n}\right)\right), Y^{\prime}=\left(Y_{1} \cap\left(b_{1}-Y_{1}\right), \ldots, Y_{n} \cap\left(b_{n}-Y_{n}\right)\right)
$$

and $E \subseteq \mathbf{X}, F \subseteq \mathbf{Y}$ in $S P_{Q, n}$ where

$$
E=X^{\prime} \times(-Z+\lambda), F=\left\{(\underline{b}-\underline{y},-z): z \in Z, \underline{y} \in Y^{\prime}\right\}
$$

and $\lambda \in Q$ is arbitrary. Then $e(E, F)>0$ which implies that there exist $\underline{x} \in X^{\prime}, \underline{y} \in Y^{\prime}$, and $z, z^{\prime} \in Z$ such that

$$
z+z^{\prime}+\langle\underline{x},(\underline{b}-\underline{y})\rangle=\lambda .
$$

This implies that

$$
[\underline{a}, \underline{b}, Q] \subseteq B \cdot B
$$

The rest of the proof of Theorem 1.4 is identical to that of Theorem 1.2. We need only to show that if $Z \subseteq Q$ and $|Z|>|Q| / 2$, then $Z+Z=Q$. However, this follows since the additive structure of Q is a group.

References

[1] N. Alon and J. H. Spencer, The Probabilistic Method, 2nd ed., Wiley-Interscience, 2000.
[2] M. Aschbacher, Finite Group Theory, Vol. 10. Cambridge University Press, 2000.
[3] A. Brouwer and W. Haemers, Spectra of Graphs, Springer, New York, etc., 2012.
[4] P. Diaconis, Threads through group theory, Character Theory of Finite groups, Contemporary Mathematics, 524 (2010): 33-47.
[5] G. A. Freiman, Addition of finite sets, Sov. Math. Dokl. 5 (1964) 1366-1370.
[6] D. Gorenstein, Finite Groups, Vol. 301. American Mathematical Soc., 2007.
[7] B. Green and I. Ruzsa, Freiman's theorem in an arbitrary abelian group, J. Lond. Math. Soc. 75 (2007), 163-175.
[8] N Hegyvári and F. Hennecart, A note on Freiman models in Heisenberg groups, Israel J. of Math. 189 (2012), 397-411.
[9] N. Hegyvári and F. Hennecart, A structure result for bricks in Heisenberg groups, Journal of Number Theory 133(9) (2013): 2999-3006.
[10] T. Pham, M. Tait, C. Timmons, and L. A. Vinh, A Szemerédi-Trotter type theorem, sum-product estimates in finite quasifields, and related results, J. Combin. Theory Ser. A 147 (2017) 55-74.
[11] L. A. Vinh, The solvability of norm, bilinear and quadratic equations over finite fields via spectra of graphs, Forum Mathematicum, Vol. 26 (2014), No. 1, pp. 141-175.

Appendix

Proof of Lemma 2.3. Let Q be a finite quasifield of order q and let $S P_{Q, n}$ be the bipartite graph with partite sets $\mathbf{X}=\mathbf{Y}=Q^{n} \times Q$ where $\left(x_{1}, \ldots, x_{n}, z_{x}\right) \sim\left(y_{1}, \ldots, y_{n}, z_{y}\right)$ if and only if

$$
\begin{equation*}
z_{x}+z_{y}=x_{1} * y_{1}+\cdots+x_{n} * y_{n} . \tag{3}
\end{equation*}
$$

First we show that $S P_{Q, n}$ is q^{n} regular. Let $\left(x_{1}, \ldots, x_{n}, z_{x}\right)$ be an arbitrary element of \mathbf{X}. Choose $y_{1}, \ldots, y_{n} \in Q$ arbitrarily. Then there is a unique choice for z_{y} that makes (3) hold, and so the degree of $\left(x_{1}, \ldots, x_{n}, z_{x}\right)$ is q^{n}. A similar argument shows the degree of each vertex in \mathbf{Y} is q^{n}.

Next we show that λ_{2} is small. Let M be the adjacency matrix for $S P_{Q, n}$ where the first q^{n+1} rows and columns are indexed by \mathbf{X}. We can write

$$
M=\left(\begin{array}{cc}
0 & N \\
N^{T} & 0
\end{array}\right)
$$

where N is the $q^{n+1} \times q^{n+1}$ matrix whose $\left(x_{1}, \ldots, x_{n}, x_{z}\right)_{X} \times\left(y_{1}, \ldots, y_{n}, y_{z}\right)_{Y}$ entry is 1 if (3) holds and 0 otherwise.

The matrix M^{2} counts the number of walks of length 2 between vertices. Since $S P_{Q, n}$ is q^{n} regular, the diagonal entries of M^{2} are all q^{n}. Since $S P_{Q, n}$ is bipartite, there are no
walks of length 2 from a vertex in \mathbf{X} to a vertex in \mathbf{Y}. Now let $x=\left(x_{1}, \ldots, x_{n}, x_{z}\right)$ and $x^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}, x_{z}^{\prime}\right)$ be two distinct vertices in \mathbf{X}. To count the walks of length 2 between them is equivalent to counting their common neighbors in \mathbf{Y}. That is, we must count solutions ($y_{1}, \ldots, y_{n}, z_{y}$) to the system of equations

$$
\begin{equation*}
x_{z}+y_{z}=x_{1} * y_{1}+\cdots+x_{n} * y_{n} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{z}^{\prime}+y_{z}=x_{1}^{\prime} * y_{1}+\cdots+x_{n}^{\prime} * y_{n} . \tag{5}
\end{equation*}
$$

Case 1: For $i \leq 1 \leq n$ we have $x_{i}=x_{i}^{\prime}$: In this case we must have $x_{z} \neq x_{z}^{\prime}$. Subtracting (4) from (5) shows that the system has no solutions and so x and x^{\prime} have no common neighbors.

Case 2: There is an i such that $x_{i} \neq x_{i}^{\prime}$: Subtracting (5) from (4) gives

$$
\begin{equation*}
x_{z}-x_{z}^{\prime}=x_{1} * y_{1}+\cdots+x_{n} * y_{n}-x_{1}^{\prime} * y_{1}-\cdots-x_{n}^{\prime} * y_{n} . \tag{6}
\end{equation*}
$$

There are q^{n-1} choices for $y_{1}, \ldots, y_{i-1}, y_{i+1}, \ldots y_{n}$. Since $x_{i}-x_{i}^{\prime} \neq 0$, these choices determine y_{i} uniquely, which then determines y_{z} uniquely. Therefore, in this case x and x^{\prime} have exactly q^{n-1} common neighbors.
A similar argument shows that for $y=\left(y_{1}, \ldots, y_{n}, y_{z}\right)$ and $y^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}, y_{z}^{\prime}\right)$, then either y and y^{\prime} have either no common neighbors or exactly q^{n-1} common neighbors.
Now let H be the graph whose vertex set is $\mathbf{X} \cup \mathbf{Y}$ and two vertices are adjacent if and only if they are either both in \mathbf{X} or both in \mathbf{Y}, and they have no common neighbors. For this to occur, we must be in Case 1, and therefore we must have either $x_{z} \neq x_{z}^{\prime}$ or $y_{z} \neq y_{z}^{\prime}$ and all of the other coordinates equal. Therefore, this graph is $q-1$ regular, as for each fixed vertex there are exactly $q-1$ vertices with a different last coordinate and the same entries on the first n coordinates. Let E be the adjacency matrix of H and note that since H is $q-1$ regular, all of the eigenvalues of E are at most $q-1$ in absolute value. Let J be the q^{n+1} by q^{n+1} all ones matrix. By the above case analysis, it follows that

$$
M^{2}=q^{n-1}\left(\begin{array}{ll}
J & 0 \tag{7}\\
0 & J
\end{array}\right)+\left(q^{n}-q^{n-1}\right) I-q^{n-1} E
$$

Now let v_{2} be an eigenvector of M for λ_{2}. For a set of vertices Z let χ_{Z} denote the vector which is 1 if a vertex is in Z and 0 otherwise (ie it is the characteristic vector for Z). Note that since $S P_{Q, n}$ is a regular bipartite graph, we have that $\lambda_{1}=q^{n}$ with corresponding eigenvector $\chi_{\mathbf{X}}+\chi_{\mathbf{Y}}$ and $\lambda_{n}=-q^{n}$ with corresponding eigenvector $\chi_{\mathbf{X}}-\chi_{\mathbf{Y}}$. Also note that v_{2} is perpendicular to both of these eigenvectors and therefore is also perpendicular to both $\chi_{\mathbf{x}}$ and $\chi_{\mathbf{Y}}$. This implies that

$$
\left(\begin{array}{cc}
J & 0 \\
0 & J
\end{array}\right) v_{2}=0 .
$$

Now by (7), we have

$$
\lambda_{2}^{2} v_{2}=\left(q^{n}-q^{n-1}\right) v_{2}-q^{n-1} E v_{2} .
$$

Therefore $q-1-\frac{\lambda_{2}^{2}}{q^{n-1}}$ is an eigenvalue of E and is therefore at most $q-1$ in absolute value, implying that $\lambda_{2} \leq 2^{1 / 2} q^{n / 2}$.

[^0]: *Department of Mathematics, EPFL, Lausanne, Switzerland. Email thang.pham@epfl.ch
 ${ }^{\dagger}$ Department of Mathematical Sciences, Carnegie Mellon University. Research is supported by NSF grant DMS-1606350. Email: mtait@cmu.edu.
 ${ }^{\ddagger}$ University of Education, Vietnam National University. Email: vinhla@vnu.edu.vn
 ${ }^{\S}$ Department of Mathematics, Wake Forest University. Email: wonrj@wfu.edu

